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1. The classical nucleation theory explains why homogeneous crystal nucleation is 

difficult: crystals need to exceed a critical size in order to grow, and the ones that are 

smaller than that will dissolve. In the absence of a seed, a rare, spontaneous fluctuation 

is needed to form a critical nucleus. The Gibbs free energy of a spherical isotropic 

nucleus in the liquid is often expressed as 

 

∆𝐺 = −
4

3
𝜋𝑟3∆𝐺𝑆𝐿

̅̅ ̅̅ ̅̅ + 4𝜋𝑟2𝛾𝑆𝐿 

Where ∆𝐺𝑆𝐿 > 0 and 𝛾𝑆𝐿 > 0 

a) Plot the change of ∆𝐺 as a function of r. Determine the size of the critical nucleus 

𝛾𝑐, and the corresponding free energy barrier. 

b) What will happen if we add seed crystals to the undercooled liquid phase, given that 

the seed crystals have the same composition as the nuclei in liquid? Discuss for the 

cases 1) when the seed crystals are smaller than the critical nucleus, and 2) when 

they are larger than the critical nucleus.  

 

Solution: 

a) In the plot below, the variation of the volume free energy, interfacial energy and 

the overall free energy change as a function of r is shown. Since the interfacial 

contribution goes as r2 and that of bulk free energy as r3, at smaller r, interfacial 

energy always dominates, and being a positive energy, it actually suppresses the 

formation of solid. Unless the size of the solid is above some size wherein the 

(negative) bulk free energy change can more than compensate for the (positive) 

interfacial energy, the solid will not be stable (even if it forms). Thus, one can 

identify the critical radius of the solid that is stable when formed in the 

undercooled liquid by minimizing ∆G with respect to r: 

 

[
𝑑∆𝐺

𝑑𝑟
] 𝑟 = 𝑟𝑐 = 0 

−4 𝜋𝑟𝑐
2∆𝐺𝑆𝐿 + 8𝜋𝑟𝑐𝛾𝑆𝐿 = 0  

   𝑟𝑐 = 2𝛾𝑆𝐿/∆𝐺𝑆𝐿 

And the corresponding activation energy will be known by calculating ∆𝐺 at critical r (insert 

   𝑟𝑐 = 2𝛾𝑆𝐿/∆𝐺𝑆𝐿 into  ∆𝐺 = −
4

3
𝜋𝑟𝑐

3∆𝐺𝑆𝐿 + 4𝜋𝑟𝑐
2𝛾𝑆𝐿) 

Which will eventually yield ∆𝐺∗as: 
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∆𝐺∗ =
16𝜋𝛾𝑆𝐿

3

3∆𝐺𝑆𝐿
2  

b) When the seed crystals are smaller than the critical nucleus, they will have a 

very little effect.  

On the other hand, when the seed crystals are larger than the critical nucleus, 

free energy will decrease, so these nuclei are more probable. Therefore, adding 

seed crystals whose size is bigger than that of rc would promote crystallization. 

 

 

 

2. Crystallization can also be facilitated by introducing foreign substances. In fact, 

heterogeneous nucleation, nucleation starting at a surface, is faster and more common 

than homogeneous nucleation.  

a) Take 𝛾𝑆𝐿, 𝛾𝑆𝑆′, 𝛾𝑆′𝐿 to be the interfacial free energy between solid-liquid, solid-

substrate, and substrate-liquid, respectively. Can you predict the equilibrium shape 

of a nucleus formed on the substrate? Assume 𝛾𝑆𝐿+𝛾𝑆𝑆′−𝛾𝑆′𝐿>0. Hint: you may 

want to revisit Young's equation introduced in the previous lectures. 

 
b) For simplification, imagine the shape of the solid particle as a truncated sphere. For 

the nucleus formed on the substrate as in (a), can you write out the expression for 

the free energy ∆G as a function of its volume?  

c) Make a plot to illustrate the relationship between ∆G and the volume of the nucleus 

both in heterogeneous nucleation and in homogeneous nucleation. How do the free 

energy barriers of the two compare to each other?  

d) Suppose for this system 𝛾𝑆𝐿 is constant across all temperatures, and the chemical 

potential ∆𝐺𝑆𝐿 can be expressed as 

∆𝐺𝑆𝐿𝑆̅̅ ̅̅ ̅̅ ̅̅ = 𝐻𝑓

𝑇𝑚 − 𝑇

𝑇𝑚
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Where 𝐻𝑓 > 0 is the constant of latent heat per unit volume, and 𝑇𝑚 is the melting 

point of the system. Based on these assumptions, can you write down the nucleation 

free energy barrier as a function of temperature T? 

e) According to (d), will the system solidify at 𝑇 = 𝑇𝑚? Write down the condition 

between 𝛾𝑆𝐿, 𝛾𝑆𝑆′ and 𝛾𝑆′𝐿, under which the system will solidify at 𝑇 = 𝑇𝑚? 

 

Solution: 

a) The energetic relation  𝛾𝑆𝐿+𝛾𝑆𝑆′−𝛾𝑆′𝐿>0     →    𝛾𝑆𝐿+𝛾𝑆𝑆′ > 𝛾𝑆′𝐿      

indicates that the particle is non-wettable on the substrate, so there will be a 

non-zero contact angle 𝜃. 

The shape of a nucleus formed on the substrate is a truncated sphere with contact 

angle 𝜃 following the Young’s equation: 

𝛾𝑆𝐿𝑐𝑜𝑠𝜃 + 𝛾𝑆𝑆′ = 𝛾𝑆′𝐿 

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝛾𝑆′𝐿 − 𝛾𝑆𝑆′

𝛾𝑆𝐿
) 

 
b) The free energy of the nucleus is composed of two parts, the bulk energy of 

the nucleus and its interfacial energies. To  

Take the height of the cap as ℎ = 𝑅(1 − 𝑐𝑜𝑠𝜃) 

then the volume of the truncated sphere is 

𝑉 =
𝜋ℎ2

3
(3𝑅 − ℎ) 

Write V in terms of R: 

𝑉 =
𝜋

3
𝑅3(1 − 𝑐𝑜𝑠𝜃)2(2 + 𝑐𝑜𝑠𝜃) 

𝑅 = (
3

𝜋
)

1
3(1 − 𝑐𝑜𝑠𝜃)−

2
3(2 + 𝑐𝑜𝑠𝜃)−

1
3𝑉

1
3 

And the curved surface area 𝐴𝑆𝐿 of the sphere cap is 

𝐴𝑆𝐿 = 2𝜋𝑅ℎ = 2𝜋𝑅2(1 − 𝑐𝑜𝑠𝜃) = (8𝜋3)
1
3(

9

𝜋2
)

1
3(1 − 𝑐𝑜𝑠𝜃)−

4
3(2 + 𝑐𝑜𝑠𝜃)−

2
3𝑉

2
3(1 − 𝑐𝑜𝑠𝜃)

= (72𝜋)
1
3(1 − 𝑐𝑜𝑠𝜃)−

1
3(2 + 𝑐𝑜𝑠𝜃)−

2
3𝑉

2
3 

The contact area between the nucleus and the substrate is: 

𝐴𝑆𝑆′ = 𝜋𝑎2 = 𝜋𝑅2𝑠𝑖𝑛2𝜃 = 𝜋𝑅2(1 − 𝑐𝑜𝑠2𝜃) = 𝜋𝑅2(1 − 𝑐𝑜𝑠𝜃)(1 +

𝑐𝑜𝑠𝜃) = (𝜋3)
1

3(
9

𝜋2
)

1

3(1 − 𝑐𝑜𝑠𝜃)−
4

3(2 + 𝑐𝑜𝑠𝜃)−
2

3𝑉
2

3(1 − 𝑐𝑜𝑠𝜃)(1 + 𝑐𝑜𝑠𝜃) =

(9𝜋)
1

3(1 + 𝑐𝑜𝑠𝜃)(1 − 𝑐𝑜𝑠𝜃)−
1

3(2 + 𝑐𝑜𝑠𝜃)−
2

3𝑉
2

3  

So we have 

𝐴𝑆𝐿 = (72𝜋)
1
3(1 − 𝑐𝑜𝑠𝜃)−

1
3(2 + 𝑐𝑜𝑠𝜃)−

2
3𝑉

2
3 
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and  

𝐴𝑆𝑆′ = (9𝜋)
1
3(1 + 𝑐𝑜𝑠𝜃)(1 − 𝑐𝑜𝑠𝜃)−

1
3(2 + 𝑐𝑜𝑠𝜃)−

2
3𝑉

2
3 

Plug these values into the expression for 

 ∆𝐺(𝑉) = −𝑉∆𝐺𝑆𝐿 + 𝐴𝑆𝐿𝛾𝑆𝐿 + 𝐴𝑆𝑆′(𝛾𝑆𝑆′ − 𝛾𝑆′𝐿) 

And obtain: 

∆𝐺(𝑉) = −𝑉∆𝐺𝑆𝐿 + 𝐴𝑆𝐿𝛾𝑆𝐿 + 𝐴𝑆𝑆′(𝛾𝑆𝑆′ − 𝛾𝑆′𝐿)

= −𝑉∆𝐺𝑆𝐿 + (72𝜋)
1
3(1 − 𝑐𝑜𝑠𝜃)−

1
3(2 + 𝑐𝑜𝑠𝜃)−

2
3𝑉

2
3𝛾𝑆𝐿

+ (9𝜋)
1
3(1 + 𝑐𝑜𝑠𝜃)(1 − 𝑐𝑜𝑠𝜃)−

1
3(2 + 𝑐𝑜𝑠𝜃)−

2
3𝑉

2
3(𝛾𝑆𝑆′ − 𝛾𝑆′𝐿)

= −𝑉∆𝐺𝑆𝐿 + (9𝜋)
1
3(1 − 𝑐𝑜𝑠𝜃)−

1
3(2 + 𝑐𝑜𝑠𝜃)−

2
3𝑉

2
3(2𝛾𝑆𝐿 + (1

+ 𝑐𝑜𝑠𝜃)(𝛾𝑆𝑆′ − 𝛾𝑆′𝐿)) = −𝑉∆𝐺𝑆𝐿 + (9𝜋)
1
3(1 − 𝑐𝑜𝑠𝜃)

2
3(2 + 𝑐𝑜𝑠𝜃)

1
3𝑉

2
3𝛾𝑆𝐿 

c) For homogeneous nucleation, 

∆𝐺(𝑉) = −𝑉∆𝐺𝑆𝐿 + (36𝜋)
1
3𝑉

2
3𝛾𝑆𝐿 

(just a rewrite of spherical homogeneous nucleation as a function of sphere 

volume of the nucleus, as you’ve seen in question 1 and in the lecture) 

Notice that the geometrical constant (9𝜋)
1

3(1 − 𝑐𝑜𝑠𝜃)
2

3(2 + 𝑐𝑜𝑠𝜃)
1

3 for 

heterogeneous nucleation is smaller than the geometrical constant (36𝜋)
1

3 for 

homogeneous nucleation. This means that the free energy barrier for 

heterogeneous nucleation is lower. 

d) ∆𝐺(𝑉) = −𝑉𝐻𝑓
𝑇𝑚−𝑇

𝑇𝑚
+ (9𝜋)

1

3(1 − 𝑐𝑜𝑠𝜃)
2

3(2 + 𝑐𝑜𝑠𝜃)
1

3𝑉
2

3𝛾𝑆𝐿 

e) From what you derived from d), ∆𝐺(𝑉) is composed of the negative part from 

the bulk energy as well as positive energy change from the interfacial energies. 

As 𝑇 = 𝑇𝑚, the bulk energy part is now zero. In order for nucleation to happen, 

∆𝐺(𝑉) ≤ 0 

So only if the contact angle 𝜃 = 0, i.e. complete wetting, the opposite of non-

wetting as in a), which means the interfacial energies satisfy the following 

relation: 

𝛾𝑆′𝐿 ≥ 𝛾𝑆𝐿 + 𝛾𝑆𝑆′ 

 

 

 


