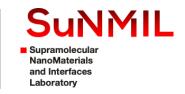


Institute of Materials - Institute of Bioengineering sunmil.epfl.ch



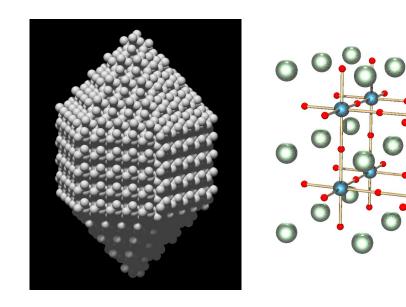
Real Surfaces Lesson 3

MSE 304

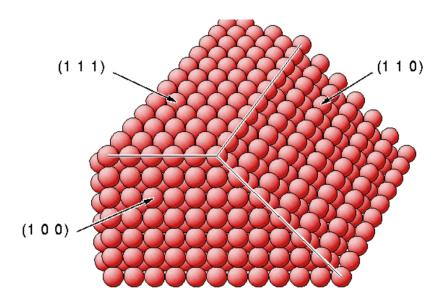
Francesco Stellacci

Key Topics in the Previous Class

Difference between an Ideal and a Real surface



Difference between an Ideal and a Real surface



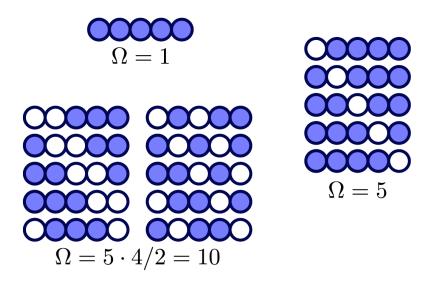
fcc lattice: different net planes

RADIGAC year

- Point Defects
- Line Defects
- Defects from the Bulk
- Reconstructions

- Entropy is a counter of the number of ways you can realize a thermodynamic state: $S = k_B \ln \Omega$
- n_V vacancies in N states Stirling approximation ($\ln N! \approx N \ln N$)

$$S(n_{v}) = k_{B} \ln \frac{N!}{(N - n_{v})! n_{v}!} = k_{B} [N \ln N - (N - n_{v}) \ln (N - n_{v}) - n_{v} \ln n_{v}]$$



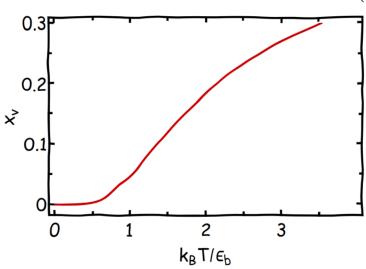
5

• Gibbs free energy for a solid with N sites containing n_v vacancies:

$$G = G_0 + n_v \epsilon_v - k_B T \left[N \ln N - (N - n_v) \ln (N - n_v) - n_v \ln n_v \right]$$

• At equilibrium $\partial G/\partial n_V = 0$

$$rac{n_{
m V}}{N-n_{
m V}}=\exp\left(-rac{\epsilon_{
m V}}{k_{
m B}T}
ight)\longrightarrowrac{n_{
m V}}{N}pproxrac{1}{1+\exp\left(rac{\epsilon_{
m V}}{k_{
m B}T}
ight)}$$



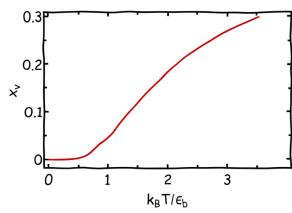
Point Defects in 3D Point Defects in 2D

• Gibbs free energy for a solid with N sites containing n_v vacancies:

$$G = G_0 + n_v \epsilon_v - k_B T \left[N \ln N - (N - n_v) \ln (N - n_v) - n_v \ln n_v \right]$$

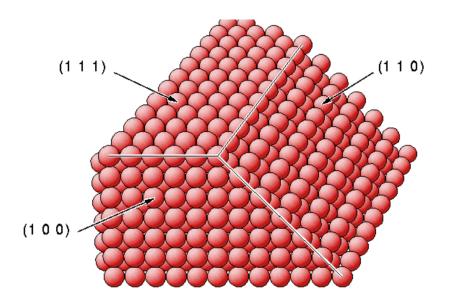
- Energy for creating a vacancy: bulk \rightarrow kink $\epsilon_{\rm v} \approx (12\epsilon_{\rm b} 6\epsilon_{\rm b}) = 6\epsilon_{\rm b}$ surf. \rightarrow kink $\epsilon_{\rm v} \approx (9\epsilon_{\rm b} 6\epsilon_{\rm b}) = 3\epsilon_{\rm b}$
- At equilibrium $\partial G/\partial n_v = 0$

$$\frac{n_{\mathsf{V}}}{N-n_{\mathsf{V}}} = \exp\left(-\frac{\epsilon_{\mathsf{V}}}{k_{\mathsf{B}}T}\right) \longrightarrow \frac{n_{\mathsf{V}}}{N} \approx \frac{1}{1 + \exp\left(\frac{\epsilon_{\mathsf{V}}}{k_{\mathsf{B}}T}\right)}$$



What About Impurities?

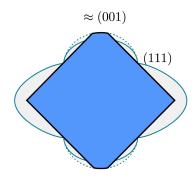
Difference between an Ideal and a Real surface



fcc lattice: different net planes

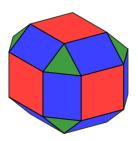
RADIGAC year

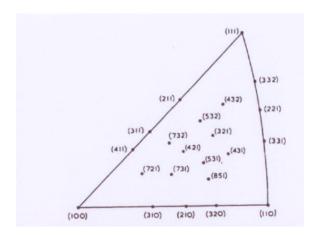
- Point Defects
- Line Defects
- Defects from the Bulk
- Reconstructions

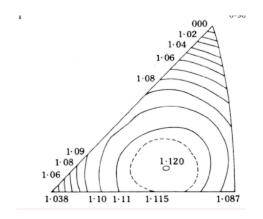


- \bullet In a liquid, γ is constant, so the system just want to minimize area at fixed volume \longrightarrow spherical droplets
- \bullet In a solid, the surface energy γ is orientation-dependent. Minimize total surface energy at constant volume

$$\min \int \gamma\left(\hat{\mathbf{n}}\right) d\mathbf{A}$$

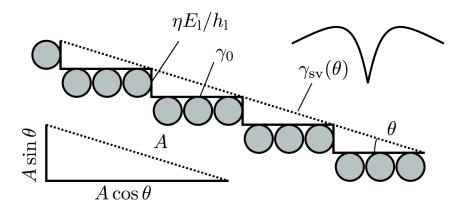


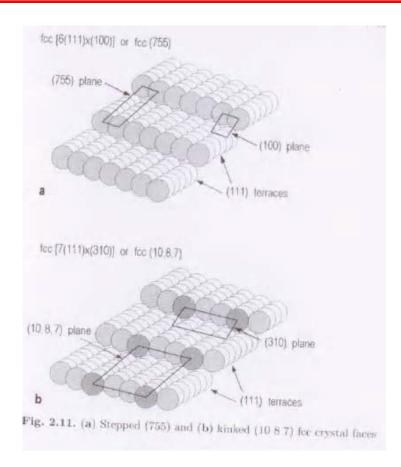


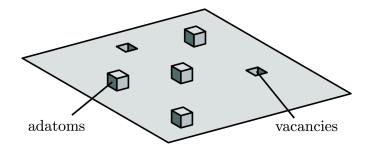


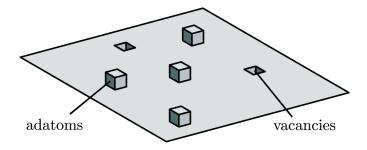
- Surfaces that correspond to cusps in the Wulff plot are very stable, and atomically flat ("singular surfaces")
- Surfaces that are slightly tilted ("vicinal surfaces") exhibit faceting: flat, singular-orientation **terraces** separated by **ledges**
- ullet Surface energy can be worked out as a function of the angle heta

$$\gamma_{\mathsf{sv}}\left(heta
ight) = \gamma_{\mathsf{0}}\cos heta + rac{\eta \mathcal{E}_{\mathsf{l}}}{m{h}_{\mathsf{l}}}\sin heta$$

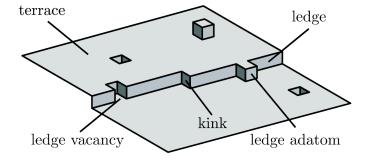


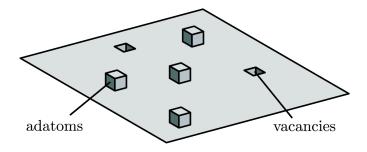




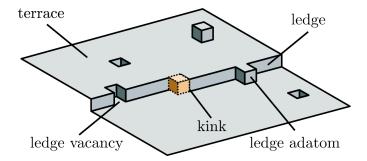


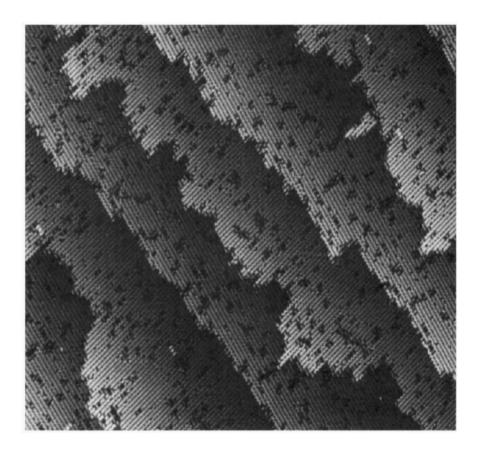
- In a real case, with ledges and kinks, the story is more complex
- Kinks are special, in that you can add an atom without changing the number of broken bonds



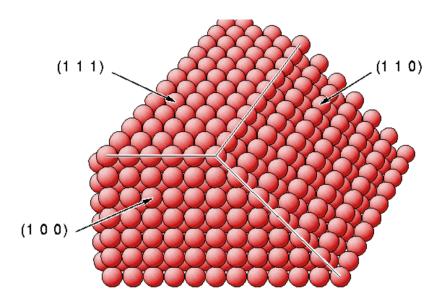


- In a real case, with ledges and kinks, the story is more complex
- Kinks are special, in that you can add an atom without changing the number of broken bonds





Difference between an Ideal and a Real surface



fcc lattice: different net planes

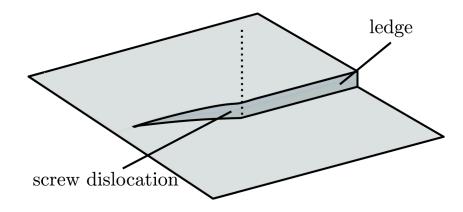
RATIONO year

- Point Defects
- Line Defects
- Defects from the Bulk
- Reconstructions

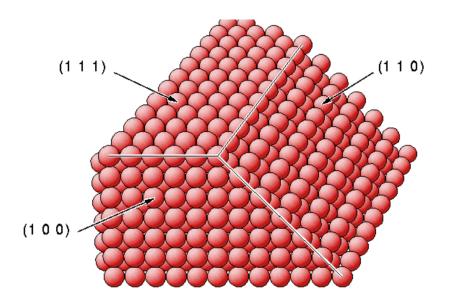
Defects from the Bulk in Real Surfaces

Defects from the Bulk in Real Surfaces

- Surfaces contain *kinetic* defects, that are typically connected to bulk defects (grain boundaries, dislocations)
- Surfacing dislocations can be seen by etching, or by decoration of the surface
- Screw dislocations can be a mechanism for crystal growth



Difference between an Ideal and a Real surface

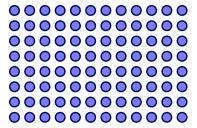


fcc lattice: different net planes

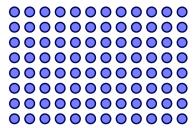
RATIGAC year

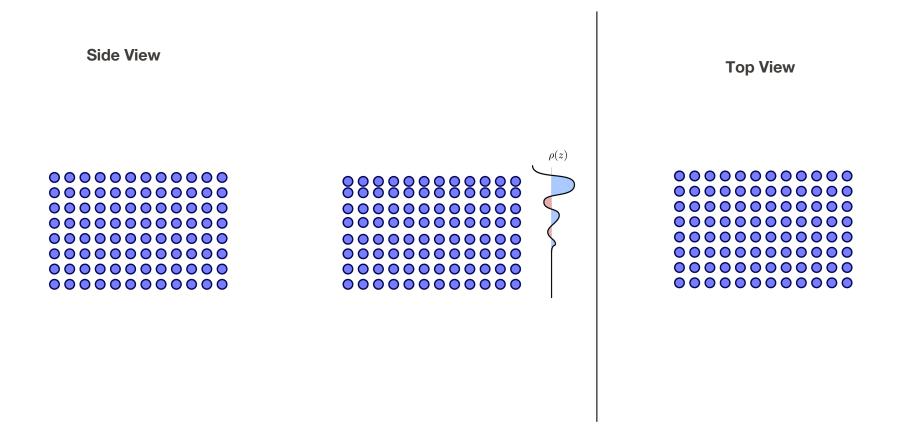
- Point Defects
- Line Defects
- Defects from the Bulk
- Reconstructions

Side View



Top View





Side View

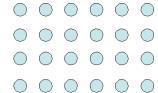
Top View

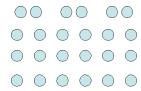
P(z)*

P(z)

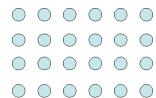
**P

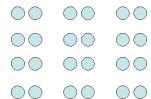
Side View

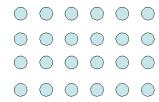


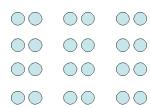


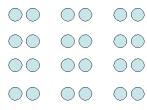
Top View





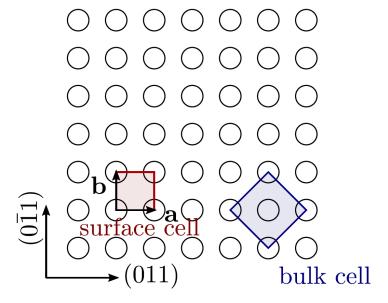


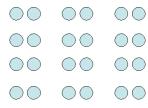




• The unit cell of a (reconstructed) surface is often labeled relative to the clear-cut lattice vectors (Wood notation)

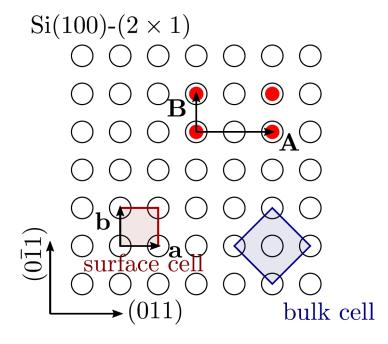
$$M(hkl) - [c|p](m \times n)[R\alpha]$$

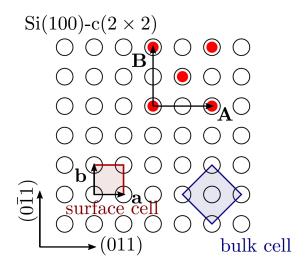


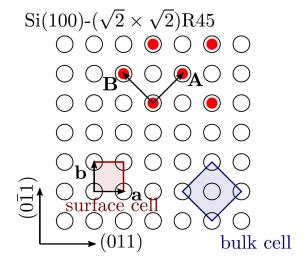


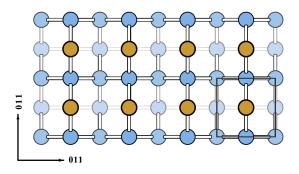
• The unit cell of a (reconstructed) surface is often labeled relative to the clear-cut lattice vectors (Wood notation)

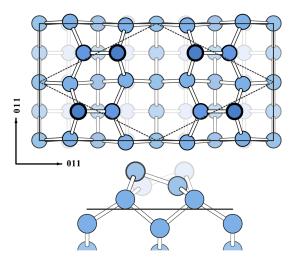
$$M(hkl) - [c|p](m \times n)[R\alpha]$$

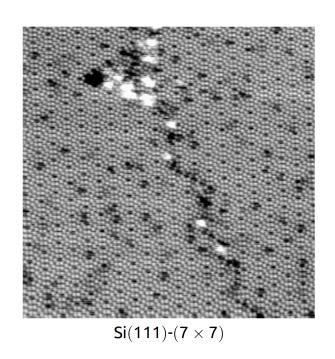


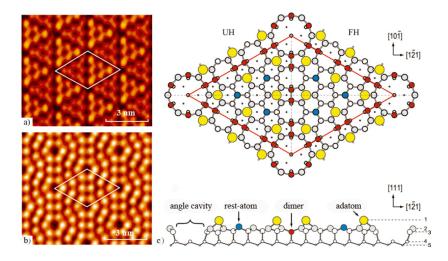


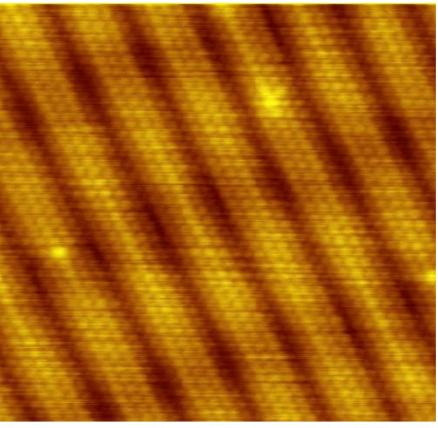






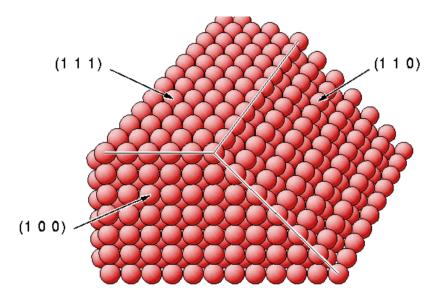






 $Au(100)-(28 \times 5)$

Conclusions



fcc lattice: different net planes

RADIGAC year

- Point Defects
- Line Defects
- Defects from the Bulk
- Reconstructions

