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1. Consider a surface with a step (ledge) and terraces. We have seen how to calculate the 

equilibrium concentration of vacancies (nv) on a terrace. The argument was based purely 
on the calculation and minimization of the Gibbs free energy associated with the defect’s 
formation. Do you expect that the energy required for the formation of a ledge vacancy is 
greater or smaller than that of a simple surface vacancy? Justify the answer.  
 
Solution:  
The energy required for the formation of a vacancy on a ledge is lower than the that necessary to 
create the same defect on a terrace. This is true on general grounds; you can convince yourself of 
this by counting the number of broken bonds. For the FCC (111) surface, for example, a vacancy 
on a terrace will break 9 bonds, while for a vacancy on a ledge the number of broken bonds is 7. 
 
 
                            Adatom=3                                          Terrace=9 

 
 
                        Ledge=7                                                            Kink=6 
 

 
2. Consider a step with the edge along the ⟨100⟩, on the (100) surface of a simple cubic crystal, 

at zero temperature. At finite temperature the step edge fluctuates (this is called roughening 
transition) as a result of the formation of kinks. We can consider the edge line as made up 
of N segments of length equal to the lattice parameter (L = Na). On each of these segments 
we may find a positive kink (i.e. an atom that sticks from the step), a negative kink (a 
missing atom on the step) or no kink at all. 
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a) Assuming that the temperature is low enough so that only kinks of atomic size occur, 
show that the average distance λ0 between kinks is 
 

𝜆! = 𝑎 "#$%
$%

                           with     𝜁 = 𝑒
!"#$%#
#&  

Where 𝛼 is the lattice parameter, 𝜖 is the formation energy of a kink and 𝛽 is the 
Boltzman factor ( !

"#
)	 

Hints: 
- Write down the “constraints” on the number of positive and negative kinks per unit 

length of steps (you can denote them as 𝑝$ and 𝑝%). Take into account that in a segment 
of the step, no kink 𝑝! is also possible! 

- By minimizing the free energy F, one can prove the following relation: &!&"
&#$

= 	𝜁' 
 

b) Are you able to sketch a rough plot of 1/𝜆! as a function of temperature with 𝜖 fixed? 
Does it make sense from a physical point of view? 
 

Solution: 
 
a) You can consider number density (p) of kinks; 
 

																		𝑎𝑝&+𝑎𝑝#+𝑎𝑝! = 1	
 

										𝑎(𝑝&+𝑝#+𝑝!) = 1	
 
																																																																						(𝑝&+𝑝#+𝑝!) = 1/𝑎  
 

i.e. the total number of kinks per unit length must be equal to the linear density of atoms on 
the step. And 

					𝑝#−𝑝& = 0	
in order to conserve the average orientation of the step line. We can determine the values of 
𝑛&, 𝑛#	𝑎𝑛𝑑	𝑛! by solving the two above equations simultaneously with the relation coming from the 
minimization of the free energy. Thus, we need to solve the system: 
 

+𝑝−+𝑝++𝑝0, = 1/𝑎	
 

		𝑝#−𝑝& = 0	
 

𝑝−𝑝+
𝑝0

2 = 𝜁2	

 
 
We obtain 

𝑝! =
+ 	"#$%#(

,($#+ 	"#$%#()
	and		

𝑝# = 𝑝& =
1

𝑎(2+𝑒 	0#$%#1)
	

	
 
 
The average distance between two kinks can be defined as the reciprocal of the total number 
of kinks per unit length,  
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𝜆! =
1

					𝑝#+𝑝&
	

 
recalling that  

𝑝± =
𝑁
𝐿
=
1
𝑎
	

We get the result 
 

𝜆! =
1

2(1𝛼)
(2+𝑒 	0#$%#1)

= 𝑎
2 + 𝑒0#$%#1

2
= 𝑎

1 + 2𝜁
2𝜁

	

 
 

b) The figure below is the plot of the function 1/𝜆! (log scale), the average number of the kinks 
per unit length, with respect to the temperature. With an increase in temperature, the kink 
density increases exponentially, while with a decrease, it falls off. This can be interpreted as 
that the increase in thermal energy is modulating the creation of kinks. Saturation is also 
consistent since the number of kinks can’t increase to infinity. 
 

 
 
3. Figure A) is an illustration of unreconstructed silicon (100) surface. A silicon atom in the 

structure of a silicon crystal can form four bonds with the four nearest neighboring atoms. 
In the bulk of a silicon crystal, viewed from the (100) plane, two of these bonds reach to 
the level below and two reach to the next level above. In the figure A) three successive 
planes of silicon are represented with dots of different shades of red (each shade represent 
atoms on different levels). Cleaving a crystal along a (100) plane leaves the surface atoms 
with only two bonds intact and the other two dangling (blue dots in Fig. A). The surface 
atoms then swing toward neighboring atoms to form pairs, known as dimers. Figure B) 
shows the same Si (100) plane reconstructed to form rows of dimers along the surface. 

 

Si (100) Si (100) reconstruction 
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a) Determine the unit cell of the reconstructed Si(100) surface. 
 

b) Using exclusively the broken bond model in the first nearest neighbor approximation 
determine the surface energies of the surface reconstructed and unreconstructed, as a 
function of 𝜀(bond energy) and a (lattice parameter of the unconstructed surface) 

 
c) What is the gain in energy due to the reconstruction with this approximation?  
 
Solution: 
a) A unit cell is the smallest building block of which repetition forms the crystal structure. 

The unit cells of Si(100) surface after reconstruction is indicated by the green arrows 
in Figure B). The reconstructed surface is: Si(100) 2x1 

 
 

b) Before reconstruction: As stated in the question, there are two dangling bonds for each 
unit cell on the Si(100) surface. Therefore, 2𝜀 × !

'
=𝜀 is the energy for the unit cell 

associated to the creation of the surface (Note: dangling bonds are shared between two 
atoms, so corresponding energy for each atom is the half of the total bond energy. Also, 
the area of the unit cell is simply 𝑎'. Therefore, the total surface energy for the unit cell 
can be described as:  

𝛾!(((𝑢𝑛𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑) =
2𝜀 ∙ 12
𝑎' =

𝜀
𝑎'	

After reconstruction: Considering the new unit cell after reconstruction, two red atoms 
share two dangling bonds. In this case the area of the unit cell has changed after 
reconstruction: 

𝛾!(((𝑆𝑖(100)2 × 1) =
2𝜀 ∙ 12
2𝑎' =

𝜀
2𝑎'	

c) 𝛾!(((𝑢𝑛𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑) − 𝛾!(((𝑆𝑖(100)2 × 1) =
)
*$
− )

'*$
= )

'*$
 

 
4. For the following surface structures, determine for each the Wood’s notation 
 

Solution: 
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Unreconstructed                          reconstructed                                       reconstructed                          
       1x1                                              1x2                                                     c(2x2) or √2 × √2 R45° 
 
   

                  
Unreconstructed                                   reconstructed                               reconstructed                         
            1x1                                                      2x1                                                   √3 × √3 R30° 
 

5. The following figures is a 2D illustration of Wulff construction. As you learned from the 
lecture, the Wulff shape is the envelope shape enclosed by the tangent lines of surface 
energy vectors in the 𝛾 − 𝑝𝑙𝑜𝑡 in polar coordination, which is the red shape below. The 
enclosed faceted blue shape, which is the equilibrium crystal shape for this specific 𝛾 −
𝑝𝑙𝑜𝑡, depends largely on the cusps, lowest surface energy orientations, from the 𝛾 − 𝑝𝑙𝑜𝑡.  

 

This is also true for 3D shapes, the facets indicate the lowest surface energy orientations. 
Below is a high resolution SEM micrograph of 3D equilibrium crystal shape (ECS) of gold 
supported on Yttria Stabilized Zirconia (YSZ), read more on publication: 10.1007/s10853-
019-03436-5. Determine what are the facet families you can see from this shape. Use the 
Wulffmaker Mathematica file and try to reproduce a 3D carton shape of this experimental 
ECS of gold. Write down the values of surface energies you insert and recall what you did 

)(a) )(b) (c)

https://link.springer.com/article/10.1007%2Fs10853-019-03436-5
https://link.springer.com/article/10.1007%2Fs10853-019-03436-5
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in the first problem in exercise 1. Do these values apply to the result you got from the 
broken bond model? 

 

Solution: 

Judging from the three-fold symmetry and the fact that gold crystal is FCC, you should be 
able to tell that the top facet and the three side facets are from the {111} facet family. As 
for the three other facets adjacent to the side {111} facets, they are the {100} facets. You 
may also see smooth roughened surfaces connecting these two facet families, which 
includes the {110} family. Inserting the values below should give you a good shape that 
agrees with the SEM micrograph. With other higher order of facet planes, you can also get 
an ECS shape like below: 

γ{100}/γ{111} γ{110}/γ{111} 

1.091 1.125 

 

The The values agree with 𝛾(111) < 𝛾(100) < 𝛾(110) 

• • • • •


