Surfaces and Interfaces 2023 Fall Semester
Exercise 3-Solutions

1. The microscopic origin of surface tension (o) for a system in certain conditions (i.e. liquid,
solid) lies ultimately in the atomistic nature of matter; in other words, it depends on the type
and strength of bonds that hold together the system we are dealing with. (Water, with its
peculiar "hydrogen bond network,” is a prime example of this). As a consequence surface
tension strongly depends on state variables like pressure and temperature; in particular, if the
pressure is fixed, the surface tension depends on temperature and concentrations (if our
substance is not pure or presents local impurities): 6(T,c).

Mass transfer due to the presence of surface tension gradients represents the important
phenomenon called the Gibbs-Marangoni effect (GB). There are numerous manifestations of
this effect, although in many cases, other phenomena are preponderant. Here we take as a case
study the so-called "tears of wine" that you can see in the snapshot below.

Figure 1 A glass with “tears” of wine caused by the Marangoni effect.

Wine can be regarded as a water-alcohol mixture. If you take a glass of wine like the one
in the picture, the Gibbs-Marangoni effect is usually seen when there is a thin film of
wine on the internal surface of the glass. This thin film of wine is quickly being depleted
of alcohol and since the latter has a lower surface tension than water, a gradient in surface
tension appears.

a) Can you explain why the concentration of alcohol in the thin film decreases fast
enough to deplete the wine mixture of alcohol? Surface science: what differentiates a
bulk quantity of wine from a thin layer of it?

b) What does the presence of a gradient with respect to the concentration give rise to?
Hint: think about the definition of the surface tension. What does a force gradient
imply?

Solution:



a) The large “surface to volume ratio” of the thin film is the responsible for the quick
depletion of alcohol (= < —where D is the unit of length (Surface is e D?, while

volume is oc D3). The evaporation rate of a substance is directly related to this ratio,
since evaporation is a phenomenon occurring on the surface. Then, alcohol (with a
higher vapor pressure than water), will tend to evaporate faster.

In general, smaller systems tend to have different properties with respect to their bulk
counterpart precisely for this ratio, which increases as the characteristic dimension
decreases.

b) Alcohol concentration in the thin film of wine deposited on the glass surface will
quickly decrease and the mixture will become water-rich. Because alcohol has a lower
surface tension than water, a gradient of surface tension develops pointing upwards
and so pulling the mixture up. Wine goes on climbing up the glass surface until
gravity becomes equal to the tangential force caused by the surface tension gradient.
Eventually, gravity will win because of the increasing mass of substance accumulated,
which will fall back into the bulk wine. In theory, this process will continue as long as
there is some alcohol left.

2. Several experimental methods can be used to measure surface tensions and liquid -liquid
interfacial tensions. Some of the more common ones are based on a microbalance (it
measures the force) that holds a probe located at the interface. There are several shapes for
this probe, like the Wilhelmy plate and the Du Noiiy Ring (Fig. 1 and Fig. 2).

balance

Fig. 1 A schematic of the Wilhelmy plate method. Fig. 2 Tlustration of the ring method.

a) For the Wilhemy plate equilibrium situation, deduce the force balancing equations
acting on the microbalance.

b) Derive the change in force AF due to a change in surface tension Ay to maintain
equilibrium for the Wilhemy plate and for the Du Noiiy ring. Make some geometrical
assumptions to simplify the equations.

Solution:
a) The total force acting on the microbalance is the sum of three forces:
gravitational, surface tension and buoyancy. If we assume that the wire sustaining
the plate is massless, we can obtain the following expression for the vertical
balance of forces (compare it with the schematic representation of the forces in the
drawing below):
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b) Wilhemy plate:

Considering an equilibrium situation all the variables (h, the densities of the solid
and the liquid, the dimensions of the plate) that contribute to the vertical
component of the total force remain constant. The only force that changes is the
one from the microbalance to compensate for the change in surface tension. So the
difference (final and initial) in the force is:

AF =F/ —Fi = 2y (L +t)cosb, — 2y;(L + t)cosb; = 2(L + t)(yycosb; —y;cos6;)

Typically, the thickness of the plate (t) is much smaller than the side (L) so the
term 2(L+t) can be approximated to 2L. Normally the plate is made of a highly
hydrophilic material so, for water-based or hydrophilic liquids, both the angles
tend to be 0 and the term y, cost; — y;cos6; can be approximated to y, —y; =
Ay. Thus we obtain that a change in surface tension leads to the following change
in force the microbalance needs to apply to maintain equilibrium :

AF
— =2L

Ay
Du Noiiy ring:

Equally, in the case of the Du Noiiy ring, the only force that change is the one
from the microbalance due to the change in surface tension, so we can express it
similarly to the previous case:

AF = Ff —Fl = Ys Pcosb; —y;Pcos6; = P(yscosb; — y;cos0b;)
Where P is the total perimeter in contact with the liquid. Here we express 6 as half
the angle sketched in the drawing to maintain similarity between the equations of

the two systems. So, the actual value is:

AF = [2nR + 2n(2r + R)](yfcosef — y;c0s6;)



Like in the former case, the material of the ring is hydrophilic and, typically, the
liquids used are water or hydrophilic liquids, so the angle tends to 0. Moreover,
the ring is made such that R>> r, so we can rewrite the above expression as:

AF = [2nR + 2n(2r + R)](yf cos; —y; cos6;) ~ 4mR (¥; —vi) = 4mRAy

AF—4 R
Ay_ r

3. Roughness of a parabolic corrugated solid surface
Consider a liquid droplet on top of a periodic corrugated solid surface: the crest of
periodic ripple is parabolic and exists along the x-axis only:
It can be expressed as
x2

f(x)=—7 x€ |

—Q ao]
2’2

Where a, is defined in Fig. 1: the solid surface is flat along the y-axis.

Assuming such system (for simplification of calculation, one may imagine a semi-
cylinder: system with semi-circle shape cross section with certain thickness, in contact
with a foreign surface), determine the roughness ¢. Hint: We would like to recall what is
line integral. Line integral is an integral where is function is integrated along a curve C.
For the purposes of this exercise, we can write this integral in 2D-space as:

fc ds=jc J(dx)2+(dy)2=Lb /1+|3—Z|2dx

micro
SL

Figure 1: A droplet on top of a parabolic corrugated solid surface. The droplet is bounded by vertices of the
parables and ay is the projection of the microscopic size along the x-axis.

Solution:
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Let’s start form the definition of roughness:
Amicro Lmicro Lmicro
SL X

¢ - macro = macro | macro
AT L™ L

In this formula, we need only to calculate L™ using the definition of the line integral, we
can obtain:

. a, ay/2
Lr;ucm:Nf A1 +x2dx=2Nj V14 x%dx
0 0

Where N is the number of crests.
Now, if we write N = Lx/a, and make this substitution, x = sinh8, we get:

" 0f _ o0
sinh@ =
2

e? +e°

cosh@ = —
) macro h 5
Lmiero = = [sinhfcoshf + H]ISm H(a0/2)

a
Lmacro

[— cosh (sinh™ (%)) + sinh ™! (?)]

We can rewrite the above expression as (one may also use other integration ways to derive
the following expression):

) Lmacro + /4‘ + a
TETO = ——— w/4+a0 +1In ( %o o*
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Eventually, we get:
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4. Spreading equilibrium pressure and work of adhesion of a droplet
In real surfaces, the triple line is ‘‘pinned’’, so in practice there is a range of meta-stable
contact angles (‘‘contact angle hysteresis’”). Consider a liquid droplet on top of a flat
solid surface and a micro-syringe, which can insert additional liquid, immersed inside the
droplet.
In this way we can expand the droplet to its maximum volume allowable for the initial
liquid—solid interfacial area: any further addition will increase both volume and the
liquid—solid interfacial area. The contact angle for this maximum volume is called
“advancing contact angle”, 0a. Vice versa, if liquid is removed from the droplet by micro-
syringe, the volume will decrease keeping the same liquid-solid interfacial area until the
latter will be forced to shrink. Just before the shrinking the droplet assumes the smallest
contact angle, called “receding contact angle”, Or.

In the receding condition (suction phase), there is an internal negative pressure 7, also
called “spreading equilibrium pressure”, which acts on the surface of the droplet. This
pressure changes the Young expression as follows:

Yiv €O0SOp — T = Vsy — Vs,

Since 0 and Or can be easily measured by experiments and y,,, is generally known in
literature:

a) Derive the spreading equilibrium pressure as a function of these physical quantities,
(64 O, Vv )

b) Derive the work of adhesion in advancing mode as a function of two of these physical
quantities, W24 (6,,v,,)

Solution:

a) If we consider Young’s equation both in receding mode (above expression) and in
advancing one,
Yiv €056, = Yoy —Vss
We can derive the spreading equilibrium pressure as follows:
T =Y,y (cosOy —cosb,)
b) If we use Dupre equation
Yoo = Vsy + Vi — W
And Young’s equation in advancing mode, we obtain:
wedv =y (1 + cosb,)



