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1.6.

1.7.

ATOMIC BONDING

Starting with Eq. (1.2), derive Eq. (1.6), and use it to show that ry = 1.117..

Based on the values in Table 1.1 and below, calculate the Einstein frequency
and the Debye frequency for copper, silver and gold and compare these values.

Element  n(10%cm?) Atomic Weight T, (K)
Cu 8.45 63.5 343
Ag 5.85 107.9 225
Au 5.9 197 165

. Using the Lennard-Jones potential with n = 8x10%? atoms/cm’, €, = 0.6

eV/atom and r, = (1/n)"?:
(a) Calculate the maximum force F,,.

(b) Assume the solid is in the linear elastic region and calculate Young’s mod-
ulus Y.

(c) What is the elastic energy £ at F,,,?

- (a) For the Lennard-Jones potential, discuss the influence of increasing the at-

tractive interaction while keeping the repulsive interaction fixed. How will
this effect the equilibrium separation r, and the pair potential €,?

(b) Repeat this process but decrease the repulsive interaction and do this while
keeping the attractive interaction constant,

Suppose an atomic cluster of only 12 atoms forms. Assuming that the atoms
can be described by the Lennard-Jones potential, would you expect the inter-
atomic spacing and elastic modulus of the cluster to be greater or less than that
of a corresponding bulk crystal? Explain.

Estimate the bond energies €, of copper, silver and gold from the heats of melt-
ing of the elements, assuming that there are 11 nearest neighbors in the liquid.
How do your results compare with the values in Table 1.1?

N ——

REGULAR SOLUTION
(QUASI-CHEMICAL) MODEL

Certain properties of binary solutions are used frequently in this book to explain
phenomena such as segregation to interfaces and chemical gradients at intcrﬁ_:ces.
Thus, it is important that the reader be familiar with properties of binary solutlo.ns.
This chapter summarizes some of the most important of these properties, including
the regular solution model and the effect of temperature on solid solubility and also
includes a brief review of some thermodynamics which lead up to the regular solu-
tion model. Our treatment is based on that of Porter and Easterling [12] and the
reader may refer to this and other books on thermodynamics [2,13,14] for addition-

al background.

2.1. THE GIBBS FREE ENERGY OF BINARY SOLUTIONS

In alloys, the Gibbs free energy is a function of composition, temperature and pres-
sure. In this book, the pressure is usually assumed to be 1 atm and the reaction is
carried out at constant temperature, so that these variables are fixed. In this case, the
relative stability of a system is determined by its Gibbs free energy, which is de-
fined as

G=H-TS, 2.1)

where H is the enthalpy, T is the absolute temperature and § is the cnu'oPy of the

system. The quantity G is usually expressed in joules per mole. Enthalpy is a mea-
sure of the heat content of the system and is given by

H=E+ PV, (2.2)

17
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where £ is the internal energy of the system, P is the pressure and V is the volume.
The internal energy £ arises from the total potential and kinetic energies of the
atoms in a solid. Because the kinetic energy of the atoms is usually small compared
to the interatomic potential energy, it is often neglected, as in the treatment of atom-
ic bonding in the previous section. The heat that is absorbed or evolves during a re-
action depends on the change in internal energy of the system. Most of the reactions
of interest to this subject occur at a constant pressure of 1 atm and the PV term is
usually very small in comparison with £ when dealing with condensed phases
(solids and liquids) so that H = E. We often use this approximation, and in fact have
already used it in Section 1.2.1.

The Gibbs free energy of a binary solution of 4 and B atoms can be calculated
from the free energies of pure 4 and pure B as follows. Assume that 4 and B have
the same crystal structures in their pure states and that they can be mixed in any pro-
portion to make a homogeneous solid solution with the same crystal structure. Mix-
ing together X, moles of A and X moles of B to form 1 mole of solid solution gives

Xt Xp=1, (2.3)

where X, and X are the mole fractions of 4 and B in the alloy. To calculate the free
energy of the alloy, the mixing can be envisioned to occur in two steps: (a) bring to-
gether X, moles of pure 4 and X, moles of pure B and (b) allow the 4 and B atoms
to mix together to make a homogeneous solid solution. After step (a), the free ener-
gy of the system is given by

G, =X,G, + X3Gy, (2.4)

where G, and Gy are the molar free energies of pure 4 and pure B at | atm and the
temperature of interest. The quantity G, can be conveniently represented on a molar
free energy diagram, where the molar free energy is plotted as a function of mole
fraction Xj, as shown in Figure 2.1. In this case, G, lies on a straight line between
G, and Gy for all alloy compositions.

]
Free energy Gg
per mole
before G
mixing 1

GA'
0 Xy — 1
A B

Figure 2.1. Variation of G, (the free energy before mixing) with alloy composition Xg (or X,4).
From [12].
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When the 4 and B atoms are allowed to mix in step (b) above, the froe energy c_nf
the solid solution changes so that the resulting Gibbs free energy after mixing G, is
given as

Gy= G, +AG, 2.5)

where AG,,;, is the change in Gibbs free energy caused by mixing. Rearranging Eq.
(2.5) so that

AGix=G,-G,
and letting
AH,,=H,-H, and AS.,=5,-S§,
then gives (from Eq. 2.1),
AGpix = AHyix — TASpix (2.6)

where AH,;, is the heat absorbed or evolved during step (b) (i.e., it is the heat of so-
lution). Ignoring the volume change during the process (PV), it rcpreset_ns only t]_u:
difference in internal energy (E) before and after mixing. AS,,;, is the difference in
entropy between the mixed and unmixed states.

2.2. IDEAL SOLUTIONS

The simplest type of mixing occurs for a so-called ideal solutiqn where AH ;=0
and the free energy change on mixing is due only to the change in entropy

AG i = ~TAS nix. @7

There are two contributions to the entropy, a thermal contribution and a configura-
tional contribution. If there is no volume or heat change during mixing then the only
contribution to AS,,, is the change in configurational entropy. The conf'!gurational
entropy is quantitatively related to the randomness of the solid solution by the
Boltzmann equation

S=kglng, (2.8)

where kg is Boltzmann's constant and £ is the number of distinguishable_ways of ar-
ranging the atoms in the solid solution. Assuming that 4 and B atoms mix to form a
substitutional solid solution where all configurations of A and B atoms are equally

probable gives an expression for AS,,;, (see [12-14])
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ASmix = —R(X, In X, + Xp In X). (2.9)

Note tl}at since X, and .Xf' are less than unity, AS,,, is positive and there is an in-
Crease in entropy on mixing as expected physically. The free energy on mixing is
then obtained from Eq. (2.7) as

AGpix = RTX, In X, + X, In X). (2.10)

The actual free energy of the solution depends on G, and Gy and combining Eqs.
(2.4), (2.5) and (2.10) yields

G=G,=X,G,+X3Gp+ RTX, In X, + Xy In X;), @.11)

which is illustrated graphically as a function of temperature and composition in
Figure 2.2.

2.3. CHEMICAL POTENTIAL

In alloys, we are often interested in knowing how the free energy of a particular
phase changes when atoms are added or removed. If a small quantity of element A4,
say dn, moles, is added to a large amount of phase at constant temperature and pres-
sure, the size of the system increases by dn, and there is an increase dG’ in the total
fre? energy of the system. (The symbol G’ has been used for the Gibbs free energy
to indicate that it refers to the whole system since the usual symbol G, which indi-

Molar
free energy

low 7T

high 7

Figure 2.2. Molar free energy of mixing for an ideal solid solution where AH,y, = 0. From [12].
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cates the molar free energy is independent of the size of the system.) If dn is small
enough, dG’ is proportional to the amount of 4 added, and we can write

dG' = p,dn, (constant T, P, ng), (2.12)

where the proportionality constant ., is called the partial molar free energy of 4, or
alternatively, the chemical potential of A in the phase. Because p, depends on the
composition of the phase, dn, must be infinitesimally small so that the composition
of the phase is not altered significantly. Rearranging Eq. (2.12) then gives a defini-
tion for the chemical potential as

uf(ig—' @.13)

ant‘ )rvlpv”,’

Equations similar to Egs. (2.12) and (2.13) can be written for the other components
in the solution. When this is done for a binary solution at constant temperature and
pressure, we obtain

dG" = p,dn, + pgdn,. (2.14)

If A and B atoms are added to a solution in the same proportion as the original com-
position of the solution (i.e., such that the ratio dn,/dng = X,/X}), then the free ener-
gy of the solution increases by the molar free energy G. Thus, from Eq. (2.14),

G = py Xy + ppXp. (2.15)

When G is known as a function of X, and Xj as in Figure 2.2 for example, ., and
g can be obtained by extrapolating the tangent to the G curve to the sides of the
molar free energy diagram as shown in Figure 2.3. It then becomes evident that
and pg vary systematically with the composition of the phase Xj.

‘
by G3
Gu la
—RT InX, \ -RT In Xg
NG 5 a] "8
A Xy —= G

Figure 2.3. lllustration of the relationship between the free energy curve and the chemical po-
tentials for an ideal solution. From [12].
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Comparison of Eqgs. (2.11) and (2.15) gives j, and g for an ideal solution as
m=G,+RTInX, and pg=Gy+RTInX, (2.16)

which is a simple way of representing Eq. (2.11). These relationships are also shown
on the free-energy-composition diagram in Figure 2.3, where the distances ac and
bd are —RT In X, and —RT In X, respectively.

2.4. REGULAR SOLUTIONS

Now we are ready to consider the regular solution or quasi-chemical model for a bi-
nary alloy solution, the result we really want to utilize in this book. So far, it has
been assumed that AH,,,, = 0. This occurs rarely and mixing is usually endothermic
(heat absorbed) or exothermic (heat evolved). However, we can readily extend the
simple model developed for an ideal solution to include AH,;, using the so-called
quasi-chemical (or Bragg-Williams) approach, which is basically a nearest-neigh-
bor bond-counting approach to alloying.

In the quasi-chemical model, it is assumed that the heat of mixing AH,,;, is only
due to the bond energies of adjacent atoms. For this assumption to be valid, it is nec-
essary that the volumes of pure 4 and B are equal and do not change during mixing
so that the interatomic distances and bond energies are independent of composition.

The structure of a simple, binary solid solution is shown in Figure 2.4. Three
types of bonds are present in the structure:

1. A-A bonds, each with an energy €,
2. B-B bonds, each with an energy €,
3. A-B bonds, each with an energy .

Figure 2.4. Different types of interatomic bonds in an A-8 solid solution. From [12].
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By considering zero energy as the state where the atoms are separated at infmity,
€44, €3p and €5 are negative quantities, which become increasingly more negative
as the bonds become stronger. (Note that €,, and €55 can be estimated from Eq.
1.4). The internal energy of the solution E depends on the number of bonds of each
type n 4, Ngg and LT such that

E=n,€,.4+ npgepp + n,5€ 5. (2.17)

By considering the relationships among n,,, ngs and n,z in the solution it can be
shown [13] that the change in internal energy of the solution is given by

AH. = n g, 2.18)
where
€= €45~ (€ + €pp). (2.19)

In other words, € is the difference between the 4B bond energy and the average of
the 4-4 and B-B bond energies. Note that the bond energies must be specified as
negative quantities in Eq. (2.19) in order to be consistent with Figure 1.1a.

If e =0, then AH,,;, =0, and the solution is ideal. In this case, the atoms are com-
pletely randomly arranged and the entropy of mixing is given by Eq. (2.9). If e < (_),
the atoms in the solution prefer to be surrounded by atoms of the opposite type. This
increases n, and the alloy tends to form an ordered solid solution. In contrast, if e >
0, the atoms prefer to be surrounded by atoms of their own kind. In this case, n,5 is
less than in a random solid solution and the alloy tends toward phase separation or
clustering (unmixing). Since the total number of atom pairs in a crystal is /4zN,, the
number of 4—B pairs is equal to the total number of pairs multiplied by the probabil-
ity that a pair is of the A-B type, or

N = Y2zZN\(2X, X5) = ZN X X5. (2.20)

We therefore find that the heat of mixing is given as
AH i = QX X5, (2.21)

where the interaction parameter

l=zN,e. (2.22)
Real solutions that closely obey Eq. (2.21) are known as regular solutions. Since {2
is independent of composition, AH,,;, is a parabolic function of composition as
shown in Figure 2.5. The sign of () indicates the same trend toward ordering or clus-

tering as that of € above. Note that the tangents at Xz = 0 and 1 are related to the val-
ue of {2 as shown and that () is positive in this figure.
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Figure 2.5. Variation of AH,, with composition for a regular solution. Note that () is given as
9AH .,/ 3Xg at the limits of composition and that ) = 4AH,,, at Xg = 0.5 From [12].

The free energy change on mixing for a regular solution is given by combining
Egs. (2.5),(2.9) and (2.21) as

AGmix = ‘n'XA"YB e RHXA ]-nXA +XB In XB)| (223)

which is shown in Figure 2.6 for different values of () and temperature. For exother-
mic solutions, AH_;, (or ) < 0 and mixing results in a free energy decrease at all
temperatures as in Figures 2.6a and b. This type of behavior is exhibited by the f.c.c.
nickel-platinum system, for example [15). When AH,,;, > 0, at high temperatures
TASpx is greater than AH,,, for all compositions and the free energy curve has a
positive curvature at all points, as in Figure 2.6c. At low temperatures, TAS,;, is
smaller and AG,,;, develops a negative curvature in the middle, as in Figure 2.6d.
This type of behavior is displayed by the f.c.c. gold-nickel system, for example
[16].

It is important to note that both ordering of an alloy (increasing n,) and cluster-
ing (decreasing n,) lead to a decrease in the mixing entropy AS,;, compared to that
of a random solid solution, because the number of ways that the atoms can be
arranged on a lattice decreases. In either case, an optimum degree of ordering or
clustering will result, reflecting a balance between AH,;, and TAS,;, in order to
minimize AG,;,. This factor is not taken into account in the quasi-chemical model.
In addition, it is important to note that because the ASnix term in Eq. (2.9) and
(2.23) is multiplied by 7, the TAS term is more important at higher temperatures. As
a result, the degree of ordering or clustering in a system decreases as the tempera-
ture increases. This is a very important point, because the same basic principle ap-
plies to other phenomena, such as segregation to interfaces or the sharpness of cer-
tain interfaces that tend to decrease with increasing temperature (see, for example,
Sections 13.2.8 and 14.2).
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A 56-1’: B
{a) n<0,highT (b) n<O0,low T
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AG mix xl i
' : “Ta8
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A B A B

(c) >0, highT (d), 2> 0 lowT

Figure 2.6. The effect of AH,, and T on AG,,. From [12].

The size difference between atoms is neglected in the quasi-chemical model and
this has the effect of underestimating the change in internal energy on mixing, be-
cause the elastic strain fields that introduce a strain energy term into AH,,;, are not
taken into account. When the size difference is large, this effect can dominate over
the chemical term. Nevertheless, the quasi-chemical model is still appealing be-
cause of its conceptual and mathematical simplicity.

The actual free energy of an alloy depends on the values of G,, G, and AG,;,
and is obtained by combining Egs. (2.4), (2.5) and (2.23) as

G=XAGJ¢+X363+MAA¥3+RHXA ll'.lXA +X5 IﬂXs). (2.24)

Comparing Eqs. (2.15) and (2.24) and using the relationship X X5 = X, 2Xp + X3*X,
shows that for a regular solution

pa=Gu+ U1 -X, ) +RTInX,=G,+RTIna,
pp=Gp+ 1 - Xz +RTIn Xz= Gy +RT In ag, (2.25)

where a, and a; are defined as the activities of A and B, which are illustrated gaph-
ically in Figure 2.7. Rearrangement of Eqs. (2.25) yields the activity coefficients,
¥4 and yz which account for the deviation of the regular solution from ideal behav-
ior (Raoult’s law) through the interaction parameter (). This topic is not elaborated
here, but it is discussed further in thermodynamics texts [2,13,14].
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bJ Gy
Ga f-RTln ag
-RTIn a,
p Hg
H\‘ 1c d
0 Xp—em 1

Figure 2.7. Relationship between the molar free energy and activity (compare with Fig. 2.3).
From [12).

2.5. SYSTEMS WITH A MISCIBILITY GAP

Figure 2.8 shows the free energy curves and the resulting temperature-composition
phase diagram for a system in which the liquid phase is approximately ideal but for
the solid phase Ay, > 0 (i.e., the A and B atoms repel one another). At high tem-
peratures such as 7 in Figure 2.8d, the free energy curve for the liquid G lies be-
low that of the solid G® for all compositions (Fig. 2.8a) and the liquid phase is sta-
ble. At lower temperatures, such as 7, in Figure 2.8d, GS dips below G (Fig. 2.8b)
and the alloy contains several different solid and liquid phases depending on the
composition. From X = 0 to point a in Figure 2.8b the stable phase is solid a with
the overall alloy composition. From points a to b, the common tangent construction
indicates that at equilibrium the alloy consists of a two-phase mixture containing
solid « and liquid with the compositions given by points a and b, respectively, on
the temperature—composition diagram. Between points b and c, the liquid phase
with the overall alloy composition is stable. The reverse trend in phases occurs with
increasing composition X, across the remainder of the diagram. At still lower tem-
peratures such as T3, the free energy curve for the solid assumes a negative curva-
ture in the middle as in Figure 2.8c, and the solid solution is most stable as a mix-
ture of two phases ' and a'’ with compositions given by the common tangent at e
and f. At somewhat higher temperatures when —TAS,,, becomes larger, e and /' ap-
proach each other and eventually disappear (at point g) as shown in the phase dia-
gram in Figure 2.8d. The a’ + '’ region is known as a miscibility gap.

The effect of a positive AH,,,,, in the solid is already apparent at higher tempera-
tures where it gives rise to a minimum melting point mixture. Physically, it can be
argued that the reason why the alloy melts below the melting points of the pure
components at all temperatures is because the atoms repel each other, making it eas-
ier to break the bonds and disrupt the solid into a liquid.

The critical temperature T, associated with the miscibility gap of the phase dia-
gram in Figure 2.8d is largely determined by the magnitude of the heat of mixing.
For purposes of illustration, we consider the miscibility gap of a regular solution.
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2.5. SYSTEMS WITH A MISCIBILITY GAP 27
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Figure 2.8. Dedvaﬁmofaphasediagwnwhwemﬁn>w'ﬁh=0$memrgyv_efsuswm-
position curves for (a) T;, (b) T, and (c) T,. The resulting phase diagram as a function of tem-
perature and composition Is shown in (d). From [12].

We want to calculate the maximum critical temperature 7, where decomposition oc-
curs and the composition X;© at this temperature (point g in Figure 2.8d). Above
temperature T the curve of AG,;, versus Xy is everywhere concave downward. Be-
low this temperature, two minima occur and there are two inflection points (labeled
h and i in Figure 2.8c), where

DG,

g 0. (2.26)
As the temperature is raised toward 7, the minima move closer together in com-
position and so do the inflection points. At T, both minima and the inflection
points coincide at the same temperature. Thus T is the temperature wh_erc both
9AG,, /30Xy and 3*AG,,/0X3 equal zero at the critical composition X§.
Performing these operations, we find

T, = 2X§(1 - X5)QUR. (.27

From Egq. (2.27) we see that () must be positive for T, to be positive. Further, X§ i_s
such that T, is the maximum decomposition temperature associatcd_ with the misci-
bility gap. The value of X§ that makes T, a maximum in Eq. (2.27) is X§ = 0.5, and
thus

T.= Q2R. (2.28)

Clearly, T, increases as €,z becomes more negative, i.c., as the energy of the A-B
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pair increases in relation to the average of the 4-4 and B-B pairs. According to the
quasi-chemical theory, a positive value of () indicates a repulsive interaction be-
tween unlike atoms. Thus, from Eq. (2.28), the larger this repulsive interaction, the
higher the temperature will be where decomposition begins. If AH,_;, >> 0, the mis-
cibility gap in Figure 2.8d can extend into the liquid phase. In this case, a simple eu-
tectic phase diagram results, as illustrated for different temperatures in Figure 2.9,
A similar phase diagram can also result when 4 and B have different crystal struc-
tures, although we do not develop this case here. We return to discuss using the
solvus lines in Figure 2.8d and Figure 2.9 to estimate AH,;, in Section 2.8.

2.6. ORDERED ALLOYS

The opposite type of behavior occurs when AH,;, < 0. In these systems, melting is
more difficult and a maximum melting point mixture can appear. This type of alloy
also has a tendency to order at low temperatures, as shown in Figure 2.10a. If the at-
traction between unlike atoms is very strong, the ordered phase may extend as far as
the liquid, as illustrated in Figure 2.10b. Various types of order-disorder reactions
can occur in solids. We examine the properties of antiphase boundaries (an interface
between two ordered domains) later in this book, and so we examine some further
properties of ordered alloys here [13].

Consider as an example an alloy containing 50 at.% A4 and 50 at.% B atoms that

solid

Figure 2.9. Derivation of a eutectic phase diagram where both phases have the same crystal
structure. From [12).
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Figure 2.10. (a) Phase diagram when AH,, < 0. (b) Same as in (a) but with AH,, even more
negative. From [12].

tends to form an ordered phase. That is, the 4 atoms tend to order on one type of site
a and the B atoms tend to order on another type of site B, as shown in Figure 2.11
for a b.c.c. structure. We denote the fraction of a sites occupied by the right (r)
atoms (4 atoms) as n® and the fraction of B sites occupied by the right atoms
(B atoms) as nP. The fraction of a sites occupied by wrong (w) atoms (B atoms) is
given as

ng=1-ng
and the fraction of B sites occupied by wrong atoms (4 atoms) is
nf=1-nb

For complete order, n* = n? = 1 and for complete randomness, the probability that

Figure 2.11. Long-range order on a b.c.c. lattice illustrated by the B-brass (copper-zinc)
structure. From [2].



30 REGULAR SOLUTION (QUASI-CHEMICAL) MODEL

an a site is occupied by an A atom is X,. Hence, the fraction of a sites occupied by
A atoms for complete disorder is X,,. It is convenient to define a long-range order
parameter £ in terms of order on the a sites as

L= ﬁ;‘% (2.29a)
B |
or, considering disorder on the B sites
| -
o (2.29)

From Egs. (2.29), we see that 2 = 0 for complete disorder and £ = 1 for complete
order. For a state of order given by 0 < ¢ < |, the fraction of 4 atoms on sites « is
ne.

By considering the number of 4-A pairs, B-B pairs and A-B pairs for an ordered
alloy with long-range order parameter £, it is possible to show [1 3] that at any tem-
perature different from T,

1+ 8

1nl~2

The formal derivation of Eq. (2.30) is known as the Bragg-Williams [17] or zeroth-
order approximation. At low temperatures, £ is close to | and, as T increases toward
T, & decreases very rapidly. This behavior is typical of a cooperative phenomenon.
When order is perfect, it is difficult energetically to create disorder. However, as
disorder proceeds, the process becomes progressively easier energetically until the
case of complete disorder, where the energy becomes zero for the exchange process.
The disordering energy thus depends on €.

A comparison between calculated (Eq. 2.30) and measured values of € as a func-
tion of T is shown in Figure 2.12 for a 50 at.% copper—50 at.% zinc alloy. The long-
range order parameter changes over a range of temperatures as indicated by Eq.
(2.30). As a consequence, the transformation is not first order in nature and displays
a discontinuity in the heat capacity as expected for a second-order transition.

It is possible to show that order-disorder transformations do not have to occur at
precise chemical compositions but may occur over a composition interval. The fur-
ther from the ideal proportion of 4 and B the actual composition is, the lower is the
maximum value of £ and T, because £ cannot have the value of unity and some B
atoms must reside on A sites and vice versa.

Order—disorder transformations are found in many different crystal systems. For
example, there are transformations in the f.c.c. copper-gold system for alloy com-
positions of approximately 25, 50 and 75 at.% gold. These transformations appear
to be first-order in nature and exhibit £-7 curves like that shown in Figure 2.13.
The Bragg-Williams theory is not able to adequately explain these transformations,
and one must resort to other theoretical treatments [2,13,14].

To illustrate the richness of the regular solution model, this section closes by
showing the pattern of phase diagrams that can be generated from two phases a
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Long-range order parameter

T/T,

Figure 2.12. Long-range order parameter as a function of temperature for 50 at.% Cu-50
at.% Zn alloy. From [13] reprinted by permission of John Wiley & Sons, Inc.

(solid) and L using this simple model. All the diagrams in Figure 2.14 have the same
melting points and entropies of fusion for the pure components. The pattern that de-
velops is entirely due to variations in the interaction parameters for the solid and
liquid, 25 and (%, respectively. The top row of diagrams has a fixed positive value
of (2% and each diagram thus has a miscibility gap in the solid solution with a criti-
cal temperature 7. The diagrams in the bottom row are calculated with small values
of (5. The values of 2" were chosen so that the phase diagrams display an (a + L)

e
1
g

0 T,

Figure 2.13. Long-range order parameter £ for an A,8 alloy. From [13] reprinted by permis-
sion of John Wiley & Sons, Inc.



Figure 2.14. Pattern of phase diagrams that can be generated from only two phases « and L
with the simple regular solution model. From [14], reprinted with permission of the McGraw-
Hill Companies.

field with a minimum, monotectic and maximum from left to center to right, re-
spectively.

2.7. EFFECT OF TEMPERATURE ON SOLID SOLUBILITY

It is possible to obtain several thermodynamic quantities, in particular (} for a
solid solution, from the solvus line in a phase diagram assuming a regular solution
model; this is illustrated here because it is useful in determining €,; from Eq.
(2.22). We consider the simplest case illustrated by the phase diagram in Figure
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2.15, where component B is considered to be soluble to the extent of X§" in a at a
temperature 7', but 4 has an infinitesimal solubility in B. The treatment can be ex-
tended to include the situation where both a and B phases display some solubility.

Using statistical thermodynamics, it can be shown [13,14] that at equilibrium,
the mole fraction of B in a, X3", is given as

AS; _AH,
ks  kgT’

where AHj; corresponds to the enthalpy expended in transfering pure B to the dilute
solution. This is the relative partial molar enthalpy and as for most solid state reac-
tions, AHj is virtually independent of temperature. For a dilute solution in which
the solute follows Henry’s law (as assumed in the derivation of Eq. 2.31), AHj is
also independent of composition. The term ASj represents the excess entropy of a
solute in solution in « relative to the value of the pure solute and this includes the
vibrational and configurational components of the entropy.

Experimentally, when In X3* is plotted versus 1/T from the solvus line in the
phase diagram, a straight line is obtained. From Eq. (2.31), it is evident that the
slope of this line is AHj and that ASj can be obtained by extrapolating X3* to 1/T=
0 to find the intercept ASy/ks. Generally, AHj is positive for solid solutions, so X5
increases with temperature. Figure 2.16 shows solubility data for various solutes in
aluminum plotted this way. Most of these systems actually involve an equilibrium
between a solid solution and an intermediate phase, or a phase with a crystal struc-
ture different from the a phase, rather than pure B with the same crystal structure. It
is important to note that, in these cases, the heat of solution also includes a change
in the standard state involved in converting 1 mole of B with the B structure into the
a structure. If the difference in enthalpy between the B and o form of B is AH £ (in
Joules per mole), then

In X3 = (2.31)

B + liquid

a+B

T

A X3 B
Xy —>

Figure 2.15. Phase diagram for the case where B is soluble in A but A is insoluble in B. From
[13] reprinted by permission of John Wiley & Sons, Inc.
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Figure 2.16. Solubility of solutes in aluminum plotted according to Eq. (2.31) to obtain AHg
and ASg. From [18,19).

AHy=AH$® + Q) (2.32)

and AH 3® must be included in any calculation to extract ) [12,14], as discussed
further in the next section.

It is noted that, in general, the larger the value of AHj, the higher is the value of
ASj. This can be understood, because a large value of AHj is often associated with a
large misfit of the solute in the crystal, which lowers the vibrational frequencies of
neighboring atoms and results in a positive contribution to ASj.

2.8. CALCULATION OF REGULAR SOLUTION PARAMETER AND €45
FROM PHASE DIAGRAMS

Once AHj is determined from Eq. (2.31), it is possible to obtain the interaction
parameter () from Eq. (2.25) by noting that, for a regular solution,
AH i = Q1 - X (2.33a)

and, in the limit of a dilute solution, where X; — 0 (refer to Fig. 2.5),

—
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AHix = AHp = (). (2.33b)
Hence, we have a convenient way of obtaining {} from the heat of solution AHj. The
value of €, can then be obtained from () using Egs. (2.19) and (2.22) with values
for €, 4 and €5, estimated from an equation such as Eq. (1.4). As mentioned in the
previous section, this procedure is valid when the « and B phases have the same
crystal structure so that there is no change in standard state when dissolving 1 mole
of B with the a structure into 4 to make a dilute solution.

Table 2.1 shows the heats of solution for single substitutional impurities in a va-
riety of f.c.c. alloys [7] calculated using the embedded atom method (EAM) and
compared with experimental values obtained from Hultgren et al. [20]. The energies
are given in electron volts per atom. Similar calculations have been performed by
Johnson [21]. The agreement between the calculated and experimental heats of so-
lution is generally good to within about 0.1 eV, indicating the utility of performing
sophisticated atomistic calculations in model systems. The values are consistent
with the phase diagrams of the alloys [22, 23]. For example, the nickel-silver sys-
tem is immiscible up to the melting point, which is consistent with the large positive
heats of solution in Table 2.1. For the platinum-gold system, there is a miscibility
gap over a large part of the composition range, which indicates a positive heat of so-
lution as found in the calculations. The palladium—platinum system forms a contin-
uous series of solid solutions at high temperatures, although there is evidence of a
miscibility gap near 1050 K. This suggests that the heats of solution should be small
but positive. The platinum-silver system forms a variety of ordered phases, which
indicates that the platinum-silver interaction is attractive relative to the
platinum—platinum and silver—silver interactions, as reflected in the negative heats
of solution in Table 2.1.

Table 2.1. Heats of solution (in eV/atom) for various f.c.c. alloys calculated from the
embedded atom method [7] and compared with experimental values obtained from the
heats of mixing in Huitgren et al. [20] (from [7])

Host
Cu Ag Au Ni Pd Pt
Cu 0.18 -0.12 0.06 -033 -0.38
0.25 -0.13 0.11 -0.39 -0.30
Ag 0.11 -0.11 0.42 -0.36 -0.18
0.39 -0.16 -0.11
Au -0.18 -0.11 0.30 -0.15 0.07
-0.19 -0.19 0.28 -0.20
Ni 0.04 038 0.08 -0.15 -0.25
0.03 022 -0.09 -0.33
Pd -0.34 -0.24 -0.12 0.07 0.03
-0.44 -0.29 -0.36 0.06
Pt -0.54 -0.07 0.09 028 0.04
-0.53 -0.28
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‘ To illustrate calculation of () and e, consider the silver—copper phase diagram
in Figure 2.17. We can use one of several methods to find £ and €,4p. If we use the
silver-rich side of the phase diagram, we can calculate AH, from Eq. (2.31) and
then extract {) using Eq. (2.33). Table 2.2 provides all the data necessary to perform
this calculation. 4 plot of In X§* versus 1000/T yields a slope AHy/kg given by

1.96 — 5.65
(2.11-0.95)x102 K-' =3181.0

AHy/kg =~ K.

Thus,

AHy=(3181.0 K)(1.38x10-2 J/K)(1 eV/1.602x10-19 J)=0.27 eV/atom.

Note that ‘this value is in good agreement with the experimental value of 0.25
eV/atom given in Table 2.1. From Eq. (2.33), the value of Qugou = AHp = 027
eV/atom (or 26,447 J/mol). Using Eg. (2.22),

Weight Percent Copper

e S e, e, ame SN WS BN W
1084.87°C
Cu)
780°C 3
BID-: 4
]

. [
[

200 T T T T T
0 10 20 30 40 50 60 0 80 %0 100
Ag Atomic Percent Copper Cu

Figure 2.17. The silver-copper phase diagram. From [23].
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Table 2.2. Solubility of copper in silver as a function of temperature obtained from the
phase diagram in Fig. 2.17 and related parameters

Temp. [°C (K)] Cu (at.%) In X ** 1000/T (K-")
779 (1052) 14.1 -1.96 0.95
750 (1023) 19 -2.13 0.98
700 (973) 95 -2.35 1.03
600 (873) 5.5 -2.90 1.15
500 (773) 3.0 -3.51 1.29
400 (673) 1.2 442 1.49
300 (573) 0.7 —4.96 1.75
200 (473) 0.35 -5.65 211

*This is the natural logarithm of atomic fraction.

_ Dygeu _ 027 eV/atom

€agen =, 2 =0.023 eV/bond.

Notice that €,,¢, > 0, consistent with phase separation and a eutectic phase diagram
as in Figure 2.17. Now, if we use Eq. (2.19) and take the energies of the
copper—copper and silver-silver bonds as the heats of sublimation given in Appen-
dix B (or Table 1.1), we obtain

€agcu = € + Yi(€agag + €cucy) = 0.023 + %4(~0.49 + —0.58) = —0.51 V/atom pair.

This is the energy of the silver—copper bond. Alternatively, {),,c, could have been
determined by extrapolating the solvus lines on both sides of the silver—copper
phase diagram up to the metastable miscibility gap. The value of T, thus obtained
(~ 1200°C) can then be used with Eq. (2.28) to obtain {),,c,. The value for €,4c,
would then be found from (), exactly as above. As a third possibility, one can use
an average value for {1, obtained from the solvus lines on both sides of the sil-
ver—-copper phase diagram.

2.9. GENERALITY OF THE REGULAR SOLUTION MODEL

In closing this section on the regular solution model, it is important to note that, al-
though we have developed the quasi-chemical model of a regular solution for metal-
lic alloys, regular solution behavior has more general applicability and a parallel
treatment exists for polymer solutions, for example. This treatment is often referred
to as the Flory-Huggins theory [24], and it can account for the equilibrium proper-
ties of polymer solutions, particularly the large negative deviations from Raoult’s
law, phase separation, fractionation behavior, melting point depressions in crys-
talline polymers and swelling of networks. In the context of this book, the behavior
of polymer interfaces is often modeled by combining the Flory—Huggins theory
with the Cahn—Hilliard diffuse interface theory [25] (or square gradient interface



38  REGULAR SOLUTION (QUASI-CHEMICAL) MODEL

theory as it is often called in the polymer literature [26]), similar to what is often
done in metallic alloys. We look at this theory in detail in Part IV,

The main difference between the Flory-Huggins theory for polymers and the
quasi-chemical model we have just developed is that the Flory-Huggins theory
takes into account the connectivity of polymer chain segments in the configura-
tional entropy (Eq. 2.8) and also the effect of contact interactions between the sol-
vent and the sides and ends of the polymer segments in the free energy of mixing
(Eq. 2.7). This treatment results in an expression for the entropy of mixing, which is
analogous to Eq. (2.9) and to a Flory-Huggins polymer-solvent interaction parame-
ter (commonly labeled x) which is analogous to () in Eq. (2.22). Hence, there is a
useful parallel between these different materials which is relevant in the context of
interfaces.

PROBLEMS

2.1. Using Eqs. (2.14) and (2.15), show that the chemical potentials of 4 and B can
be obtained by extrapolating the tangent to the G—X curve to Xy=0and Xz=0,

2.2. Derive Eq. (2.24) from Egs. (2.15) and (2.23).
2.3. Gold (15 g) and silver (25 g) are mixed to form a single-phase ideal solid solu-
tion.
(a) How many moles of solution are there?
(b) What are the mole fractions of gold and silver?
(c) What is the molar entropy of mixing?
(d) What is the total entropy of mixing?
(¢) What is the molar free-energy change at 500°C?
(f) What are the chemical potentials of gold and silver at 500°C, assuming the
free energies of pure gold and silver are zero?

(8) How much will the free energy of the solution change at 500°C if one gold
atom is added? Express your answer in eV/atom.

2.4. Ina f.c.c. cubic lattice containing 40 at.% A and 60 at.% B in the form of a ran-
dom solid solution, calculate the number of A-A, B-B and A-B pairs in a mole
of solution,

2.5. Components 4 and B form a regular solution in the solid state for which AH,;,
is 20,000X,.X; (J/mol). At a temperature of 1000 K, calculate the composition
ofa’ and a’ in equilibrium and the composition of the inflection points.

2.6. Components A and B have melting temperatures of 1000 K and 900 K, respec-
tively. Regular solutions form with AH,x equal to (20,000/T)X,X,; and
(200,000/T)X X, (J/mol) in the liquid and solid states, respectively.

(a) Will a minimum occur in the solidus and liquidus?
(b) If so, calculate the temperature of the minimum.
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2.7. The solid solubility of silicon in aluminum is 1.25 at.% at 550°C and 0.46

2.8.

Temperature ¢

2.9.

2.10.

w44 B

212,

at.% at 450°C. What solubility would you expect at 20q°C? Check your an-
swer by referring to the published phase diagram shown in Problem 2.9.

The aluminum-zinc phase diagram is shown below (from [23]).

Weight Percent Zinc
®_ .2 L » o

9w PP N ®

v . ‘ y y ‘ Py 0 o 00

‘:u g " B Alo:'lic P:.menl :inc Zn
(a) Estimate €4z, from the critical temperature in the phase diagram.
(b) Estimate €47, from the solvus line in the phase diagram.
(c) How do the results in (a) and (b) compare? Why?
The aluminum-silicon phase diagram is shown on page 40 (from [23]). Ca!-
culate €,5; from the solvus line in the phase diagram using Eq. (_I 4) to esti-
mate €,,,; and €g;g;. Explain any assumptions used in the calculations.

Based on the data for In X§* versus 1/T shown in Figure 2.16, rank (do not
calculate) the relative values of () for the solutes copper, manganese and

nickel.
The f.c.c. gold—nickel phase diagram is shown on page 41 (from [23]). Esti-

mate {1,,; and €,,y; from T, in the diagram. How does your \rFlne of f}MNi
compare with the heat of solutions given in Table 2.1? Explain any differ-

ences.
Using the regular solution model and the data in the table l?elofw, construct the
phase diagram for the copper—nickel system and compare it with the accepted
phase diagram (refer to [23]).
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2.13. The f.c.c. phase in the aluminum-zinc system exhibits a miscibility gap (refer 2 "
to Problem 2.8). Calculate the critical temperature and composition assuming § 00
that the molar Gibbs free energy is given by 4 E
B 400-
G=X,G,+XpGp+ RTX, In X, + Xp In Xp) 300
+ X Xp(3,150X, + 2,300X,)[(1 — T/4000)] cal. 200
;
2.14. The f.c.c. gold-copper phase diagram is shown on page 41 (from [23]). Cal- ot
culate {),,c, for the AuCu-I phase from 7, in the diagram. How does this val- B ] : . ’ = - = = e
. . . . 40
ue compare with ,,; in Problem 2.11? Explain any differences. b T Rl Rt thoeer ci
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