

#### Institute of Materials - Institute of Bioengineering sunmil.epfl.ch



# Adsorption at Interfaces Lesson 7

**MSE 304** 

Francesco Stellacci



## **Key Topics in the Previous Class**



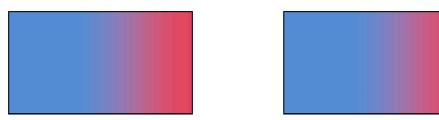
## Reading for this Class



### Challenges in Defining an Interface

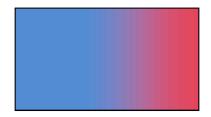


### Challenges in Defining an Interface



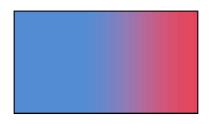


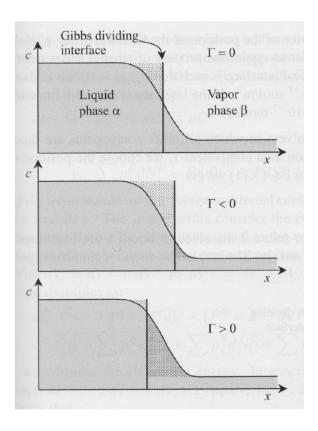
#### **Gibbs Definition**





#### **Gibbs Definition**







### Gibbs Isotherm





### Gibbs Isotherm





### Gibbs Isotherm

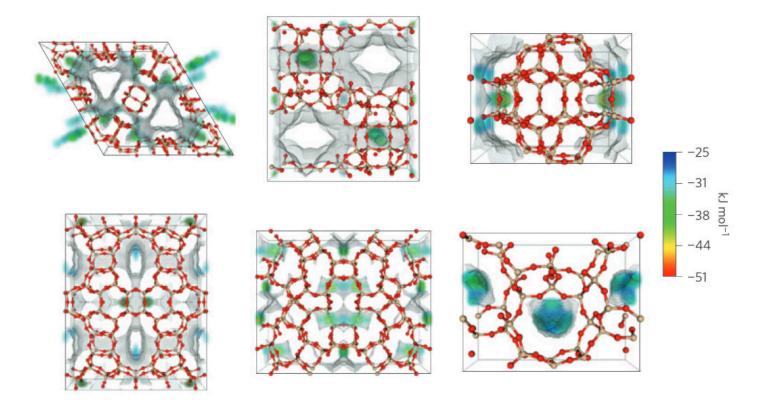




## Adsorption at Interfaces



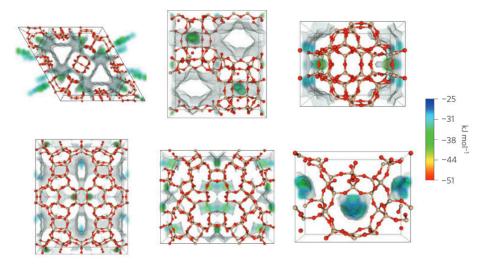
### Adsorption at Interfaces





#### Adsorption at Interfaces

- Adsorption is crucial for catalysis, and storage of gases!
- Phenomenology of adsorption
- Langmuir adsorption interface: one species and competitive
- Different kinds of adsorption isotherms: FFG (correlated), BET (multilayer)



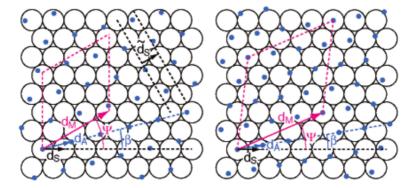


#### **Chemisorption and Physisorption**

- Real surfaces are often covered in molecules, often with complex/regular arrangements
  - Adsorption lowers the surface energy
- Conventional classification as a function of the adsorption enthalpy
  - physisorption: reversible, weak binding (< 40 kcal/mol), mobile species
  - **chemisorption**: irreversible, strong binding (> 40kcal/mol), immobile species



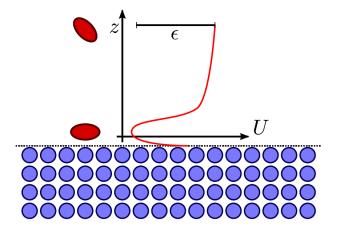
## Monolayers

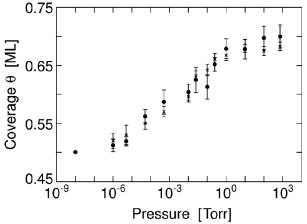




#### **Key Definitions in Adsorption**

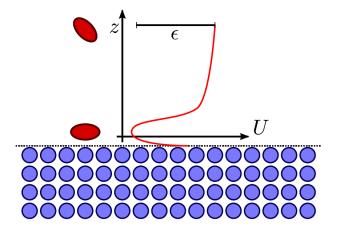
- An adsorbate molecule often resides in specific adsorption sites (not necessarily one per surface unit cell).
- Coverage  $\theta$  measures the number of occupied sites n relative to the maximum possible number N
- Adsorption energy  $\epsilon$ : stabilization relative to the gas-phase molecule. **Residence time**:  $au \sim au_0 e^{\epsilon/k_BT}$
- Experimental measure: adsorption isotherm

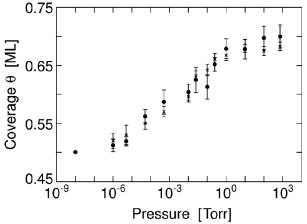




#### **Key Definitions in Adsorption**

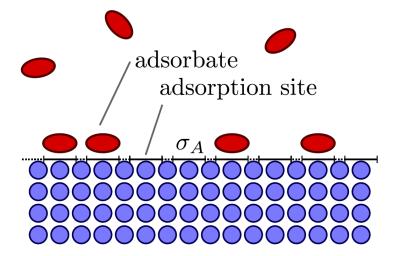
- An adsorbate molecule often resides in specific adsorption sites (not necessarily one per surface unit cell).
- Coverage  $\theta$  measures the number of occupied sites n relative to the maximum possible number N
- Adsorption energy  $\epsilon$ : stabilization relative to the gas-phase molecule. **Residence time**:  $au \sim au_0 e^{\epsilon/k_BT}$
- Experimental measure: adsorption isotherm





#### Langmuir Isotherm - Initial Hypotheses

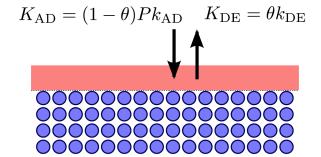
- A simple model for adsorption that leads to the Langmuir adsorption isotherm:
  - The surface is covered by equivalent adsorption sites, with area  $\sigma_A$
  - The adsorption energy  $\epsilon$  is *independent* on the site and on the occupation of nearby adsorption sites
  - The *sticking coefficient* (probability on binding upon a collision with the surface) on an empty site is one





#### Langmuir Isotherm - Equilibrium Derivation

- Equilibrium between adsorption rate  $K_{AD}$  and desorption rate  $K_{DE}$ 
  - **Desorption rate** proportional to the fraction of occupied sites and the rate for one site
  - **Adsorption rate** proportional to the fraction of empty sites and the collision rate (assuming *sticking coefficient* is one)



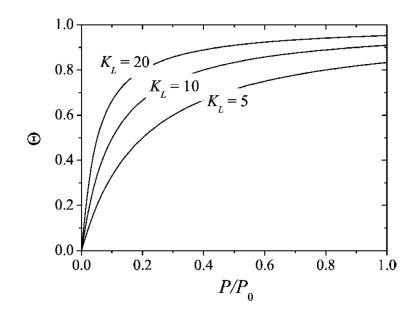


#### Langmuir Isotherm

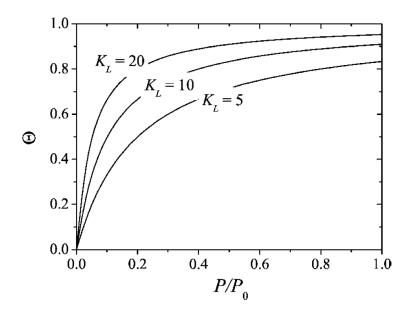
$$\theta = \frac{Pk_{L}}{Pk_{L} + 1},$$

$$\boxed{\frac{\theta}{1-\theta} = \frac{P}{P_0}} = k_{L}P = \frac{k_{AD}}{k_{DE}}P,$$

$$k_{\rm L} = rac{1}{P_0} = rac{k_{
m AD}}{k_{
m DE}} = rac{\sigma_A au_0}{\sqrt{2\pi m k_B T}} e^{\epsilon/k_B T}$$



### **Langmuir Isotherm - Considerations**



#### Langmuir Isotherm - Competitive Adsorption

- What if we have multiple molecules in the gas phase?  $\theta = \sum_i \theta_i$
- At equilibrium one must have mass balance for each specie separately

$$\theta_{i}k_{\mathsf{DE}}^{i} = K_{\mathsf{DE}}^{i} = K_{\mathsf{AD}}^{i} = (1 - \theta) k_{\mathsf{AD}}^{i}P_{i}$$

$$\frac{\theta}{1 - \theta} = \sum_{i} k_{\mathsf{L}}^{i}P_{i} \to \theta = \frac{\sum_{i} k_{\mathsf{L}}^{i}P_{i}}{1 + \sum_{i} k_{\mathsf{L}}^{i}P_{i}} \to 1 - \theta = \frac{1}{1 + \sum_{i} k_{\mathsf{L}}^{i}P_{i}}$$

$$\theta_{i} = \frac{k_{\mathsf{L}}^{i}P_{i}}{1 + \sum_{i} k_{\mathsf{L}}^{i}P_{i}}$$

$$k_{\mathsf{L}}^{1} \updownarrow k_{\mathsf{L}}^{2} \updownarrow k_{\mathsf{L}}^{2} \updownarrow k_{\mathsf{L}}^{2}$$



#### Langmuir Isotherm - Competitive Adsorption

- What if we have multiple molecules in the gas phase?  $\theta = \sum_i \theta_i$
- At equilibrium one must have mass balance for each specie separately

$$\theta_{i}k_{\mathsf{DE}}^{i} = K_{\mathsf{DE}}^{i} = K_{\mathsf{AD}}^{i} = (1 - \theta) \ k_{\mathsf{AD}}^{i}P_{i}$$

$$\frac{\theta}{1 - \theta} = \sum_{i} k_{\mathsf{L}}^{i}P_{i} \to \theta = \frac{\sum_{i} k_{\mathsf{L}}^{i}P_{i}}{1 + \sum_{i} k_{\mathsf{L}}^{i}P_{i}} \to 1 - \theta = \frac{1}{1 + \sum_{i} k_{\mathsf{L}}^{i}P_{i}}$$

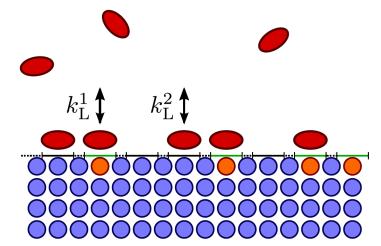
$$\theta_{i} = \frac{k_{\mathsf{L}}^{i}P_{i}}{1 + \sum_{i} k_{\mathsf{L}}^{i}P_{i}}$$

#### Langmuir Isotherm - Competitive Adsorption

- Multiple adsorption sites, with fraction  $x_i$  and different adsorption energies  $\epsilon_i$
- Can treat as independent adsorption problems, but  $\theta = \sum_i x_i \theta_i$

$$\theta_i x_i k_{\mathsf{DE}}^i = K_{\mathsf{DE}}^i = K_{\mathsf{AD}}^i = x_i (1 - \theta_i) k_{\mathsf{AD}}^i P$$

$$\theta_i = \frac{k_L^i P}{1 + k_L^i P}, \quad \theta = \sum_i \frac{x_i k_L^i P}{1 + k_L^i P}$$

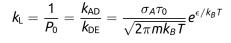


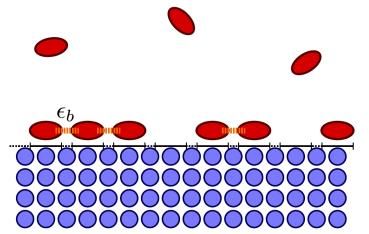


#### Collaborative Adsorption – FFG Isotherm

- Consider the possibility of bonding between molecules.
- The number of bonds per molecule at full coverage is  $\emph{n}$ , and the energy per bond  $\epsilon_\emph{b}$
- The probability of one neighbor being occupied is  $\theta$ , so the mean energy of an adsorbed molecule becomes  $\epsilon \leftarrow \epsilon + n\theta \epsilon_b$
- Isotherm is given by the (physical) solutions to the implicit equation

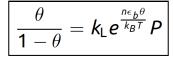
$$\frac{\theta}{1-\theta} = k_{L} e^{\frac{n\epsilon_{b}\theta}{k_{B}T}} P$$

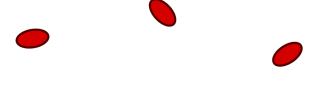


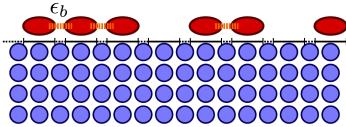


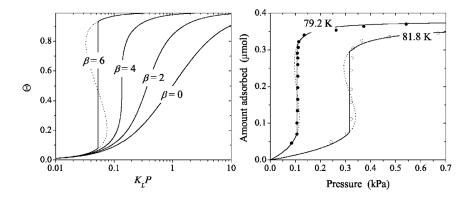


#### Collaborative Adsorption – FFG Isotherm





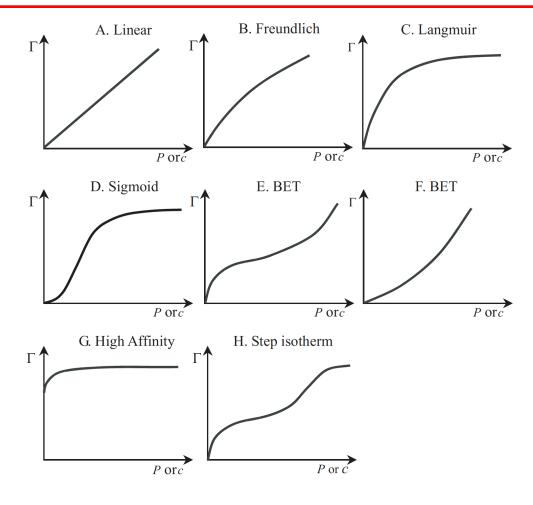




**Figure 9.7:** Left: Frumkin–Fowler–Guggenheim (FFG) adsorption isotherms (coverage  $\theta$  versus the pressure in units of  $K_L^{-1}$ ). The curves were calculated using Eq. (9.35) with  $\beta=0,2,4,6$ . For  $\beta=6$  the physically correct adsorption curve is plotted as a continuous curve while the one calculated with Eq. (9.35) is plotted as a dotted curve. Right: Adsorption isotherms for krypton adsorbing to the (0001) plane of graphite at two different temperatures. The dotted curves were fitted using Eq. (9.35) with  $\beta=4.5$ . Experimental results were taken from Ref. [377].



### Isotherms

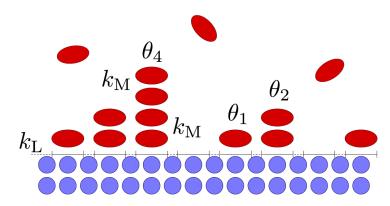




#### BET

- Random adsorption on multiple layers. Langmuir constant for the first layer is  $k_{\rm L}$ , other layers bind on the previous with  $k_{\rm M}=k_{\rm L}e^{(\epsilon_{\rm M}-\epsilon_1)/k_{\rm B}T}$
- $\bullet$  One must equate ad/desorption rate from the sites covered by i layers
- The sums of  $\theta_i$ 's are geometric series.
- Total coverage (number of molecules per number of *surface* sites)

$$\theta_1 = k_{\mathsf{L}} P \left( 1 - \sum_i \theta_i \right), \qquad \theta_i = \theta_{i-1} k_{\mathsf{M}} P = \theta_1 \left[ k_{\mathsf{M}} P \right]^{i-1}$$





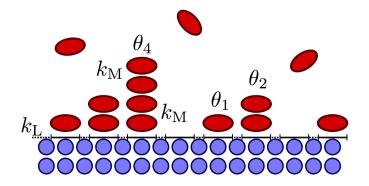
#### **BET - Multilayers**

$$\sum_{i=1}^{\infty} [k_{M}P]^{i-1} = \frac{1}{1 - k_{M}P}, \qquad \sum_{i=1}^{\infty} i [k_{M}P]^{i-1} = \frac{1}{(1 - k_{M}P)^{2}}$$

$$\theta = \theta_{1} \sum_{i=1}^{\infty} i [k_{M}P]^{i-1} = \theta_{1} \frac{1}{(1 - k_{M}P)^{2}} = \frac{k_{L}P (1 - k_{M}P)}{1 + k_{L}P - k_{M}P} \frac{1}{(1 - k_{M}P)^{2}}$$

$$\theta \approx \frac{1}{(1 - x_{B})} \frac{x_{B}c_{B}}{1 + x_{B}(c_{B} - 1)}, \qquad x_{B} = k_{M}P, c_{B} = k_{L}/k_{M}$$

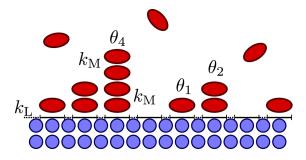
$$\theta = \frac{k_{L}P}{1 + k_{L}P - k_{M}P} \frac{1}{1 - k_{M}P}$$

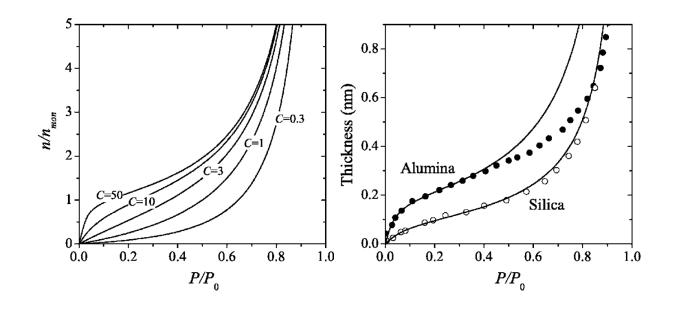




### **BET - Multilayers**

$$\theta = \frac{k_L P}{1 + k_L P - k_M P} \frac{1}{1 - k_M P}$$





### **Conclusions**

