
Surfaces and Interfaces 2023 Fall Semester 
 

Exercise 3-Solutions 

 

1. The microscopic origin of surface tension (σ) for a system in certain conditions (i.e. liquid, 
solid) lies ultimately in the atomistic nature of matter; in other words, it depends on the type 
and strength of bonds that hold together the system we are dealing with. (Water, with its 

peculiar "hydrogen bond network," is a prime example of this). As a consequence surface 
tension strongly depends on state variables like pressure and temperature; in particular, if the 

pressure is fixed, the surface tension depends on temperature and concentrations (if our 
substance is not pure or presents local impurities): σ(T,c). 
Mass transfer due to the presence of surface tension gradients represents the important 

phenomenon called the Gibbs-Marangoni effect (GB). There are numerous manifestations of 
this effect, although in many cases, other phenomena are preponderant. Here we take as a case 

study the so-called "tears of wine" that you can see in the snapshot below. 
 

 
Figure 1 A glass with “tears” of wine caused by the Marangoni effect.  

Wine can be regarded as a water-alcohol mixture. If you take a glass of wine like the one 
in the picture, the Gibbs-Marangoni effect is usually seen when there is a thin film of 

wine on the internal surface of the glass. This thin film of wine is quickly being depleted 
of alcohol and since the latter has a lower surface tension than water, a gradient in surface 
tension appears. 

a) Can you explain why the concentration of alcohol in the thin film decreases fast 
enough to deplete the wine mixture of alcohol? Surface science: what differentiates a 

bulk quantity of wine from a thin layer of it? 
b) What does the presence of a gradient with respect to the concentration give rise to? 

Hint: think about the definition of the surface tension. What does a force gradient 

imply? 
 

Solution: 



a) The large “surface to volume ratio” of the thin film is the responsible for the quick 

depletion of alcohol (
𝑆

𝑉
∝

1

𝐷
 where D is the unit of length (Surface is ∝ 𝐷2, while 

volume is ∝ 𝐷3). The evaporation rate of a substance is directly related to this ratio, 

since evaporation is a phenomenon occurring on the surface. Then, alcohol (with a 
higher vapor pressure than water), will tend to evaporate faster. 
In general, smaller systems tend to have different properties with respect to their bulk 
counterpart precisely for this ratio, which increases as the characteristic dimension 
decreases. 

 

b) Alcohol concentration in the thin film of wine deposited on the glass surface will 
quickly decrease and the mixture will become water-rich. Because alcohol has a lower 
surface tension than water, a gradient of surface tension develops pointing upwards 

and so pulling the mixture up. Wine goes on climbing up the glass surface until 
gravity becomes equal to the tangential force caused by the surface tension gradient. 
Eventually, gravity will win because of the increasing mass of substance accumulated, 

which will fall back into the bulk wine. In theory, this process will continue as long as 
there is some alcohol left. 

 

2. Several experimental methods can be used to measure surface tensions and liquid -liquid 
interfacial tensions. Some of the more common ones are based on a microbalance (it 

measures the force) that holds a probe located at the interface. There are several shapes for 
this probe, like the Wilhelmy plate and the Du Noüy Ring (Fig. 1 and Fig. 2). 

 

 

a) For the Wilhemy plate equilibrium situation, deduce the force balancing equations 

acting on the microbalance. 
b) Derive the change in force ∆𝐹 due to a change in surface tension ∆𝛾 to maintain 

equilibrium for the Wilhemy plate and for the Du Noüy ring. Make some geometrical 
assumptions to simplify the equations. 

 
Solution: 

a) The total force acting on the microbalance is the sum of three forces: 
gravitational, surface tension and buoyancy. If we assume that the wire sustaining 
the plate is massless, we can obtain the following expression for the vertical 

balance of forces (compare it with the schematic representation of the forces in the 
drawing below): 



𝐹𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝜌𝑝𝑙𝑎𝑡𝑒𝑉𝑝𝑙𝑎𝑡𝑒𝑔 − 𝜌𝑙𝑖𝑞𝑢𝑖𝑑𝑉𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑 −𝑝𝑙𝑎𝑡𝑒𝑔 + 𝛾𝑙𝑖𝑞𝑢𝑖𝑑 2(𝐿 + 𝑡)𝑐𝑜𝑠𝜃 

 

 
b) Wilhemy plate: 

 
Considering an equilibrium situation all the variables (h, the densities of the solid 

and the liquid, the dimensions of the plate) that contribute to the vertical 
component of the total force remain constant. The only force that changes is the 
one from the microbalance to compensate for the change in surface tension. So the 

difference (final and initial) in the force is:  
 

∆𝐹 = 𝐹𝑓 − 𝐹 𝑖 = 2𝛾𝑓 (𝐿 + 𝑡)𝑐𝑜𝑠𝜃𝑓 − 2𝛾𝑖(𝐿 + 𝑡)𝑐𝑜𝑠𝜃𝑖 = 2(𝐿 + 𝑡)(𝛾𝑓𝑐𝑜𝑠𝜃𝑓 − 𝛾𝑖 𝑐𝑜𝑠𝜃𝑖) 
 

Typically, the thickness of the plate (t) is much smaller than the side (L) so the 
term 2(L+t) can be approximated to 2L. Normally the plate is made of a highly 

hydrophilic material so, for water-based or hydrophilic liquids, both the angles 

tend to be 0 and the term 𝛾𝑓 𝑐𝑜𝑠𝜃𝑓 − 𝛾𝑖 𝑐𝑜𝑠𝜃𝑖  can be approximated to 𝛾𝑓 − 𝛾𝑖 =

𝛥𝛾. Thus we obtain that a change in surface tension leads to the following change 

in force the microbalance needs to apply to maintain equilibrium : 
 

𝛥𝐹

𝛥𝛾
= 2𝐿 

Du Noüy ring: 
 

Equally, in the case of the Du Noüy ring, the only force that change is the one 
from the microbalance due to the change in surface tension, so we can express it 
similarly to the previous case: 

 

∆𝐹 = 𝐹⊥
𝑓 − 𝐹⊥

𝑖 = 𝛾𝑓 𝑃𝑐𝑜𝑠𝜃𝑓 − 𝛾𝑖 𝑃𝑐𝑜𝑠𝜃𝑖 = 𝑃(𝛾𝑓𝑐𝑜𝑠𝜃𝑓 − 𝛾𝑖 𝑐𝑜𝑠𝜃𝑖 ) 
 

Where P is the total perimeter in contact with the liquid. Here we express 𝜃 as half 

the angle sketched in the drawing to maintain similarity between the equations of 

the two systems. So, the actual value is: 
 

∆𝐹 = [2𝜋𝑅 + 2𝜋(2𝑟 + 𝑅)](𝛾𝑓𝑐𝑜𝑠𝜃𝑓 − 𝛾𝑖 𝑐𝑜𝑠𝜃𝑖) 
 



Like in the former case, the material of the ring is hydrophilic and, typically, the 
liquids used are water or hydrophilic liquids, so the angle tends to 0. Moreover, 

the ring is made such that R≫ 𝑟 , so we can rewrite the above expression as: 

 

∆𝐹 = [2𝜋𝑅 + 2𝜋(2𝑟 + 𝑅)](𝛾𝑓 𝑐𝑜𝑠𝜃𝑓 − 𝛾𝑖 𝑐𝑜𝑠𝜃𝑖) ≈ 4𝜋𝑅(𝛾𝑓 − 𝛾𝑖 ) = 4𝜋𝑅𝛥𝛾 

 
𝛥𝐹

𝛥𝛾
= 4𝜋𝑅 

 
 

3. Roughness of a parabolic corrugated solid surface 

Consider a liquid droplet on top of a periodic corrugated solid surface: the crest of 
periodic ripple is parabolic and exists along the x-axis only: 

It can be expressed as 

𝑓(𝑥) = −
𝑥 2

2
            𝑥 ∈ [

−𝑎0

2
,
𝑎0

2
] 

 
Where 𝑎0 is defined in Fig. 1: the solid surface is flat along the y-axis. 

Assuming such system (for simplification of calculation, one may imagine a semi-

cylinder: system with semi-circle shape cross section with certain thickness, in contact 
with a foreign surface), determine the roughness 𝜙. Hint: We would like to recall what is 

line integral. Line integral is an integral where is function is integrated along a curve C. 
For the purposes of this exercise, we can write this integral in 2D-space as: 

 

∫
𝐶

𝑑𝑠 = ∫
𝐶

√(𝑑𝑥)2 + (𝑑𝑦)2 = ∫
𝑏

𝑎

√1 + |
𝑑𝑦

𝑑𝑥
|2𝑑𝑥 

 
 
 

 
Figure 1: A droplet on top of a parabolic corrugated solid surface. The droplet is bounded by vertices of the 

parables and a0 is the projection of the microscopic size along the x-axis. 

 
 

Solution: 



 
Let’s start form the definition of roughness: 

𝜙 = −
𝐴𝑆𝐿

𝑚𝑖𝑐𝑟𝑜

𝐴𝑆𝐿
𝑚𝑎𝑐𝑟𝑜

=
𝐿 𝑥

𝑚𝑖𝑐𝑟𝑜 𝐿𝑦
𝑚𝑖𝑐𝑟𝑜

𝐿 𝑥
𝑚𝑎𝑐𝑟𝑜 𝐿𝑦

𝑚𝑎𝑐𝑟𝑜
 

In this formula, we need only to calculate 𝐿𝑥
𝑚𝑖𝑐𝑟𝑜 using the definition of the line integral, we 

can obtain: 

𝐿𝑥
𝑚𝑖𝑐𝑟𝑜 = 𝑁 ∫

𝑎0

0

√1 + 𝑥 2𝑑𝑥 = 2𝑁 ∫
𝑎0/2

0

√1 + 𝑥 2𝑑𝑥 

Where N is the number of crests. 
Now, if we write 𝑁 = 𝐿𝑥/𝑎0 and make this substitution, 𝑥 = 𝑠𝑖𝑛ℎ𝜃, we get: 

𝑠𝑖𝑛ℎ𝜃 =
𝑒𝜃 − 𝑒−𝜃

2
 

𝑐𝑜𝑠ℎ𝜃 =
𝑒𝜃 + 𝑒−𝜃

2
 

𝐿𝑥
𝑚𝑖𝑐𝑟𝑜 =

𝐿 𝑥
𝑚𝑎𝑐𝑟𝑜

𝑎0

[𝑠𝑖𝑛ℎ𝜃𝑐𝑜𝑠ℎ𝜃 + 𝜃]|0

𝑠𝑖𝑛ℎ −1(𝑎0/2)

=
𝐿 𝑥

𝑚𝑎𝑐𝑟𝑜

𝑎0

[
𝑎0

2
𝑐𝑜𝑠ℎ (𝑠𝑖𝑛ℎ−1 (

𝑎0

2
)) + 𝑠𝑖𝑛ℎ−1 (

𝑎0

2
)] 

 
We can rewrite the above expression as (one may also use other integration ways to derive 

the following expression): 

𝐿𝑥
𝑚𝑖𝑐𝑟𝑜 =

𝐿𝑥
𝑚𝑎𝑐𝑟𝑜

𝑎0

[
𝑎0

4
√4 + 𝑎0

2 + 𝑙𝑛 (
𝑎0 + √4 + 𝑎0

2

2
)] 

Eventually, we get: 

𝜙 =
𝐿𝑥

𝑚𝑖𝑐𝑟𝑜

𝐿𝑥
𝑚𝑎𝑐𝑟𝑜

=
1

𝑎0

[
𝑎0

4
√4 + 𝑎0

2 + 𝑙𝑛 (
𝑎0 + √4 + 𝑎0

2

2
)] 

 

 
 
 



4. Spreading equilibrium pressure and work of adhesion of a droplet 
In real surfaces, the triple line is ‘‘pinned’’, so in practice there is a range of meta-stable 

contact angles (‘‘contact angle hysteresis’’). Consider a liquid droplet on top of a flat 
solid surface and a micro-syringe, which can insert additional liquid, immersed inside the 

droplet. 
In this way we can expand the droplet to its maximum volume allowable for the initial 
liquid–solid interfacial area: any further addition will increase both volume and the 

liquid–solid interfacial area. The contact angle for this maximum volume is called 
“advancing contact angle”, θA. Vice versa, if liquid is removed from the droplet by micro-

syringe, the volume will decrease keeping the same liquid-solid interfacial area until the 
latter will be forced to shrink. Just before the shrinking the droplet assumes the smallest 
contact angle, called “receding contact angle”, θR.  

 

 

In the receding condition (suction phase), there is an internal negative pressure π, also 

called “spreading equilibrium pressure”, which acts on the surface of the droplet. This 
pressure changes the Young expression as follows: 

 

𝛾𝐿𝑉 𝑐𝑜𝑠𝜃𝑅 − 𝜋 = 𝛾𝑆𝑉 − 𝛾𝑆𝐿  
 

Since θA and θR can be easily measured by experiments and 𝛾𝐿𝑉  is generally known in 

literature: 
 

a) Derive the spreading equilibrium pressure as a function of these physical quantities, 
𝜋(𝜃𝐴, 𝜃𝑅 , 𝛾𝐿𝑉 ) 

b) Derive the work of adhesion in advancing mode as a function of two of these physical 

quantities, 𝑊𝑎𝑑𝑣 (𝜃𝐴 , 𝛾𝐿𝑉 ) 

 
Solution: 

 
a) If we consider Young’s equation both in receding mode (above expression) and in 

advancing one, 
𝛾𝐿𝑉 𝑐𝑜𝑠𝜃𝐴 = 𝛾𝑆𝑉 − 𝛾𝑆𝐿  

We can derive the spreading equilibrium pressure as follows: 

𝜋 = 𝛾𝐿𝑉 (𝑐𝑜𝑠𝜃𝑅 − 𝑐𝑜𝑠𝜃𝐴 ) 
b) If we use Dupre equation 

𝛾𝑆𝐿 = 𝛾𝑆𝑉 + 𝛾𝐿𝑉 − 𝑊𝑎𝑑𝑣  
And Young’s equation in advancing mode, we obtain: 

𝑊𝑎𝑑𝑣 = 𝛾𝐿𝑉 (1 + 𝑐𝑜𝑠𝜃𝐴 ) 


