ATOMIC BONDING

Throughout this book, we try to understand the behavior of interfaces from an
atomistic viewpoint. In particular, we look at many phenomena from the point of
view of nearest-neighbor bonding among atoms. This approach is satisfying be-
cause it is simple and physical. However, it is sometimes too simple to be even qual-
itatively correct. Nonetheless, the positives far outweigh the negatives, and we use
the approach often.

We begin by exploring some basic properties of bonding among atoms and their
relation to physical properties of materials. In this chapter and throughout the book,
we give as many examples as possible using the face centered cubic (f.c.c.) crystal
structure, because it is typical of many metallic alloys. It is important to remember
two things as one works through this book. First, calculations performed using near-
est-neighbor bonding are only approximate, maybe accurate to within 10% to 20%.
Second, this book is only concerned with the equilibrium properties of interfaces. It
does not consider nonequilibrium phenomena.

1.1. INTERATOMIC POTENTIAL AND BINDING ENERGY

The following discussion is based on that of Tu et al. [1]. The binding energy is de-
fined as the energy needed to transform one mole of solid or liquid into a gas at zero
temperature and pressure. It is approximately the same magnitude as the energy of
sublimation AH, when transforming a solid to a gas or the energy of vaporization
AH, when transforming a liquid to a gas, except that these are usually measured at 1
atm pressure. These quantities are often obtained at finite temperatures such as 298
K or at the boiling point 7}, but this does not alter the binding energy or bond en-
thalpy, which is assumed to be independent of temperature. These energies are relat-
ed to a fundamental energy in materials, the interatomic potential energy between
atoms.
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4 ATOMIC BONDING

A schematic curve of the interatomic potential energy ¢ as a function of distance
r is shown in Figure 1.1a. The minimum potential energy ¢ = —, corresponds to the
equilibrium interatomic separation r,. In solids, r, can readily be measured by X-ray
diffraction. The depth of the well is clearly proportional to the strength of the inter-
atomic bond.

An atom in a solid that is displaced from its equilibrium position experiences a
restoring force

F=—d¢/dr. (1.1)

A schematic curve of this force as a function of distance is illustrated in Figure 1.1b.
For small displacements on the order of 0.1% of the interatomic spacing, the curve
is approximately linear and the displacement is proportional to the force. In solids,
this linear displacement is the origin of Hooke’s law, where the strain is directly pro-
portional to the stress, as we shall see shortly. The direction of the force is indicated
in Figure 1.1c. The force is defined as positive or negative depending on whether it
increases or decreases the interatomic distance from its equilibrium value. If the
atoms are displaced toward one another, a repulsive force acts to increase the inter-
atomic distance. This repulsive force is positive. The opposite occurs when the
atoms are stretched apart.

The shape of the interatomic potential energy curve controls many of the physi-
cal properties of materials, such as the bulk modulus and thermal expansion. For
now, though, we are mostly concerned with whether the potential is short- or long-
range, because an understanding of this issue is important, for example, in using
nearest-neighbor models to evaluate the surface energy of a material.

In some cases, the potential energy can be represented by the so-called Lennard-
Jones (6-12) potential, given as

&(r) = & [(re/r)? - 2(rdr)), (1.2)

where ¢, is the bond energy between two atoms and the attractive interaction has an
r® dependence and the repulsive interaction scales as 7', The inverse sixth-power
attractive force arises from weak dipole-induced van der Waals forces between
atoms. The inverse twelfth-power repulsive force arises from the repulsion of the
partially screened positively charged nuclei and the interpenetrating negatively
charged electron clouds (the Pauli exclusion principle) as the atoms approach one
another [2,3]. Clearly the repulsive interaction is very short-range, whereas the at-
tractive interaction is somewhat longer. This strong repulsive interaction makes it
often realistic to represent atoms as “hard spheres.” Although the Lennard-Jones
(LJ) potential is an empirical potential, it is quite accurate for f.c.c. inert gas solids
such as argon and is reasonable for some more relevant engineering metals such as
f.c.c. copper, in which the atoms behave as hard spheres. We use the LJ potential
throughout this book.

At the equilibrium position, 7 = r, the potential energy is at its minimum, that is
dd/dr =0 in Figure 1.1b, and ¢(r,) = —e,. This energy is often referred to as the pair
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6 ATOMIC BONDING

the interaction energy beyond the nearest neighbors and approximate the binding
energy by considering only the nearest-neighbor bonds. A physical interpretation of
this process is offered as follows.

In metals, the binding energy (or cohesive energy) is due to the interaction of the
regularly arranged positive ion cores with the surrounding electron cloud, where the
electrons move about freely. When the positive ion cores are surrounded by the free
electrons, electrical neutrality is achieved locally about each atom and the attractive
interaction between atoms is short-range with an r* dependence. Hence, the near-
est-neighbor approximation works well for estimating the binding energy (as shown
in the next chapter) for metals.

In other materials, such as ionic solids, the attraction between the positive and
negative ions is coulombic and much longer in range. The attractive coulombic po-
tential is proportional to 7!, which decays slowly with increasing » when compared
to the atomic dimensions. The repulsive potential may display an »'? dependence,
as with metals, so the resulting profile looks like that shown in Figure 1.2, although
it is often more accurate to use an exponential function to represent the repulsive
potential in ionic crystals. In either case, it is possible to accurately estimate the
binding energy by considering the interaction energies among the positive and neg-
ative ions and using a quantity known as the Madelung constant to sum over all of
the ions. The reader is referred to books such as Borg and Dienes [2] and Kittel [4]
for a thorough discussion of this topic.

In covalent solids, such as semiconductors and organic materials where electrons
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Figure 1.2. The broken curve shows the interatomic potential energy when the attractive in-
teraction is long-range with an r-' dependence. Reprinted from [1] by permission of Prentice-
Hall, Inc., Upper Saddle River, NJ.
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are shared between neighboring positive ions, the screening effect of the positively
charged nuclei by the core electrons again leads to short-range attractive interaction
and the previous interatomic or LJ ionic or metallic bond description is useful, al-
though the directionality of the bonds is critical in these cases.

1.2. CORRELATION OF BINDING ENERGY AND INTERATOMIC
POTENTIAL WITH PHYSICAL PROPERTIES

In this section, we examine how the binding energy correlates with various physical
properties of a material, such as its heat of sublimation, and also how other proper-
ties such as the vibrational frequency of a solid and its response to a stress can be
explained using the interaction potentials developed in Section 1.1. We are interest-
ed in determining the binding energy of atoms so we can use broken-bond models
to estimate surface and interfacial energies.

1.2.1. Interatomic Potential, Binding Energy and Enthalpy of
Sublimation

If we define z as the coordination number (the number of nearest neighbors) of an
atom in a solid or liquid, then the binding energy of 1 mole of atoms is given by

Eb . %ZNAQI,, (1.3)

where N, is Avogadro’s number and the factor of % arises because we have counted
each bond twice in the produce zN,. The maximum coordination for close-packed
f.c.c. and hexagonal (h.c.p.) structures is 12. For more open covalently bonded
structures such as diamond cubic (d.c.) silicon, z = 4, and for body centered cubic
(b.c.c.) structures such as a-iron, z = 8. Note that the binding energy is also referred
to as the cohesive energy, which is the heat of vaporization at 0 K. It is also some-
times called the dissociation energy or formation energy.

Using the nearest-neighbor approximation, we can estimate the interatomic po-
tential energy or binding energy per pair of atoms e, from thermodynamic data such
as the heat (enthalpy) of sublimation, vaporization or melting. We want to be able to
estimate the binding energy €,, or more generally, the interaction energy between
atoms pairs, because as we shall see throughout this book, knowledge of this para-
meter allows us to calculate such quantities as the surface energies and interfacial
energies of solids. For example, if one assumes that the binding energy per mole of
solid is equal to the enthalpy of sublimation AH, per mole at low pressure, then

€, = 2AH/zN,. (1.4)
In crystalline solids, the coordination number z can be substituted directly into Eq.

(1.4), for example 12 in the case of an f.c.c. metal. In the molten state, metal atoms
typically have 10 or 11 nearest neighbors, so if heats of vaporization or melting are
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used to estimate €, it is reasonable to use a coordination number of 11 instead of
12. In general, the values for the heats of vaporization of f.c.c. metals are approxi-
mately 10% lower than the values of the heats of sublimation because there are ap-
proximately 10% fewer bonds to break in going from the liquid state to the vapor.
To illustrate these points, we calculate the interatomic potential energy €, for
copper, silver, and gold from values of their heats of sublimation AH, at 0 K and
1 atm pressure (see Appendix B) using Eq. (1.4) and compare these with values
obtained from the heats of vaporization AH, (also in Appendix B) using Eq. (1.4)
with z = 11. The results are shown in Table 1.1. Note the generally good agree-
ment considering that this is an approximate calculation. Also, note that the heats
of sublimation and vaporization scale with the melting temperatures of these ele-
ments (i.e., 1084°C for copper, 961°C for silver and 1063°C for gold, as they
should, because all of these quantities are related to the fundamental quantity, the
interatomic potential energy or binding energy €,. We discuss melting points in
greater detail in Parts II and II1.

1.2.2. Interatomic Potential and Theoretical Strength

A piece of a solid is under stress when its atoms are displaced from their equilibri-
um positions by a force. The displacement is governed by the interatomic potential
described previously with respect to Figure 1.1. If we apply an external tensile force
to a solid, the external force is defined as

F. = +do/dr, (1.5)

where a positive sign is used to reflect the fact that an external tensile force (or
stress) tends to lengthen the solid and increase the interatomic distance. On the ba-
sis of the sign convention established in Figure 1.1c, the force that increases the in-
teratomic distance is positive and hence the tensile force (or stress) is positive. An
external compressive force (or stress) which tends to shorten the solid is negative.
The relationship among the interatomic potential, the external force and the sign of
the force, are shown schematically in Figure 1.3.

Note that Figure 1.3b is an inverted diagram of Figure 1.1b. We can define a
point F,,,, as the maximum force that corresponds to the dissociative distance ryq of
the material. Fy, is thus the maximum tensile force needed to pull the solid apart
because the force needed to increase the interatomic distance beyond r, is less than
Finax- We can regard Fy,, as the theoretical strength of the solid. To calculate F,,,,
we require that d2¢/dr> = 0 at r = r,. If we assume that the solid obeys the
Lennard-Jones potential and that the function ¢ is given by Eq. (1.2), we obtain its
second derivative with respect to r as

(o

atr=ry, (1.6)
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Figure 1.3. (a) Interatomic potential function plotted versus interatomic distance. (b) Applied
force plotted versus atomic displacement. (c) The direction and sign of the applied force ac-
cording to the established convention. Reprinted from [1] by permission of Prentice-Hall, Inc.,
Upper Saddle River, NJ.
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where r, is the equilibrium interatomic distance. The solution of Eq. (1.6) shows
that

rg=1.11r..

Theoretically, the solid can be strained approximately 11% before it breaks. Fur-
thermore, if stretched just below that strain, it would return to its original condition.
We know that experimentally these conditions are not found. Most polycrystalline
metals, whether they obey the Lennard-Jones potential or not, have an elastic limit
of only 0.2%. After that, plastic deformation sets in.

It is interesting to estimate the magnitude of the energy involved in elastic strain.
Consider the case at the limit. The elastic energy is given by

Ey=[ ode="%Ye, (1.7)

where o is the stress, e is the strain and Y is Young’s modulus. To estimate the
elastic energy, let’s select one of the stiffest materials, steel, with ¥ = 2.0x10!! Pa
and use 8.4x10%? atoms/cm’ to convert to electron volts per atom. If we take e =
0.2%, then

E, = %Ye? = 4x10° Pa = 3x10~5 eV/atom.

This value of the elastic energy per atom is several orders of magnitude smaller than
the binding energy of a metal or compound, which is on the order of 3.5 eV/atom, as
in Table 1.1. Therefore, the effects of elastic stress on the enthalpy of compound for-
mation are often negligible. The potential energy corresponding to a strain of 0.2%
is still very close to the binding energy.

Although small, the strain energy can be important in cases where solids are near
equilibrium. At equilibrium, the forces are balanced, so any small additional force
can drive a reaction one way or another. Thus, the effects of stress are important in
coarsening reactions in solids that are near equilibrium, and the strain energy is also
important in stabilizing metastable phases during precipitation processes in solids
and in thin films.

Table 1.1. Comparison of the interatomic potential energies of copper, silver and goid
calculated from the heats of sublimation and vaporization using Eq. (1.4)

Element AH, (kJ/mol) €, (¢V/atom pair) AH.* (kJ/mol) €, (¢V/atom pair)

Cu 336 0.58 300.5 0.57
Ag 284 0.49 250.6 0.47
Au 368 0.64 3244 0.61

*Heats of vaporization are usually specified at the boiling point, not at 0 K.
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1.2.3. Interatomic Potential and Vibrational Frequency

Now we examine one last fundamental parameter of a solid, the vibration frequency
of atoms, again based on the interatomic potential. Figure 1.4a shows a sketch of a
single surface atom that is bonded to a solid by a potential ¢ as in our previous dis-
cussion. We assume that the atom undergoes harmonic motion. It is a simplified
model, but it yields a vibrational frequency that is of the same order of magnitude as
that of atoms in a solid. We approximate the bottom portion of ¢ around r, by a par-
abolic potential and move the point (€, r,) to the origin of the coordinates, as
shown in Figure 1.4b. This approximation is reasonable for small amplitudes of vi-
bration and we write

& = %GR, (1.8)
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Figure 1.4. (a) A surface atom undergoes simple harmonic vibration. (b) The interatomic po-
tential () of the surface atoms Is plotted on the coordinates of r - r, and &{f) + €,. Near the
origin, &{) can be approximated by ¢ = €r%/2. Reprinted from [1] by permission of Prentice-
Hall, Inc., Upper Saddle River, NJ.




12 ATOMIC BONDING
Thus,
F=-adlar=-Cr, (1.9)

where € is the force (or spring) constant. It describes a simple harmonic motion; the
equation of motion is

m d*r/di? = -Cr, (1.10)
where m is the mass of the atom. Equation (1.10) has a simple solution of the form
r=cos v,

where v = (€/m)” is the oscillation frequency. Because we know that the cosine
function has a period of 2m, the time needed to complete a period of motion is

vi=2mw or t=2m/v.
Hence, the frequency of vibration is
vo = 1/t=v2m = (127} C/m)*. (1.11)
We can calculate v, if we know € and m. The latter is found from the atomic weight
of the solid and Avogadro’s number. To determine €, we take the second derivative
of ¢ in Eq. (1.8) and obtain
32d/ar = +G. (1.12)
Equating this to Eq. (1.6) shows that
C=72¢/r2, atr=r,. (1.13)
Substituting € into Eq. (1.11) gives
vo = (3/m)(2€/mr2)%. (1.14)

If we consider the atoms in Figure 1.4 to be gold, then m = 32.8x10-% g/atom,
re/V/2 = 0.288 nm, €, = 0.64 eV/atom pair from Table 1.1 and we obtain

v = 2.62x10'2 sec!,
If this simple calculation is extended to an atom with an f.c.c. lattice where it has

twelve nearest neighbors, the force constant has to be multiplied by a factor of six
for vibration along a close-packed direction. The factor of six comes about because
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we use the principle of superposition and sum the pm_]ecnons (cos 0) of the inter-
atomic force of all twelve atoms. In turn, we have to multiply v, by V6 and we have

v = (6/m)3ey/mr2)%. (1.15)

This is called the Einstein frequency. It represents a maximum characteristif: fre-
quency of vibration for a solid and it depends on the strength of the i:}tenftomlc po-
tential (spring constant) in the solid. It does not depend on thermal (kinetic) energy.
For a gold atom with an f.c.c. lattice, we then have vg = 6.42x10'? sec™'.

The formal treatment of elastic vibrations (phonons) in a finite solid has been
given by Debye and is covered in solid-state textbooks [2—4]. The Debye frequency

vp = keTo/h, (1.16)

where h is Planck’s constant, T} is the Debye temperature at which all the 3N mo‘des
of elastic waves are operative, N is the number of atoms and the factor three arises
because the problem is three dimensional. Again, for gold with Ty, = 165 K,

vp=3.42x10'2 sec”!,

which is not very different from the frequency we just calculated. Since the Debye
temperatures of metals only vary by a factor of two or three (e.g., Ty = 428 K for
aluminum), the atomic vibrational frequency of metals is typically taken as 10"
sec™!,

1.3. EMBEDDED ATOM, MONTE CARLO AND MOLECULAR
DYNAMICS CALCULATIONS

The LJ (6-12) interatomic potential discussed in Section 1.1 is a two-body poten-
tial. It is simple and quite useful for determining the structure and behavior of many
molecular solids and metals, where the atoms can be approximated as hard spheres
with only nearest-neighbor interactions. In many materials, particularly metals, the
electronic interactions can be long range, and we need to solve a more complex,
many-body problem. Ideally, we would like to be able to predict phase trans.itions
and defect structures of metals and alloys from first principles, that is, by simply
plugging in the atomic numbers of the atoms into some calculation, which then pro-
ceeds to tell us the free energies of the different states and how the atoms evolve
into these states. This is an extremely formidable task, although enormous progress
has been made in this direction, particularly with the increase in computational
power that has occurred over the past decade. Three particular techniques have be-
come popular for solving these types of problems: the embedded atom method
(EAM), Monte Carlo (MC) calculations, and molecular dynamics (MD) calcula-
tions. Because this book often refers to the results from such calculations and com-
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pares the output of EAM calculations with the results from the simpler pair-poten-
tial calculations, the remainder of this section provides a brief explanation of the
procedures involved in these calculations.

In the EAM, the energy of each atom is computed from the energy needed to em-
bed the atom in the local electron density provided by all the other atoms in the met-
al [5-7]. This electron density is approximated by linear superposition of the indi-
vidual atomic electron densities. Thus, the electron density in the vicinity of each
atom can be expressed as a sum of the density contributed by the atom in question
plus the electron density from all the surrounding atoms. This latter contribution is a
slowly varying function of position. If we make the simplification that the back-
ground electron density is a constant, the energy of the atom in question is the ener-
gy associated with the electron density of the atom plus the constant background
density. In addition, there is an electrostatic repulsion energy contribution due to
core—core overlap. In equation form, the total energy of the ensemble of atoms is

given by
B = Z Fips) + % Z :(Z bylry)- (1.17a)
i (i)

In this expression, p,; is the host electron density at atom i due to the remaining
atoms of the system, F{p) is the energy to embed atom i into the background elec-
tron density, and $(r;) is the core—core repulsion between atoms i and j separated
by the distance r;;. As mentioned above, the electron density is approximated by the
superposition of atomic densities

Pas= D Pefry)s (1.17b)
H#D

where p, ;(r) is the electron density contributed by atom j.

To apply this method, the embedding functions, pair repulsions and atomic den-
sities must be known. The atomic densities p, () can be represented by the spheri-
cally averaged free-atom densities calculated with the Hartree~Fock theory [8]. The
pair interaction term ¢(r;) in the EAM is physically analogous to the L] interaction
described in Eq. (1.2), although it has a slightly different form. It is assumed to be
Coulombic in origin and decrease monotonically with increasing separation. The
pair interaction between different atoms is approximated by the geometric mean of
the pair interaction for the individual species. A functional form for the embedding
energies F(p) is obtained empirically by adjusting parameters to fit known bulk
properties of the elements such as the sublimation energy, lattice constants, elastic
constants and vacancy formation energy. Once the parametric fit has been accom-
plished, these quantities can be substituted into Eq. (1.17a) to find the total energy
of an arbitrary arrangement of atoms including defects. This energy is minimized by
adjusting the lattice constants or atomic coordinates to find the configuration that
yields the lowest possible energy. In the case of defects, the calculations are usually
performed using a computational cell of 500 atoms or more with periodic boundary
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conditions. The relative stabilities of various phases are determined by varying the
atomic configurations and lattice constants and comparing the total energies [E\, in
Eq. (1.17a)] of the phases. In the case of defects, the defect energy is minimized
with respect to the atomic coordinates of all of the atoms in the computational cell
and with respect to the dimensions of the periodic cell. Using this procedure, it is
possible to calculate other (unknown) properties of the elements or alloys, such as
the migration energies of the atoms, the surface energies, heats of segregation and
heats of solution. These calculations are usually performed at 0 K and do not in-
clude entropic contributions.

In the Monte Carlo method [9), an initial configuration of atoms with known in-
teratomic potentials (for example an LJ or EAM potential) is placed in a finite box
with periodic boundary conditions at fixed temperature 7. Random numbers are then
used to select and move individual atoms. If the potential energy change A¢ resulting
from a move is less than zero, then the new configuration is accepted. If Ad is greater
than zero, then it is accepted only with a probability exp(~Ad/kgT). This procedure is
repeated until the system converges to a stage of local equilibrium at which values of
the total energy and pressure can be obtained. In terms of surfaces and interfaces, the
Monte Carlo technique is useful for finding the most favorable arrangement of atoms
at equilibrium, particularly in alloys, where impurities may segregate to specific sites
on a surface or at an interface. This technique has been combined with the EAM to
study surfaces and interfaces in metals [10]. The time required for these calculations
places a limit on the number of atoms that can be used (typically a few thousand).
This can prevent phase transitions from occurring at the equilibrium point so that
they have not been used extensively to map phase boundaries. Monte Carlo calcula-
tions cannot be used to gain insight into kinetic aspects of a phenomenon.

In molecular dynamics calculations, Newton’s equations of motion are solved for
a few hundred (or maybe a few thousand) particles in a box at a particular tempera-
ture T [11]. The energy and pressure of the system can be calculated as the system
evolves over time, and a plot of the atomic trajectories provides a visual snapshot of
the detailed dynamical processes of the system. Ultimately, the system converges to
local thermodynamic equilibrium. The temperature can be varied and the nature of
phenomena such as grain boundary melting or surface melting can be examined.
Again, because of the finite size of the computational cell and the accuracy of the
atomic interactions, there is often the same difficulty in accurately locating phase
boundaries as in the Monte Carlo method so that the temperatures at which the tran-
sitions occur are only approximate. The time scale that can be simulated is short
(i.e., simulations generally run only hundreds of picoseconds) because atomic vi-
brations occur on the order of 10'* sec™!. Thus it is not possible to directly study
comparatively slow processes such as diffusion.

PROBLEMS

1.1. Plot the Lennard-Jones potential (Eq. 1.2) from r = 0.1r, to r = r, for gold
where €, = 0.64 eV/atom.
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1.2,

3

1.6.

ATOMIC BONDING

Starting with Eq. (1.2), derive Eq. (1.6), and use it to show that ry = 1.117,.

Based on the values in Table 1.1 and below, calculate the Einstein frequency
and the Debye frequency for copper, silver and gold and compare these values.

Element n (10%/cm?) Atomic Weight Ty (K)
Cu 8.45 63.5 343
Ag 5.85 107.9 225
Au 59 197 165

. Using the Lennard-Jones potential with n = 8x102 atoms/cm’, €, = 0.6

eV/atom and r, = (1/n)"?;
(a) Calculate the maximum force F,,,.

(b) Assume the solid is in the linear elastic region and calculate Young’s mod-
ulus Y.

(c) What is the elastic energy E_ at F,.?

- (a) For the Lennard-Jones potential, discuss the influence of increasing the at-

tractive interaction while keeping the repulsive interaction fixed. How will
this effect the equilibrium separation . and the pair potential €,?

(b) Repeat this process but decrease the repulsive interaction and do this while
keeping the attractive interaction constant.

Suppose an atomic cluster of only 12 atoms forms. Assuming that the atoms
can be described by the Lennard-Jones potential, would you expect the inter-
atomic spacing and elastic modulus of the cluster to be greater or less than that
of a corresponding bulk crystal? Explain.

. Estimate the bond energies €, of copper, silver and gold from the heats of melt-

ing of the elements, assuming that there are 11 nearest neighbors in the liquid.
How do your results compare with the values in Table 1.1?

S—

REGULAR SOLUTION
(QUASI-CHEMICAL) MODEL

Certain properties of binary solutions are used frequently in this book to explain
phenomena such as segregation to interfaces and chemical gmdienFs at mterf;ces.
Thus, it is important that the reader be familiar with properties of binary s_,oluno_ns.
This chapter summarizes some of the most important of these properties, including
the regular solution model and the effect of temperature on solid solubility and also
includes a brief review of some thermodynamics which lead up to the regular solu-
tion model. Our treatment is based on that of Porter and Easterling [12] and the
reader may refer to this and other books on thermodynamics [2,13,14] for addition-
al background.

2.1. THE GIBBS FREE ENERGY OF BINARY SOLUTIONS

In alloys, the Gibbs free energy is a function of composition, temperature andvpre?
sure. In this book, the pressure is usually assumed to be 1 atm and the reaction is
carried out at constant temperature, so that these variables are fixed. In this case, the
relative stability of a system is determined by its Gibbs free energy, which is de-
fined as

G=H-TS, @1

where H is the enthalpy, T is the absolute temperature and S is the entropy of the
system. The quantity G is usually expressed in joules per mole. Enthalpy is a mea-
sure of the heat content of the system and is given by

H=E+PV, 22)
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