SURFACE ENERGY

Atoms at a surface or interface are in an environment that is markedly different
from the environment of atoms in the bulk of the solid. They may be surrounded by
fewer neighbors and these neighbors may be more anisotropic than in the bulk.
Thus, we need to be able to quantify the excess properties of surfaces and inter-
faces.

This part begins by defining some of the basic thermodynamic quantities that we
need to discuss surfaces. It then shows that there is a strong correlation between the
surface energies of solids and liquids with certain bulk properties, which depend di-
rectly on the interatomic potential developed in Part 1. This leads naturally to a dis-
cussion of nearest-neighbor bond models of surfaces and surface energy, which are
followed by surface anisotropy and real atomistic models of surfaces. We then de-
velop a thermodynamic treatment of surfaces in order to quantify phenomena such
as segregation and adsorption to surfaces and interfaces.

3.1. DEFINITION OF SURFACE ENERGY AND THERMODYNAMIC
FUNCTIONS

One often encounters three terms in the scientific literature relating to surfaces: (a)
the surface tension, (b) the surface energy and (c) the surface stress. All three quan-
tities have units of energy per area (J/m?) or force per length (N/m). The term sur-
face tension is appropriate when referring to liquids, because liquids cannot support
shear stresses and atoms in the liquid can diffuse fast enough to accommodate any
changes in the surface area. This is not the case for solid surfaces and solid-solid in-
terfaces, which usually possess elastic stresses up to the melting temperature.
Hence, use of the term surface tension is not clear in the case of solids, and we do
not use it further. The surface energy and surface stress sufficiently define the state
of all surfaces [1-6], and we refer to these quantities in this book. As we formally
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derive below, the relationship among the surface energy and surface stress is that
solid surfaces can change their energy in two ways:

I. By increasing or decreasing the physical area of the surface; for example, by
cleaving a surface or adding atoms to the surface with the arrangement of the
atoms being identical to those in the bulk.

2. By changing the positions of atoms at a surface through elastic deformation;
for example, by phenomena such as surface relaxation or reconstruction.

The first case involves simply creating more or less surface area and is independent
of the nature of the surface, whereas the second case involves the detailed arrange-
ments of atoms within a solid surface and may be thought of as the work involved in
straining a unit area of surface.

Consider a large homogeneous crystalline body that contains N atoms and is sur-
rounded by plane surfaces [7]. The energy and entropy of the solid per atom are de-

noted by E, and §,. The specific surface energy, E, (energy per unit area), is defined
by the relation

E=NE, + AE,, 3.1
where E is the total energy of the body and 4 is the surface area. Thus E, is the ex-
cess of the total energy E that the solid has over the value NE,, which is the value it
would have if the surface were in the same thermodynamic state as the homoge-
neous interior. Similarly, we can write the total entropy of the solid as

S§=NS, + A4S, 3.2)
where S is the specific surface entropy (entropy per unit area of surface created).
The specific surface work content, F, (energy per unit area), is defined by the equa-
tion

F,=E.—TS. (33)
and the specific surface free energy (energy per unit area) is defined by

G,=H,-T5,, (3.4)
where H; is the specific surface enthalpy (that is, the heat absorbed by the system
per unit surface area created). The total free energy of a system G can then be ex-
pressed as

G = NG, + AG,, (3.5)

similar to the total energy and entropy in Eqgs. (3.1) and (3.2). We have therefore de-
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fined the thermodynamic properties that are due to the presence of the surface sur-
rounding the condensed phase. . ‘

To create a surface we have to do work on the system that involves breaking
bonds and removing neighboring atoms. Under conditions of equilibrium at con-
stant Tand P, the reversible surface work d# required to increase the surface area 4
by an amount dA, in a one-component system, is given by

dW, 7. = yd4, (3.6)

where the term 1 is called the surface energy and its units are J/m? (or Nfr.n).

In the absence of any irreversible process, the reversible work dW ., is equal Iio
the change in the total free energy of the surface. The total surface free energy is
thus equal to the specific surface free energy times the surface area

dW, (7.5 = d(GA). (3.7)

Creation of a stable interface always has a positive free energy of formation. TI?is
reluctance of a solid or liquid to form a surface defines many of ﬂ}e intcl_'facral
properties of condensed phases. For example, liquids tend to mmumzc their sur-
face area by assuming a spherical shape. As we see shortly, solids that are near
equilibrium with their own liquid or vapor form surfaces of lowest free energy at
the expense of surfaces of higher free energy. Crystal faces that exhibit the closest
packing of atoms tend to be the surfaces of lowest free energy and hence the most
stable. As shown in later chapters, this characteristic also dominates the behavior
of solid—solid interfaces and is thus very important. ‘

As mentioned above, there are two ways of forming new surface: (a) by s_lmply
increasing the surface area or (b) by stretching the already existing surface lwlth the
number of atoms fixed and thereby altering the state of strain. Considering both
possibilities, we can rewrite the right-hand side of Eq. (3.7) as

3G
AW, 5.0y = G + (al)”,a. 33)

If we create the new surface by increasing the area, the specific surface free energy
G, is independent of the surface area so that (dG,/d4)7» =0, and the surface work is

given by
dm(rﬂ - G.d.r‘ (39)

This happens when we increase the surface area by cleavage without any atomic ad-
justments at the new surface for example. Comparing Eqs. (3.6) and (‘3.9) shows
that y = G,, which means that the surface energy v is equal to the specific surface
free energy for a one-component system [6,7].

In the case of solids, elastic deformation of the material can lead to new surface
due to strain. The elastic deformation of a solid surface can be expressed in terms of
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a surface elastic strain tensor €, where i,j = 1,2 [2-5]. Consider a reversible process
that causes a small variation in the area through an infinitesimal elastic strain de;;.
We can define a surface stress tensor fj that relates the work associated with the
variation in y4, the total excess free energy of the surface due to the strain de;, as

d(yA) = Afdey. (3.10)

Since d(yA) = yd4 + Ady (Eqgs. 3.7 and 3.8) and d4 = 43,de,,, where 3, is the Kro-
necker delta [8], the surface stress can be expressed as

3
fg=18y+ﬁ- G.11)
i

where dvy/de; accounts for stretching of the surface and dy/de; = (G/d4)r, in
terms of the notation in Eq. (3.8).

In contrast to the excess surface free energy v, which is a scalar, the surface
stress f}; is a second rank tensor. For a general surface, it can be referred to a set of
principal axes such that the off-diagonal components are identically zero. In addi-
tion, the diagonal components are equal for a surface possessing a rotation axis of
threefold or higher symmetry [9]. Thus, the surface stress for high-symmetry sur-
faces is isotropic and can be taken as a scalar quantity

ay
= 4 —— 3_12
I=y = (3.12a)
which can also be written as
_ oy
=) s (3.12b)

showing that the difference between the surface stress fand the surface energy vy is
equal to the change in surface free energy per unit change in elastic strain of the sur-
face. Note that only when d+/de = 0 is the surface stress /in Eq. (3.12a) equal to the
specific surface free energy v, as in the case of liquids. For most solids dy/de # 0.
The surface stress fcan be either positive or negative and is generally on the same
order of magnitude as <y, whereas vy is always positive for a clean surface. The quan-
tity +y is a scalar quantity, but it can also vary with the surface orientation and is
therefore a scalar function of the unit vector along the surface normal (as shown in
Sec. 3.4).

The physical origin of the surface stress can be qualitatively explained as follows
[3]. Atoms at the surface have fewer bonds than those in the interior. If the surface
atoms were not constrained to remain structurally coherent with interior atoms, they
would have an equilibrium interatomic distance that is different from the bulk. As a
result, the interior atoms can be considered to exert a stress on the surface. When f'is
positive, the surface work fd4 is negative if d4 is negative. This indicates that the
surface could lower its energy by contracting and is under tension. Therefore, a pos-
itive fis referred to as a tensile surface stress, and a negative f is referred to as a
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compressive surface stress. The surface stress can be considered to act tangentially
along the surface.

We defer further discussion of the surface stress until Section 4.6, except to note
that when elastic and plastic surface terms are incorporated into the surface, dy/de;
can be negative. In this situation, dislocations and elastic buckling of thz.a surface
can occur, which has been observed experimentally, as illustrated by the high-reso-
lution transmission electron microscope (HRTEM) image of a {111} gold surface
in Figure 3.1 [10,11].

Based on Egs. (2.1) and (2.2), the change in the total free energy dG. ofa one-
component system with the inclusion of the increase of free energy with increasing
surface can be written as

dG =-SdT + VdP + yd4. (3.13)

If we differentiate Eq. (3.4) as a function of temperature, we obtain

(EF_-) =(ﬂ) A (3.14)
aT Jp \0T)p

where it is apparent that the surface free energy changes with temperature because
of the change in entropy at the surface. Intuitively, we expect that surface atoms
have more freedom of movement than atoms in the bulk and therefore a higher ther-
mal entropy. Extra configurational entropy can also be introduced into the surface
by the formation of surface vacancies (e.g., as discussed in Sec. 4.2). The surf?ce
energy of a crystal therefore is associated with a positive excess entropy, which
means that (3y/aT)p is negative. Hence, as the temperature increases, the surface
energy vy decreases, because the increasing excess entropy tends to com;?ensate for
the high excess enthalpy in Eq. (3.4), which results from the broken atomic bonds at
the surface.

Because the surface energy is a quantity that can be directly measured, by mea-
suring its temperature dependence, it should be possible to extract the excess sur-
face entropy. Although reliable data of this type are fairly scarce, Figure 3.2 shows
the variation in the surface energy of copper, silver and gold with temperature

Figure 3.1. Image of a goid {111} surface buckled under surface stress. Vertical arrow marks
a surface dislocation. From [10,11], reprinted with the permission of Cambridge University
Press.
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Figure 3.2. Temperature dependence of the surface energy and the solid-liquid phase transi-
tion for three f.c.c. metals. From [12].

through their melting points 7,, [12]. The symbols y5V and y'V are used to indicate
that the solid and liquid surfaces are in equilibrium with the vapor phase, respec-
tively. The corresponding values of (3y$V/dT)p obtained from these data are —0.50,
—0.47 and —0.43 mJ/m*K, respectively.

A value of about —0.45 mJ/m*K for (3ySV/aT), appears to be a reasonable ap-
proximation for many solid metals. The discontinuity of approximately 25% in the
surface energy at Ty, is related to the heat of fusion and is well established [12,13].
In general, the ratio of the surface energy of the solid SV to that of the liquid y* is
approximately 1.1 to 1.2, as mentioned earlier with respect to Table 1.1, so that sur-
face-energy data for solids can be estimated from those of the liquids that are more
abundant according to the formula

vV = 1.2(yY), + 045(T,, - T), (3.15)

where (yY),, is the liquid surface energy at the melting point, 7}, is the melting tem-
perature, and T is the temperature below the melting point of the solid.

Because the surface energy decreases with temperature, the work necessary to
create more surface decreases with increasing temperature. A semiempirical equa-
tion for predicting the temperature dependence of the surface energy of liquids was
proposed by van der Waals and Guggenheim [14,15] as

YW=yl ~ LY, (3.16)

where T is the critical temperature and vy, =y at 0 K. According to Eq. (3.16), the
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surface energy should vanish at T'= T, because the phases become indistinguishable
and the interface between them vanishes at the critical temperature. If the exponent
n is near unity, the surface energy varies linearly up to the critical temperature as il-
lustrated in Figure 3.2. The value of n has been determined as about 1.2 for metals
by experiment [12,13], indicating approximate agreement with this relationship. I1-
lustration of the atomic structure of a liquid surface and the density as a function of
temperature are shown in Figure 3.3. At the critical temperature, the surface energy
approaches zero and the atoms (or molecules) in the liquid are so weakly bound
that the surface definition is lost and the density of the liquid and vapor become
equal. Although this illustration is for a liquid-vapor interface, it is a general pi‘cmre
that applies to other interfaces, including solid-vapor and some solid-solid inter-
faces.

3.2. CORRELATION OF SOLID SURFACE ENERGY
WITH PHYSICAL PROPERTIES

A strong correlation exists between the surface energies of solids and their corre-
sponding physical properties. The basis of this correlation is that the surface energy
and the physical properties all depend on the strength of the interatomic bond.
Atoms at a surface do not have as many nearest neighbors as those in the bulk, and
therefore their energy is higher. As shown in the next section, the magnitude of the
surface energy depends on the number of broken bonds associated with the surface
atoms and on the strength of the broken bonds.

The following three figures show that there is a linear relationship between ex-

Qo O O O OO
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Figure 3.3. lllustration of the atomic structure of a liquid-vapor interface and the density
across the interface: (a) at 0K, (b)at T< T, and(c)at T = T..
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perimentally measured surface energies and the heats of sublimation (Fig. 3.4), the
moduli of elasticity (Fig. 3.5) and the Debye temperatures (Fig. 3.6), respectively,
for a variety of metals and alloys. A similar correlation exists with the melting tem-
peratures. Thus, to first approximation, the surface energy of a metal can be esti-
mated from one of its physical properties such as the enthalpy of sublimation or De-
bye temperature using the slopes in these graphs. These properties were related to
the strength of the interatomic potential —€, in Egs. (1.4) and (1.15). Note that the
experimental surface energies in these graphs were measured near the melting point
where surface stresses (Eq. 3.12) may be low but are still present.

Table 3.1 shows experimentally measured average surface energies of various
solid and liquid metals, ceramics and organic liquids. It can be seen that metals gen-
erally have surface energies in the range of 1,000-2,000 mJ/m?, that ionic crystals
tend to be lower by a factor of approximately 2, and that the surface energies of or-
ganic liquids are generally much lower, by about two orders of magnitude. These
differences become very important when we consider wetting of one material by an-
other, a topic that is discussed in Chapter 7.
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Figure 3.4. Correlation between the molar surface energy of solid metals at their melting point
and the heat of sublimation. Reprinted with permission from [16].
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Figure 3.5. Surface energy of solid metals (vS") and alloys versus modulus of elasticity in ten-
sion (Young's modulus) at 0.9T,,,. From [12].

3.3. CALCULATION OF SURFACE ENERGY USING A
NEAREST-NEIGHBOR BROKEN-BOND MODEL

For a first approximation, we can discuss the structure of solid surfaces in terms of
a hard-sphere model. This is not a bad approximation given the strong (r'?) repul-
sion between atoms in metals. If the surface is parallel to a low-index crystal plane,
the atomic arrangement in the plane can be assumed to be the same as in the bulk,
except for perhaps a small change in lattice parameter. (The actual structure of low-
index f.c.c. metal surfaces is described in a subsequent section for comparison.)
Figure 3.7 shows hard-sphere models of the {111}, {100} and {1 10} atom planes in
f.c.c. metals. Except for the close-packed {111} plane, the density of atoms in f.c.c.
planes generally decreases as the {hkl} Miller indices of the plane increase. The
surface energy originates because atoms in the surface plane are missing some of
their neighbors and therefore possess a higher energy than those in the bulk (i.e., an
excess energy due to broken bonds).

We can calculate the surface energy of a pure solid f.c.c. metal using a simple
nearest-neighbor broken-bond model of the surface. The assumptions used in this
model are the following:




56  SURFACE ENERGY

Table 3.1. Average surface energies of selected solids and liquids at
temperatures

the indicated

Masrial y (mJ/m?) T(°C)
W (solid) 2900 1727
Nb (solid) 2100 2250
Au (solid) 1410 1027
Au (liquid) 1140 1338
Ag (solid) 1140 907
Ag (liquid) 879 1100
Fe(solid) 2150 1400
Fe (liquid) 1880 1535
Pt (solid) 2340 1311
Cu (solid) 1670 1047
Cu (liquid) 1300 1535
Ni (solid) 1850 1250
Hg (liquid) 487 16.5
LiF (solid) 340 _195
NaCl (solid) 227 25
KClI (solid) 110 25
MgO (solid) 1200 25
CaF, (solid) 450 -195
BaF, (solid) 280 195
He (liquid) 0.31 —270.5
N; (liquid) 9.71 ~195
Ethanol (liquid) 2275 20
Water 72.75 20
Benzene 28.88 20
n-Octane 21.80 20
Carbon tetrachloride 26.95 20
Acetic acid 278 20
Nitrobenzene 252 20
Source: From [7).

1. Each atom is bonded to z nearest neighbors (coordination number) and only
the energies of the nearest neighbors are considered.

2. Each bond has an energy —e, that is not a function of temperature.

3. The energy is equal to the heat of sublimation AH, per mole divided by the to-
tal number of bonds, as in Eq. (1.4).
4. The enthalpies and internal energies are equal.

Consider the {111} surface in Figure 3.7a, for example. We see that, when an
f.c.c. crystal with z = 12 is separated on a {111} plane, there are six nearest neigh-
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bors in the plane, three atoms above the plane and three Pelow. As a result, three
bonds are broken for each surface atom when the crystal is separated to form two
{111} planes. Thus, every surface atom has an excess internal energy of 3€,/2 over

the atoms in the bulk. Consequently, the energy of a {111} surface is given by
B2, 300 B0, (3.17)

in joules per atom. If there are N, atoms/m? on tl_lc {hkl} surface and there are
no surfaces strains, then the surface energy y{\, is given as

‘Yﬁ‘h}z u{::t|E-=N:{l|I}MJ4NA (3.18a)

in joules per square meter. Similarly, for a {100} surface



58 SURFACE ENERGY

Figure 3.7. Hard-sphere models of (a) the (111} and {100}, a! aces
. and (b) the {110
for an f.c.c. metal based on a stacking of {111} atom planes. From }18}. Ea

'Yﬁﬁm = Ns{ um‘-\Hs’GNA (3.18b)
and, for a {110} surface

Yitio) = Ny(110)AH/2N,. (3.18¢)
ch thqt it is d.ifﬁcull to find the sixth broken bond at the {110} surface, because it
is associated with the second layer of atoms below the surface. (This point is illus-

trated in Problem 4.10.) Cor_npa_ring Egs. (3.18) immediately shows that the surface
energy of a {110} surface is higher than that of a {100} surface, which is higher
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than that of a {111} surface, independent of the magnitude of the bond energy. This
same broken-bond approach can be used to estimate the energy of any {hkl} crystal
surface.

The calculations above are for specific crystal planes. When y®" is measured ex-
perimentally for a material (as in Table 3.1 for example), it is often an average value
obtained over many different crystal planes. It is difficult to calculate an average
value of ¥V from the nearest-neighbor broken-bond model because the average
number of broken bonds and surface area per atom are not known. An alternative
expression for calculating the average surface energy of metals that takes into ac-
count the size of the atoms and thus the energy per unit surface [19] is given by

~SV = C,AH/V 23, (3.19)

where V,, is the molar volume of the metal and C, is a proportionality constant
(6N 1?)" equal to 2x10~° mol'? when 5V is in mJ/m? (or 20 when y*" is expressed
in kJ/cm?), AH, is in kJ/mol and ¥2? is in m¥mol*>. This relationship is illustrated in
Figure 3.8 and it is based on Miedema's semiempirical model of alloy formation [20].
The individual data points for yS¥ in Figure 3.8 are given in Appendix C.

Table 3.2 compares the {111}, {100} and {110} surface energies calculated ac-
cording to Eq. (3.18), with average values obtained experimentally from Table 3.1,
with values calculated from Eq. 3.19 and using the embedded-atom method (EAM)
[21] described in Section 1.3. Note that the results of both the nearest-neighbor bro-
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Figure 3.8. lllustration of the linear relationship between the surface energy and heat of subli-
mation per unit molar surface for solid metals at T = 0 K. Open circles correspond to nontran-
sition metals and filled circles to transition metals. In this plot, C, = 20 because the units are
kJ/cm?. From [19].
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Table 3.2. Surface energies of copper calculated according to Eq. (3.18) compared to
values obtained by embedded-atom method calculations at 0 K, from Eq. (3.19), and
experimentally determined average values near T,

Element {111} {100} {110} Experiment  Eq. (3.19)
Cu (Eq. 3.18) 1240 1430 1520 — —
Cu (EAM) 1170 1280 1400 1670 1799
Ag (EAM) 620 705 770 1140 1195
Au (EAM) 790 918 980 1410 1537

*Values for Au and Ag are also included for comparison and all units are in mJ/m?.

Source: Embedded-atom method calculations from [21). Experimentally determined average values
from [7].

ken-bond model and EAM calculations show the same trend in energies among the
metals, although the EAM calculations at 0 K are consistently lower. The average
experimental values are generally higher than either calculational method and com-
pare favorably with the results of Eq. (3.19), although the latter are somewhat high-
er. These results indicate that the simple nearest-neighbor bond model is able to ac-
count qualitatively for the behavior of the surface energy as a function of orientation
in f.c.c. metals and provide a reasonable estimate of the magnitude of the surface
energy, accurate to within maybe 10%. It must be remembered that the nearest-
neighbor model is only approximate, and, therefore, these are quite satisfying re-
sults. [Nore: Many of the surface energy data in the literature are given in units of
ergs/cm?’. Fortunately, this easily converts since 1 erg/cm? = 1 mJ/m? (Appendix
A).]

3.4. THE yPLOT

It is clear from the previous section that the surface energy of a solid varies as a
function of the crystal surface orientation. In many cases, we need to know how the
surface energy varies for all possible surface orientations, and we also need a conve-
nient method to display calculated and experimental surface-energy data for com-
parison. This can be accomplished using a so-called vy plot, where the surface ener-
gy is plotted as a function of surface oriention (pole normals) on a stereographic
projection. Due to the high symmetry of cubic crystals, the entire orientation depen-
dence can be displayed on the stereographic triangle bounded by the {111}, {100}
and {110} poles, as illustrated in Figure 3.9.

Nicholas et al. [22,23] have calculated ¥V plots for f.c.c. and b.c.c. metals using
an unrelaxed nearest-neighbor broken-bond model and interaction potentials of var-
ious types, including the Lennard-Jones 6-12 potential discussed in Chapter 1.
They also compared the effects of using first-, second- and higher-nearest-neighbor
interactions in the calculations. Their equation for the surface energy Y\, as a
function of orientation is
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Figure 3.9. Stereographic plot of the normals to the surfaces for a cubic structure. From [18].
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where ¥, is the volume of the crystal per atom with an associated u bond {fo; an
f.c.c. crystal, ¥, is just the volume of a primitive unit cell of the structure since
every atom is associated with a u bond), B, is the normal vector of a plane with
{hkl} indices, where h, k and [ are the components ot;i (k) w}xcn rcfm'e.d to ;he cor-
nding unit cell of the reciprocal lattice, and interplanar spacing dguw) =
ﬁfmﬂ. agnd u, is a unit vector which specifies the direction of ﬂle.iﬂ"l F:rystallbond
about the atoms. The quantity d /¥, represents the area of the (primitive) unit cell
of surface on the {hkl} plane. The summation is performed over all bonds with a
positive value of m,4; (i.e., those bonds pointing out of the {hﬂ}_surface plane).
Results from three of their calculations including nearest-neighbor, second-
nearest-neighbor and many-neighbor interactions are shown in Figures 3.10a, b
and c, respectively. In Figure 3.10a, the surface cnc_rgies’ of the {ll_l}. {IO(_)} and
{110} surfaces scale as in our broken-bond calculations in the previous section. In
addition, the maximum surface energy occurs for the {210} plane. The dlﬂ'efen_c.c
in surface energy between the {111} and {210} planes is about 29%. Two signif-
icant differences occur when second nearest neighbors are included in the calcula-
tions. As shown in Figure 3.10b, the maximum surface energy shifts toward the
{211} pole and the surface energy of the {100} Plane becomes less llum that of
{111}. When the calculations include nearest ncnghbprs up to approximately 22
times the interactomic distance, the {111} surface again has the lowest su_.lrface en;
ergy and the maximum anisotropy is only approximately 12%, as shown in the ¥
plot in Figure 3.10c.
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Figure 3.10. Theoretical contour plots of solid surface energy for an f.c.c. crystal when (a)
nearest-neighbor, (b) second-nearest-neighbor and (c) many-neighbor interactions are con-
sidered. From [23].
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Figure 3.11 shows experimental ¥V plots for the surface energy of copper ob-
tained from grain boundary grooving experiments at three different temperatures
approaching the melting point [24]. These data show that the surface energies of the
{111}, {100} and {110} surfaces generally increase in this order, in agreement with
the plots in Figures 3.10a and c, but the differences between them are much smaller,
and there is not a pronounced minimum at {110}. In contrast to the calculations
above, the maximum difference in surface energy at the lowest temperature of
830°C is only 3.5% and this difference decreases to 1.7% at 1030°C. These data in-
dicate that the broken-bond model at 0 K overestimates the magnitude of the
anisotropy of the surface energy, particularly in the case when only nearest neigh-
bors are included in the calculations. Qualitatively, the form of the y*V plots at the
lower temperatures is similar to those shown in Figure 3.10, so that the nearest-
neighbor bond model is able to offer insight into the variation of surface energy
with orientation.

3.5. THE WULFF PLOT AND WULFF CONSTRUCTION

3.5.1. Wulff Plot

Another useful way to plot the variation in yS¥ as a function of orientation is accom-
plished using a Wulff plot, in which a radius vector r ,y, represents the orientation of
the surface (i.e., the direction of the surface normal my, and the length of r is giv-
en by the magnitude of the surface energy y*Vny, so that r = YV ity (B iy )- We
only consider two-dimensional Wulff plots, but the ideas apply directly to three-
dimensional plots as well.

A two-dimensional section along a <110> direction of the Wulff plot of an f.c.c.
crystal is shown schematically in Figure 3.12a. The Wulff plot has the same symme-
tries as the crystal and one quadrant is sufficient to specify the entire plot in Figure
3.12a [25). Thus, the variation in y*¥ in moving along the Wulff plot may be
thought of as lines of constant surface energy in the stereographic triangle as depict-
ed in the previous yS¥ plots. There are local minima in the surface energy along the
Wulff plot, which are often referred to in the literature as cusps. The surfaces corre-
sponding to cusp orientations (like {111}) are called singular.

3.5.2. Wulff Construction

In this section, we examine the connection that exists between crystal morphology
and the variation of y with orientation. This important connection occurs not only
for solid—vapor interfaces but also for all of the interfaces that we consider in this
book. We first look at it from a thermodynamic or phenomenological viewpoint,
and, in the next section on the terrace-ledge-kink description, we examine the same
relationship on an atomistic level.

Consider a one-component system in which there are two phases « and B sepa-
rated by an interface as sketched in Figure 3.13. The a phase is a solid and the B
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phase could be a vapor, liquid, or solid. We would like to know the equilibrium
shape of the interface. If we assume that the a and B phases have their equilibrium
volumes and can only change their shape, then the condition of minimum free ener-

gy [26] is given by
J ¥(n)d4 = minimum, (3.21)

Figure 3.13. Apuﬂchofuphasesepamedhomaphmbyanimmlaneledl.
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where the integral is taken over the interface | with normal vector n. For interfaces
between simple liquids where y is independent of orientation, it is clear that the
condition of equilibrium is one of minimum surface area so that the equilibrium
shape is a sphere. There is experimental evidence that solids also approach this con-
dition at high temperature. However, when there is appreciable variation of y with
orientation as we have seen in the previous sections, the equilibrium shape will be a
polyhedron with surfaces of low v being preferentially exposed (as in Figure 3.12b).

We can determine the equilibrium shape of the particle from the Wulff plot by a
procedure known as the Wulff construction [26]. Although this construction allows
one to determine the equilibrium crystal shape from the Wulff plot, it is not usually
possible to construct a unique y plot from the equilibrium crystal shape. The proce-
dure for the Wulff construction is as follows:

1. Draw radius vectors from the origin to intersect the Wulff plot, as illustrated
by OA in Figure 3.12a.

2. Construct lines (planes in three dimensions) normal to the radius vector pass-
ing through the point of intersection (dashed line perpendicular to OA4).

3. The figure formed by the inner envelope of all these perpendiculars is the
equilibrium shape, labeled in Figure 3.12a.

Therefore, when the Wulff plot contains sharp cusps, the equilibrium crystal shape
is a polyhedron where the width of the crystal facets is inversely proportional to
their surface energy (i.., the largest facets have the lowest surface energy). This is
illustrated by the equilibrium crystal shape shown in Figure 3.12b.

It is possible to construct several other types of vy plots that have some utility
when considering faceting of crystal surfaces. Faceting occurs when an initially flat
surface of arbitrary orientation breaks up into a hill-and-valley structure composed
of portions of two or more facets that are generally low-energy (low-index) planes.
A flat surface present in the equilibrium shape of the Wulff diagram is stable,
whereas surfaces of other orientations are unstable and will exhibit faceting (i.e.,
they will break down into certain flat crystal surfaces, if kinetically feasible). Hirth
[27] discusses the other types of -y plots (including the T, y' and I'™! plots) and we
only consider the I" plot below.

The I' plot is the locus of points intersecting the radius vector from the origin
and perpendicular to the radius vector that lies as far as possible from the origin
while still maintaining at least one point of contact with the equilibrium shape. This
plot is illustrated for a cubic crystal viewed along [001] in Figure 3.14. Any orienta-
tion for which the Wulff plot (v plot) lies further from the origin than the I" plot is
unstable with respect to faceting, and the reduction in surface energy accompanying
faceting is given by the difference between the y and I" values at that orientation.
Note that the I' plot is the minimum-valued vy plot that will reproduce the given
equilibrium shape.

The equilibrium shape and surface energy anisotropy of crystals can be deter-
mined experimentally by annealing small single crystals in ultrahigh vacuum and
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Figure 3.14. Two-dimensional polar plot for a cubic crystal along [001] showing the +y plot, I
plot and the equilibrium shape. From [27].

observing the shape of a crystal and the size of its facets as a function of tempera-
ture. Similar experiments are also quite useful for quantifying surface segregation
as discussed in a later section. Heyraud and Metois [28,29] have performed these
types of measurements for a variety of metals including f.c.c. lead and gold on
graphite. Lead and gold are particularly good metals to study, 'becalruse they have
negligible solubility for carbon (from the substrate) and are relatively inert.

Figure 3.15 shows a scanning electron microscope image of an a:_mealed lead
particle on graphite. The <111> and <100> surface orientations are i_ndlcaled on the
figure, and the crystal is clearly faceted along these planes. The ratio of the widths
of the facets is equal to the ratio of their surface energies. These and other facets
were measured as a function of temperature in the range of 200°C to ‘300""'C and the
ratios of the surface energies as a function of temperature are shown in ngure 3.16.

The data in Figure 3.16 show that the maximum-surface—enel:gy anisotropy at
200°C is approximately 6% along <113> and <110> and the anisotropy between
<111> and <100> is less than 2%. When similar gold crystals were _aunealed at
1000°C the maximum-surface-energy anisotropy was 3.4% and the anisotropy be-
tween <111> and <100> was only 1.9% [28]. Both sets of results are similar to the
experimental data for copper in Figure 3.11 and earlier studies of gyld [30], again
indicating that the previous broken-bond model overestimates the anisotropy. These
data appear to be typical for f.c.c. metals. _

It is also clear from Figure 3.16 that the surface energy anisotropy is temperature
dependent and that it decreases as the temperature increases. The most important
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decrease occurs around the higher index <113> and <110> directions in the <110>
zone and around the <120> direction in the <100> zone [29]. Note that a decrease
in surface energy with increasing temperature corresponds to a positive value of
surface entropy, as discussed with reference to Eq. (3.14). Because there was disper-
sion in the data, it was difficult to draw conclusions about the variation in the ratio
v$¥%)/¥ 1), but the results indicated that the ratio decreased as the temperature
was raised. Lastly, the ratio y{,/yf\,) around the <111> direction seemed to be
almost temperature independent.

To understand the temperature dependence of the surface energy, we need to ex-
amine the atomic structure of surfaces in greater detail. This is done in the next
chapter on the terrace-ledge-kink model of surface structure. Before we move on, it
is worth noting that the WulfF construction developed with regard to Figure 3.12 ap-
plies to all types of interfaces, not just to solid-vapor interfaces as emphasized in
this section. We use the same construction to examine the equilibrium shapes of
precipitates embedded in a matrix in Part IV, for example.

PROBLEMS

3.1. Starting with the definition of strain e = (4 — Ag)/Aq, where A, is the initial area
and A is the final area, show that de = d4/4, and hence, that (3Ggs/d4)r, =

(dy/9e)r,p-

3.2. Starting with Egs. (2.1) and (2.2) and including the increase of free energy
with increasing surface area, derive Eq. (3.13).

3.3. For an f.c.c. metal, determine the ratio v, ,/y %o of the surface energies on
the {111} and {100} surfaces considering both the first and second nearest-
neighbor bond energies and assuming that the second nearest-neighbor bond
energy equals one-quarter of the first nearest-neighbor energy.

3.4. (a) Assume that the atoms in a solid can be described as cubes with volume V.
Show that the surface area per atom is 6(¥/N,)*? and determine C, in Eq.
(3.19).

(b) Use Eq. (3.19) to calculate the average surface energies of copper, silver
and gold and compare your results with the experimental results given in
Table 3.2.

3.5. For f.c.c. copper with a density of 8.93 g/cm? and an atomic mass of 63.55, de-
termine the atomic density and lattice parameter a. Using values from tables in
the text determine the solid—vapor surface energy and heat of sublimation in
terms of eV/atom for the {100} surface.

3.6. Use Eq. (3.16) to plot ¥V of copper from 0 to 1600 K. Compare your results
with Eq. (3.15), given that (y™),, = 1280 mJ/m? for copper.

3.7. Given the v5V plot below, use the Wulff construction to find the equilibrium
shape of the crystal.
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3.8. If a two-dimensional rectangular crystal is bounded by sides of lengths /, and
1,, show by differentiation that the equilibrium shape is given by

Ly
h va‘

where y ¥ and y3V are the surface energies of sides /, and J,, respectively.
(The area of the crystal /,/, is constant.)

3.9. The fi gure below (from [29]) shows two palladium particles on a graphite sub-
strate viewed along (a) <100> and (b) <110>.

(a) Locate the origin (Wulff point) in both figures.

(b) Determine the ratio of the surface energy anisotropy for the {100} and
{110} surfaces relative to the {111} surface by measuring the lengths of
vectors from the origin according to the construction in Figure 3.12.

(c) Compa_rc the ratio 7{5,‘5,_’0};’7 fi¥1) determined in part b with the same ratio
determined by comparing the lengths of the {100} and {111} facets, and

by comparing the angular width of these facets with respect to the origin.
How do vour measurements comnars?

SURFACE STRUCTURE

4.1. TERRACE-LEDGE-KINK MODEL OF SURFACES

It is useful to be able to visualize the atomic structures of surfaces and interfaces,
because many important phenomena such as the mechanisms and kinetics of crystal
nucleation and growth, adsorption and segregation to surfaces and even the defini-
tion of the surface depend directly on the atomic structure and atomic level defects
present at these interfaces. In this section, we develop an atomic description of crys-
tal surfaces, which we use to further understand the reason for cusps at certain crys-
tallographic orientations in the Wulff plot and to quantify phenomena such as sur-
face roughening (shown schematically in Figure 3.3, but only discussed in a
qualitative way). Again, it is important to remember that we are concerned with sol-
id—vapor interfaces (surfaces) in this chapter, but the ideas developed for the ter-
race-ledge-kink model here are equally applicable to solid-liquid and solid—solid
interfaces as we shall see later.

When we considered the formation of an {hkl} surface using the broken-bond
model in Chapter 3, we imagined that we created the surface by removing all of the
atoms whose centers lay on one side of a mathematical dividing plane with this ori-
entation located within the crystal. Since no atomic relaxations or rearrangements
were allowed to occur, the surface was ideal and there was no surface stress. This
led to atomic surfaces such as those shown in Figure 3.7. (An atlas of such surfaces
for f.c.c. and b.c.c. crystals has been published by Nicholas [18]. This is a useful ref-
erence for visualizing various {Akl/} surfaces.) The {100} and {111} surfaces shown
in Figure 3.7a are atomically smooth and are referred to as singular, because singu-
larities or cusps often occur in the ySV plot at these orientations.

A surface that is only slightly different in orientation from one that is atomically
smooth consists mainly of flat regions called terraces with a system of widely
spaced atomic steps or ledges. Such a surface is called vicinal. Figure 4.1a shows a
vicinal surface on an f.c.c. crystal that makes an angle of approximately 11° with re-



