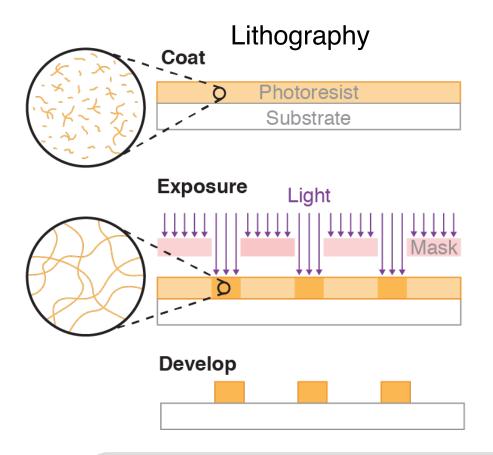
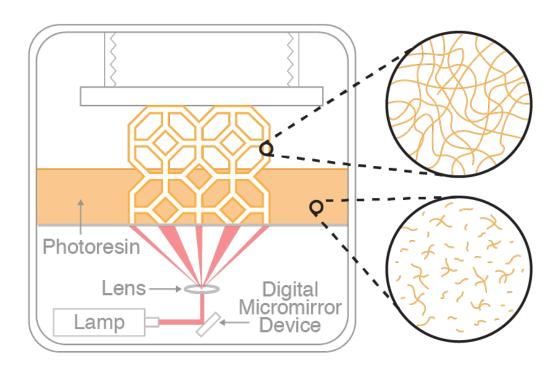


Materials Engineering I (MSE 214)

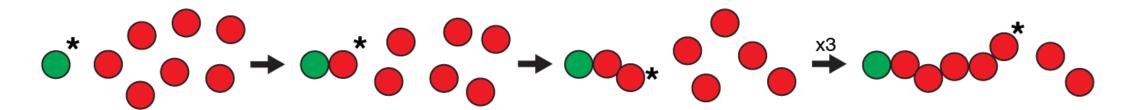

Lecture 4: Microstructure + Properties

Prof. Daryl W. Yee

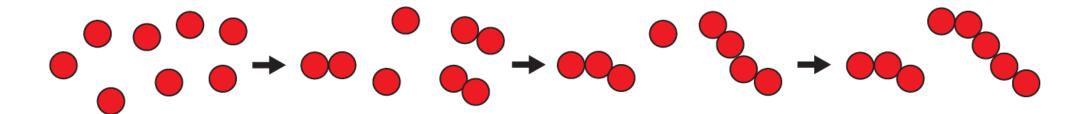

Email: (daryl.yee@epfl.ch)

Polymer Synthesis in Microengineering and Advanced Manufacturing

Additive Manufacturing

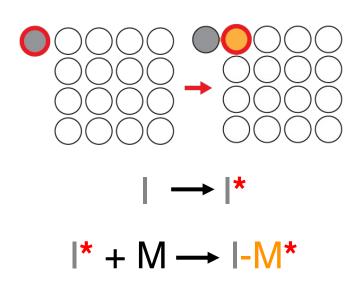


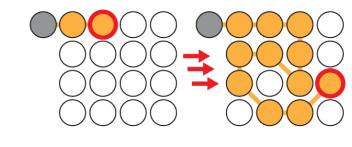
Learning polymer synthesis → Understand manufacturing + Understand how to tune their properties



Week 2 + 3 Recap

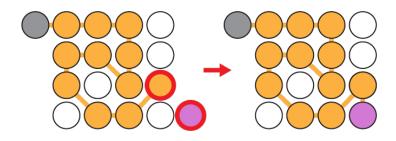
Chain-growth*: Polymer grows via the reaction of monomer(s) onto active site(s) on the polymer chain Active site(s) regenerated at the end of each growth step


Step-growth*: Polymer grows via the reaction between any pairs of reactive species



Chain-growth Polymerization: The Three Phases

Initiation


Propagation

$$|-M^* + M \rightarrow |-M-M^*$$

$$|-M-M^* \xrightarrow{M} |-M-(M)_{\sqcap}-M^*$$

Termination

$$I-M-(M)_n-M^* + Y^* \longrightarrow$$

$$I-M-(M)_n-M-Y$$

Chain-growth Polymerization: Molecular Weight

Number average degree of polymerization \overline{X}_n is related to v

Let \mathbf{a} be the fraction of chains that terminate by coupling $\rightarrow (\mathbf{1} - \mathbf{a})$ is the fraction of chains that terminate by disproportionation

Let **b** be the average number of initiator fragments per polymer $\Rightarrow b = \frac{Total\ number\ of\ initiator\ fragments}{Total\ number\ of\ polymer\ molecules}$

b is a value between 1 and 2 and represents the extent of mixed mode termination

$$\overline{X_n} = bv = \frac{2v}{2-a} = \frac{2R_p}{(2-a)R_t} = \frac{2k_p[M]}{4-2a(f k_d k_t [I])^{\frac{1}{2}}} \qquad R_p = k_p[M] \left(\frac{fk_d[I]}{k_t}\right)^{\frac{1}{2}}$$

Two Problems:

- 1. Degree of polymerization and rate of polymerization are coupled
- 2. Experimental degree of polymerization observed to be lower than predicted

Chain-growth Polymerization: Chain Transfer

Premature termination via transfer of radical to another species

$$\mathbf{M}_{n}$$
 + $\mathbf{X}\mathbf{A}$ $\xrightarrow{k_{tr}}$ \mathbf{M}_{n} \mathbf{X} + \mathbf{A} • (k_{tr} is the chain-transfer rate constant)

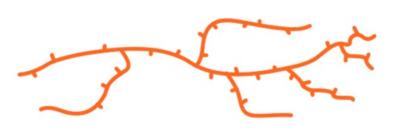
XA could be monomer, initiator, solvent, polymer, or other substance. X is the atom or species transferred to the chain

$$\mathbf{A} \bullet + \mathbf{M} \longrightarrow \mathbf{M} \bullet$$
 (k_a is the reinitiation rate constant)

Chain transfer results in the production of a new radical A, which reinitiates polymerization

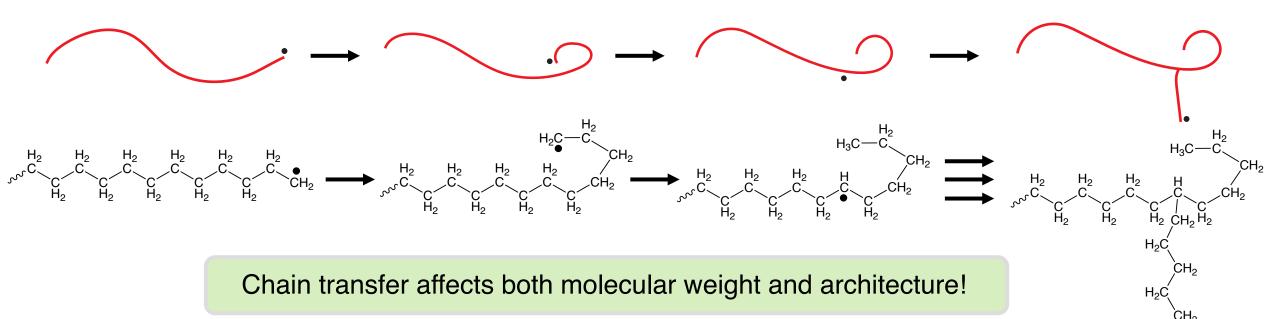
Chain transfer ≠ termination of radical

Chain transfer just causes a premature decrease in the size of the propagating polymer chain



Chain Transfer and Branching

If chain growth can be summed up as:


$$I-M-M^{\bullet} + M \xrightarrow{k_p} I-M-M-M^{\bullet}$$

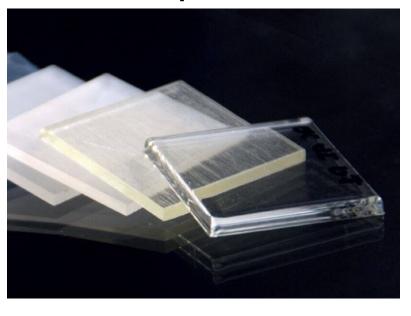
How do we get non-linear polymers?

Ans: At high conversions, chain transfer to polymer is possible!

Short branches* via "Backbiting"

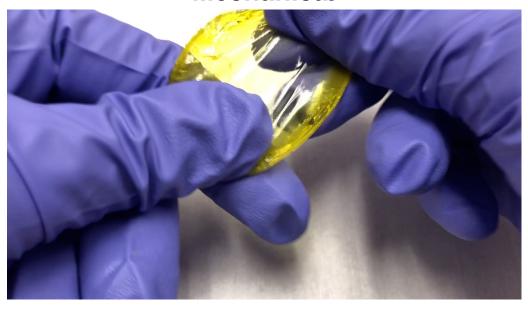
A note about Step Growth

• It is much easier to abstract it like this:


$$A \longrightarrow A + B \longrightarrow B \longrightarrow A \longrightarrow B$$

AB is its own thing!

From Synthesis to Properties

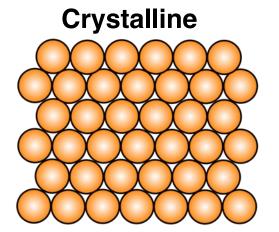

Optical

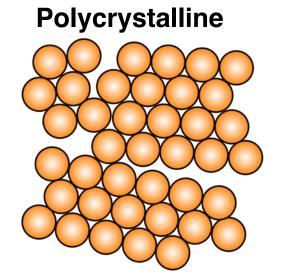
Thermal

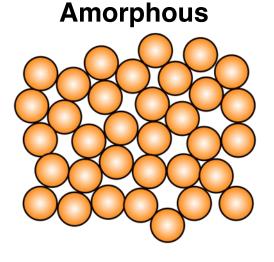
Mechanical

How can we understand the properties of polymers?

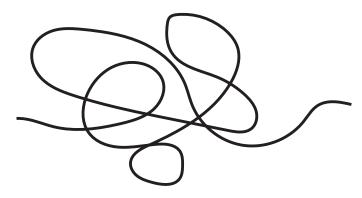
How does synthesis affect the properties?

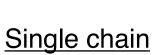



Week 5 Learning Objectives


- Understand the difference between amorphous, semi-crystalline, and crystalline polymers
- Understand the factors that favors polymer crystallization
- Understand what the glass transition temperature is and how it differs from the melting temperature
- Understand the factors that impact the T_q and T_m temperature
- Understand the impact that T_a and T_m has on material properties and behavior

Recall from MSE 101b: Crystalline vs Amorphous

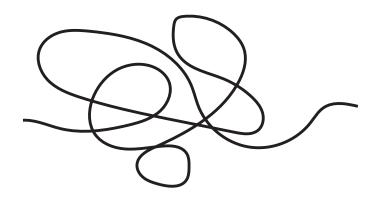


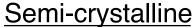


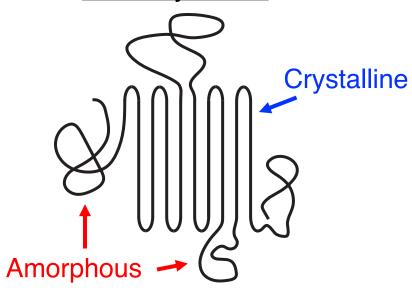
Simplest definition of cystallinity: Material whose constituents are arranged in a highly ordered manner

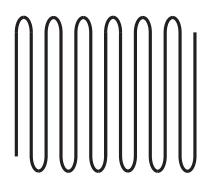
We've been representing polymers like this →

How do polymers crystallize?





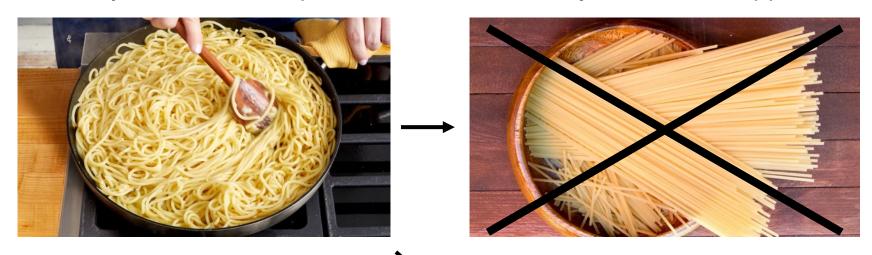

Multiple chains!



Crystallization is thermodynamically favorable!

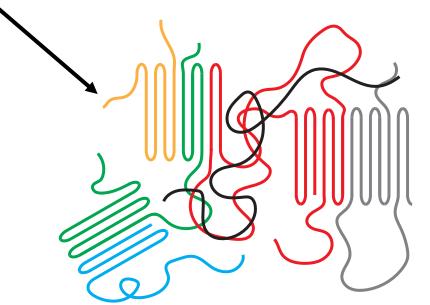
Lowers energy state of the polymer

Polymers states:


Can be completely amorphous

Can be semi-crystalline

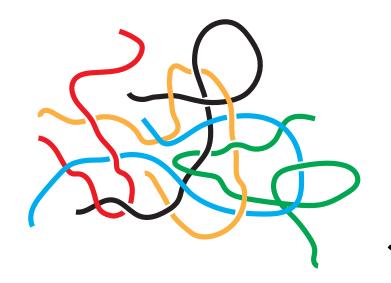
Can never be 100% crystalline



For a system with multiple chains, how does crystallization happen?

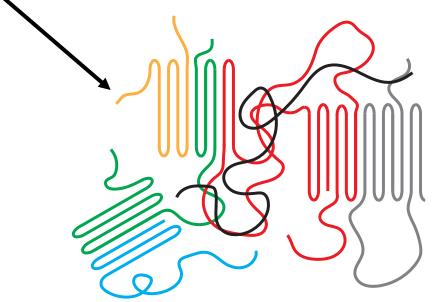
Interactions between polymer chains prevent 100% crystallinity

Polymers that *can* crystallize only forms <u>semi-crystalline</u> polymers



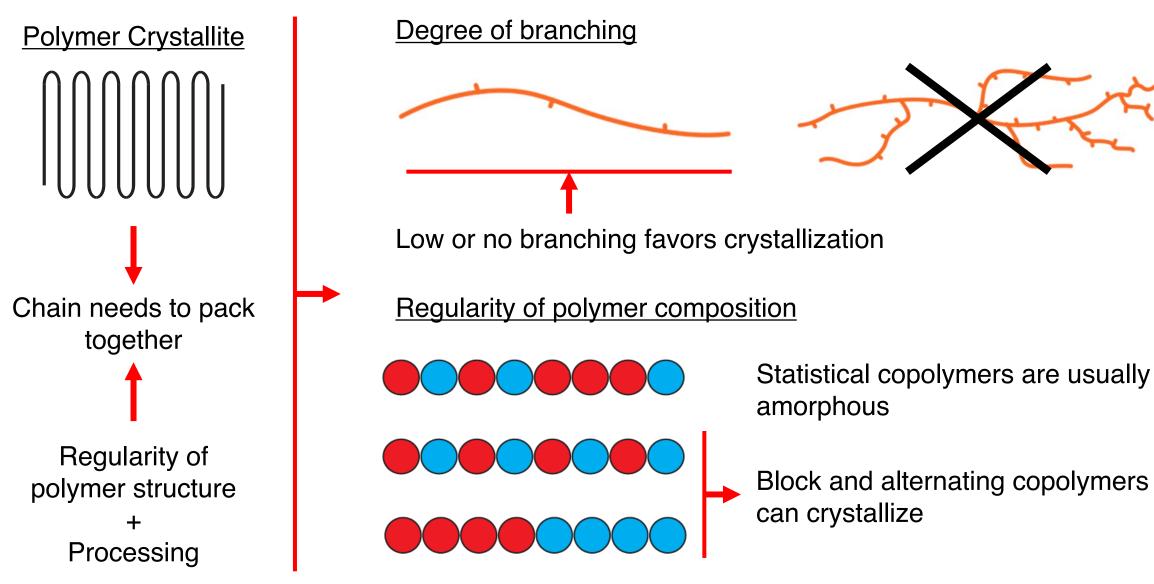
Polymer crystals surrounded by an amorphous matrix

A single chain can be involved in zero/one/multiple crystals

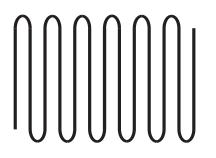

For a system with multiple chains, how does crystallization happen?

Long chains tend to get entangled and make crystallization difficult

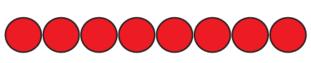
Entanglements prevent 100% crystallinity and result in semicrystallinity Interactions between polymer chains prevent 100% crystallinity


Polymers that *can* crystallize only forms <u>semi-crystalline</u> polymers

Polymer crystals surrounded by an amorphous matrix


A single chain can be involved in zero/one/multiple crystals

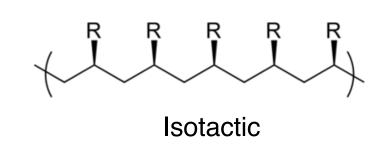
Polymer Crystallite



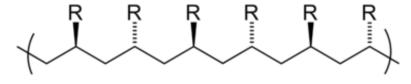
Chain needs to pack together

Regularity of polymer structure

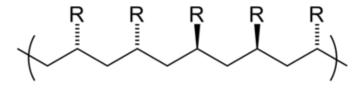
Processing

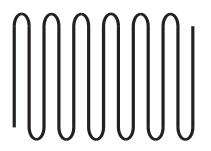





If regular composition is needed, why don't all homopolymers crystallize?

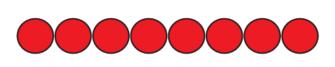
Tacticity


Can think of this as regularity of the side groups on the backbone


Syndiotactic

Atactic

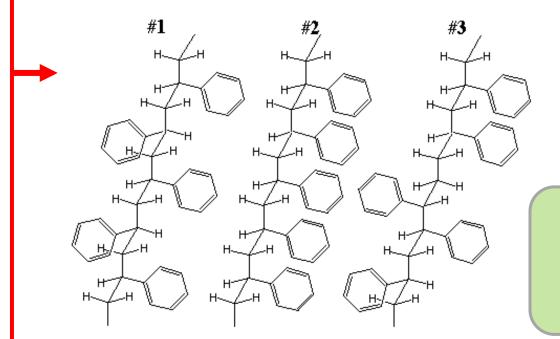
Polymer Crystallite


Ţ

Chain needs to pack together

Regularity of polymer structure

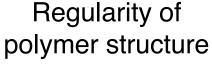
Processing



If regular composition is needed, why don't all homopolymers crystallize?

Tacticity

Can think of this as regularity of the side groups on the backbone



- 1. Syndiotactic
- 2. Isotactic
- 3. Atactic

Syndiotactic and isotactic polymers favor crystallization

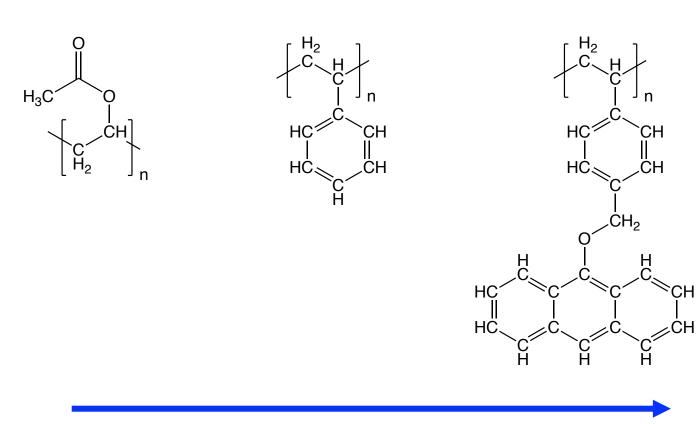
Polymer Crystallite Chain needs to pack together

Processing

If regular composition is needed, why don't all homopolymers crystallize?

Tacticity

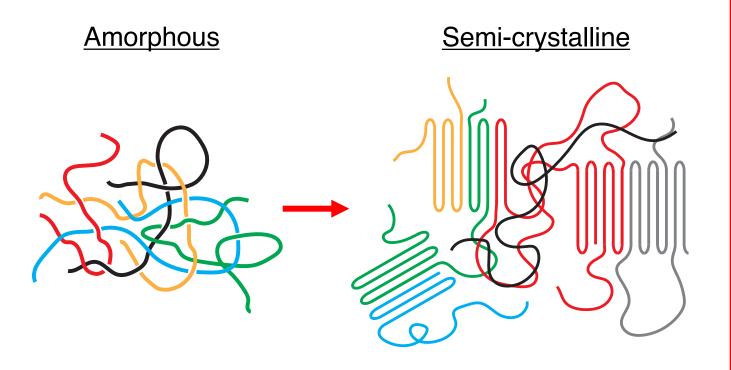
Can think of this as regularity of the side groups on the backbone


When you source polymers, you need to think about this!

Polymer Crystallite Chain needs to pack together Regularity of polymer structure

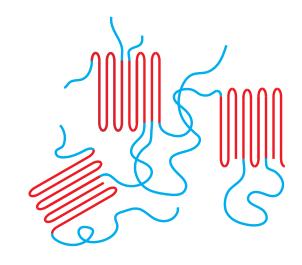
Processing

Size of side groups



Crystallization difficulty

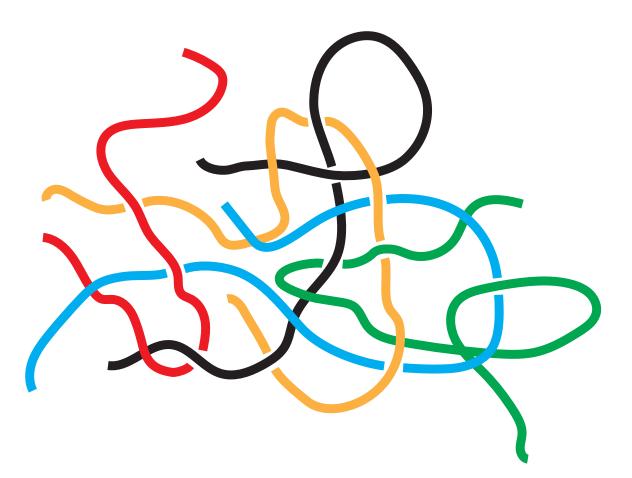
Fun fact: Atactic polymers with very small side groups can still crystallize



For crystallization to happen, the polymer chains need to be able to get themselves into the right configurations

To understand crystallization, we first need to know about polymer <u>phase transitions</u>

Two key temperature transitions


Glass transition temperature (T_g)

→ Temperature range where <u>amorphous</u> regions starts to move

Melting temperature (T_m)

→ Temperature range where <u>crystalline</u> regions starts to move

You can think of polymers as a mess of wires/cables/noodles

It's hard for one chain to "escape" from the rest → Entangled with each other

Need to provide energy for the chains to be able to "move" out of the mess

The temperature where there starts to have enough energy is the glass transition temperature

Rubbery State $(T > T_g)$

Polymer chains have enough energy to move around and slide past each other quickly*

Freshly cooked hot spaghetti can flow easily!

Cooling to T_g

Chains start to lose energy and move slower; hard to move them around

Spaghetti getting cold and clumpy

Glassy State $(T < T_g)$

Chains do not have energy to move around or move extremely slowly

Spaghetti frozen and stuck together!

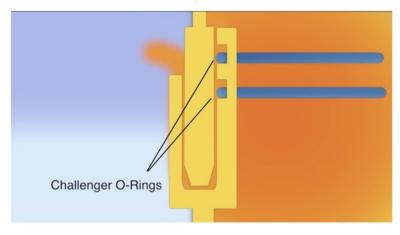
Can think of T_g as the temperature <u>range</u> where the polymer starts to soften

 $T > T_g \rightarrow$ Soft and deformable $T < T_g \rightarrow$ Brittle and hard

Depending on their design and processing history, the T_g of polymers can range from -100 to 200 $^{\circ}$ C

Temperatures easily accessible to humans and also within seasonal variations

Challenger Disaster



Cold day before launch

O-rings were in the glassy state and could not seal

don't launch = under the glass transition temperature

polymer chains are in a frozen state, locked in place; not flexible

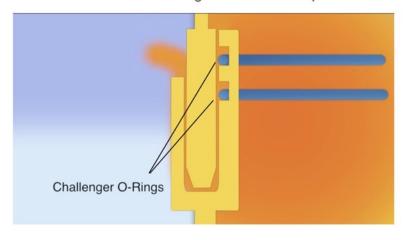
Can think of T_g as the temperature <u>range</u> where the polymer starts to soften

 $T > T_g \rightarrow$ Soft and deformable $T < T_g \rightarrow$ Brittle and hard

Important to know the T_g so that the operating temperatures of the polymer can be established!

Critical for polymers used in critical applications or functions

Challenger Disaster



Cold day before launch

O-rings were in the glassy state and could not seal

don't launch = under the glass transition temperature

polymer chains are in a frozen state, locked in place; not flexible

States of Amorphous Polymers

 $T < T_g$ Glassy state

- Polymer behaves like a stiff and brittle solid
- Polymer chains are effectively rigid
- Small scale motion*

 $T > T_g$ Rubbery state

- Polymer behaves like a soft and easily deformed solid
- Polymer chains are mobile
- Long range motion*

T >> T_g Fluid state

 Polymer behaves like a liquid

Polymers are often used based on how their glass transition temperature compares to room and operating temperature

States of Amorphous Polymers

 $T < T_g$ Glassy state

Plexiglass has a T_q ~100°C

 $T > T_g$ Rubbery state

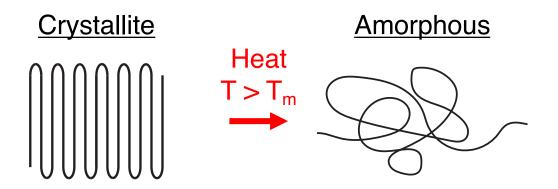
Low density polyethylene has a $T_q \sim -100$ °C

 $T \gg T_g$ Fluid state*

Polymers are often used based on how their glass transition temperature compares to room and operating temperature

Where have we used T_g in our daily lives before?

Shaping plexiglass/acrylics

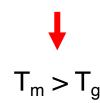


Heating a polymer past the glass transition allows us to manipulate its shape!

Melting Temperature (T_m)

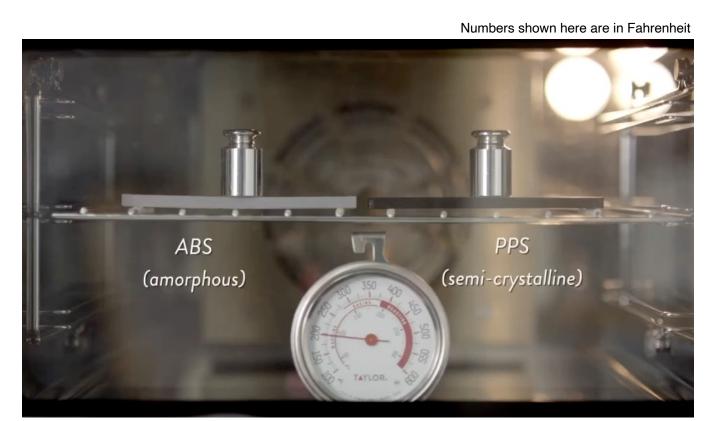
Temperature range where <u>crystalline regions</u> starts to move and break apart

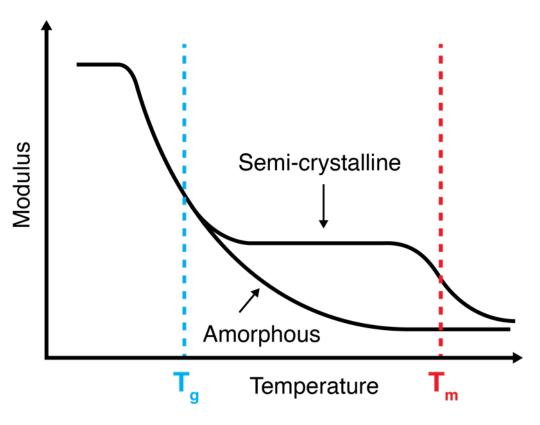
In the polymer sciences, melting temperature is <u>specifically</u> for the crystalline domains in semi-crystalline polymers


Polymers are messy:

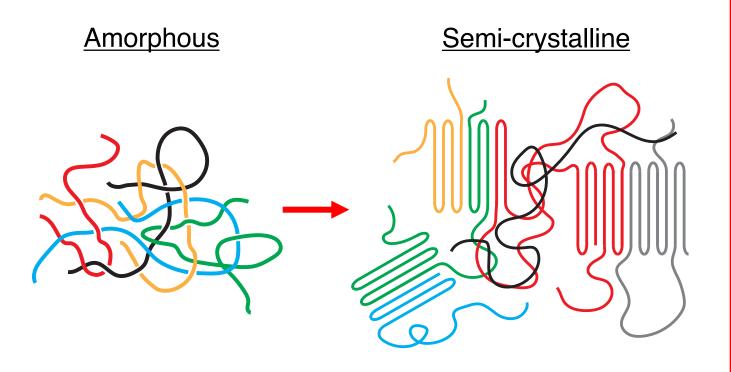
Polymer melt is used to refer to polymers that have been heated until they flow like a liquid, regardless if they have a melting temperature or not Similar in concept to T_g but for the crystalline regions

Chains are tightly packed together in crystalline domains



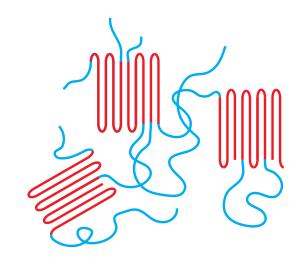

More energy needed to break them apart compared to amorphous chains

T_m > T_g → Semi-crystalline polymers can operate at higher temperatures


ABS: Beyond T_a, all the chains can move

PPS: Beyond T_q, crystallites can't move still

You'll see variations of this plot but the main takeaway is that semi-crystalline regions have better mechanical properties beyond T_g .



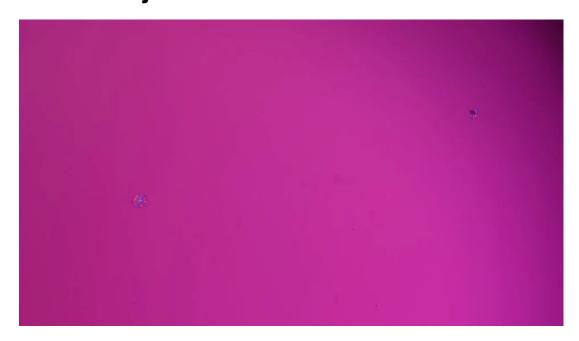
For crystallization to happen, the polymer chains need to be able to get themselves into the right configurations

To understand crystallization, we first need to know about polymer <u>phase transitions</u>

Two key temperature transitions

Glass transition temperature (T_g)

→ Temperature range where <u>amorphous</u> regions starts to move


Melting temperature (T_m)

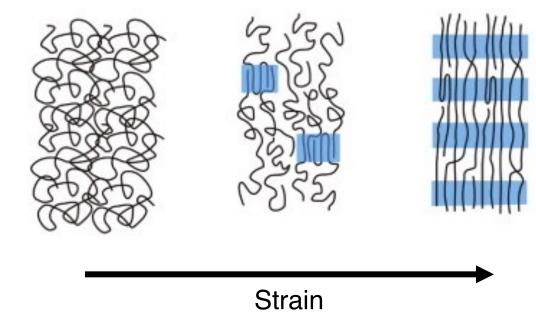
→ Temperature range where <u>crystalline</u> regions starts to move


For crystallization to happen, the polymer chains need to be able to get themselves into the right configurations

Crystallization from the melt

Heat polymer beyond T_m to liquid state, cool slowly to below T_m but above T_g

Crystallization from solution



As solvent evaporates, polymer concentration increases → Chains interact → Crystallize

For crystallization to happen, the polymer chains need to be able to get themselves into the right configurations

Crystallization by stretching

<u>Crystallization is also kinetically controlled!</u>

Chains need time to arrange themselves into the right configuration

If a polymer can crystallize but does not have the time to do so, then it will become amorphous

Example: Rapid cooling from the melt → Amorphous Slow cooling from the melt → Semi-crystalline

What influences the T_q and T_m values of the polymer?

Can think of both transitions as the temperature <u>range</u> where the polymer chains (amorphous or crystalline) have the energy to move around

What will impact the ease of motion of the polymer chains?

1. Backbone flexibility / Chain rigidity

Rigid backbone \rightarrow More energy needed for movement \rightarrow Higher T_g and T_m

Polydimethylsiloxane (PDMS) has a really flexible backbone $T_{\alpha} \sim -130^{\circ}C$

Poly(phenylene sulfone)
has a really stiff
backbone
T_a can be >200°C

What influences the T_g and T_m values of the polymer?

Can think of both transitions as the temperature <u>range</u> where the polymer chains (amorphous or crystalline) have the energy to move around

What will impact the ease of motion of the polymer chains?

2. Size of side group

$$\begin{bmatrix}
H_2 & H_2 \\
C & -C
\end{bmatrix}_n$$

$$\begin{bmatrix}
H & H_2 \\
C & C
\end{bmatrix}_n$$

$$\begin{bmatrix} H & H_2 \\ C & C \end{bmatrix}_n$$

Bulky side group can "catch" onto adjacent chains \rightarrow More energy needed for movement \rightarrow Higher T_g and T_m

Polyethylene $T_a \sim -110^{\circ}C$

Polystyrene $T_{\alpha} \sim 100^{\circ}C$

Methyl substituted polystyrene $T_{\alpha} \sim 170^{\circ}C$

What influences the T_q and T_m values of the polymer?

Can think of both transitions as the temperature <u>range</u> where the polymer chains (amorphous or crystalline) have the energy to move around

What will impact the ease of motion of the polymer chains?

3. <u>Intermolecular interactions</u>

Hydrogen bonding in Nylon 6,6

Pi-stacking in PET

Stronger intermolecular interactions make it hard for the chains to move \rightarrow Higher T_g and T_m

What influences the T_g and T_m values of the polymer?

Can think of both transitions as the temperature <u>range</u> where the polymer chains (amorphous or crystalline) have the energy to move around

What will impact the ease of motion of the polymer chains?

4. Processing conditions

Faster cooling rate from melt

Amorphous chains have less time to arrange into crystals

Less crystals + more defects in crystals - Lower T_m on reheating

Less time to equilibrate → "Freezes" at a higher temperature → Higher T_a

What influences the T_q and T_m values of the polymer?

Can think of both transitions as the temperature <u>range</u> where the polymer chains (amorphous or crystalline) have the energy to move around

What will impact the ease of motion of the polymer chains?

5. <u>Introduction of plasticizers</u>

Small molecules that lower the T_g and T_m by spacing out the chains so that it is easier for the chains to move past one another

Rigid PVC T_g ~85°C

Plasticized PVC T_a ~50°C

Partially responsible for cracked dashboards

Plasticizer in polymer outgasses over time / degrade under UV → Polymer gets more brittle → Cracks!

What influences the T_g and T_m values of the polymer?

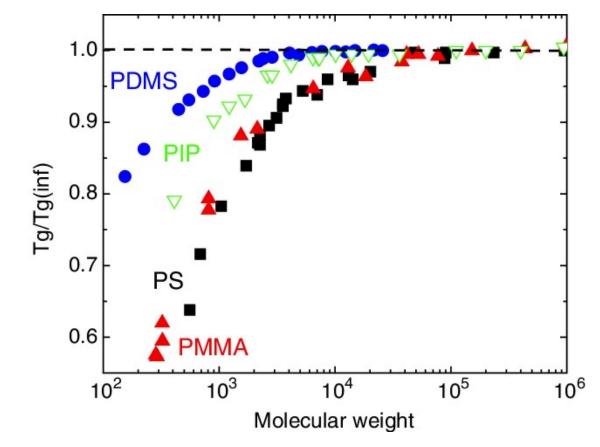
Can think of both transitions as the temperature <u>range</u> where the polymer chains (amorphous or crystalline) have the energy to move around

What will impact the ease of motion of the polymer chains?

6. Molecular weight*

$$T_g = T_{g,\infty} - \frac{K}{M_n}$$
 {Fox-Flory equation}

 T_a = Glass transition for polymer with M_n


 $T_{g,\infty}^{\circ}$ = Glass transition for polymer with

"infinite" molecular weight

K = Empirically determined parameter

 M_n = Number average molecular weight

 T_g increases with M_n and then tapers off to a steady value

What influences the T_q and T_m of the polymer?

Some takeaways:

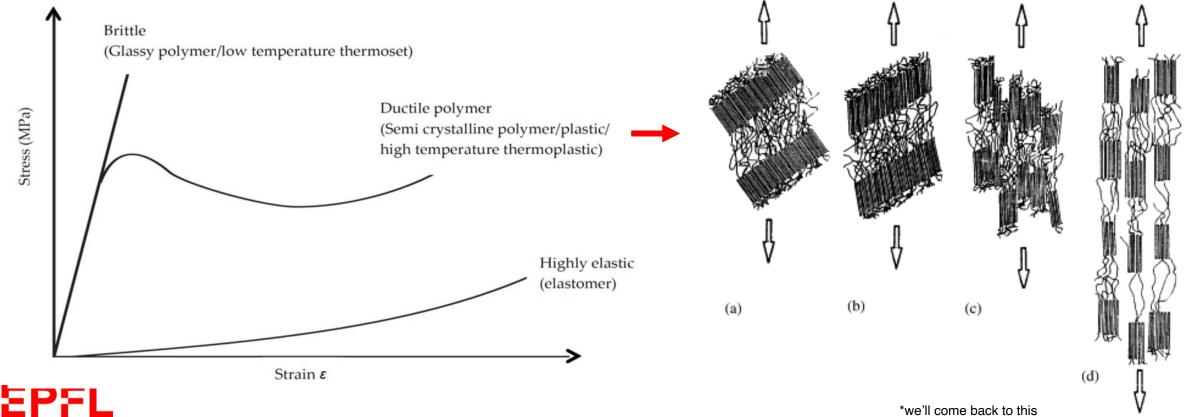
Polymers with high T_g <u>usually</u> have high $T_m \rightarrow Polymers$ that do not easily move and go past the glass transition would probably not melt easily

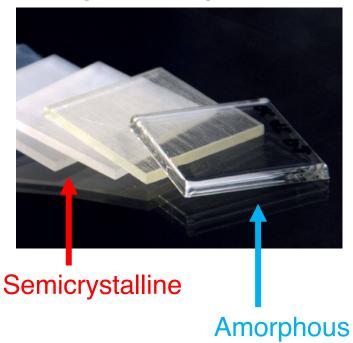
Molecular regularity, chain rigidity, and intermolecular forces don't always affect $T_{\rm g}$ and $T_{\rm m}$ in the same way

Eg. Polyethylene has low T_g because it has flexible chains but their simple structure means it can pack well and form crystals with high T_m.

 T_m more dependent on regularity, T_g more dependent on secondary forces and chain flexibility.

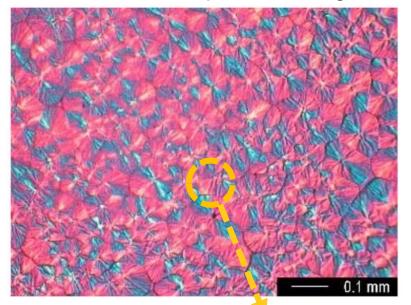
Factors that decrease the crystallization tendency also lead to increased T_m


Polymers with rigid chains are difficult to crystallize, but the portions that do will be difficult to melt, i.e. high T_m

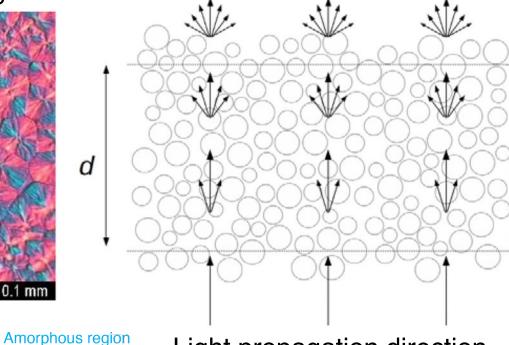

Mechanical Properties* (above T_q and below T_m)

Crystalline domains are hard but brittle Amorphous regions are elastic and provide toughness

Relative ratio will dicate mechanical properties



Optical Properties


Degree of crystallinity is inversely proportionate to light transmission

Semicrystalline polymer viewed under polarized light

Crystalline region

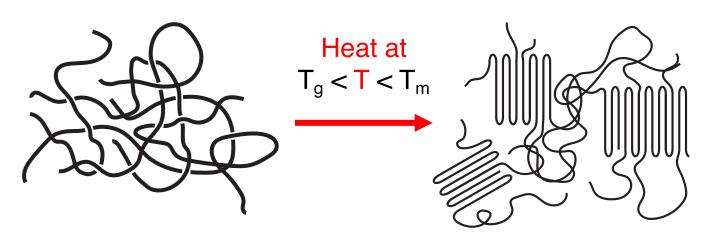
Light scattering off crystallites

Light propagation direction

Spherulites

Polycrystalline structure

Optically active



Molnár, János, et al. Journal of Polymer Science 58.13 (2020): 1787-1795.

Thermal Behavior

Cold crystallization

Polymer that wants to crystallize but was cooled so quickly that it stayed amorphous

Polymer chains have energy to rearrange themselves into crystals

Annealing of amorphous PET

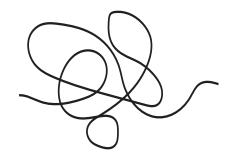
Cold crystallization can lead to undesired mechanical properties

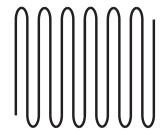
Thermal Behavior

The polymer chemistry →
Thermal transitions →
Processability

Easier to reshape above T_m but want properties from crystalline domains

Fast crystallization speed means less processing time




Crystallinity Impacts Properties

Density

Amorphous

Crystalline

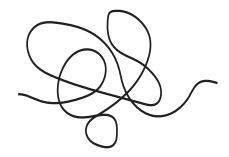
More mass in same volume!

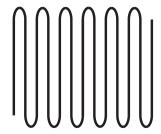
Crystalline polymers are more dense than amorphous ones

Determine degree of crystallinity using density*

$$X_c = \frac{\rho_c(\rho - \rho_a)}{\rho (\rho_c - \rho_a)}$$

 X_c = crystalline mass fraction ρ = density of semicrystalline sample ρ_c = density of 100% crystalline polymer ρ_a = density of 100% amorphous polymer

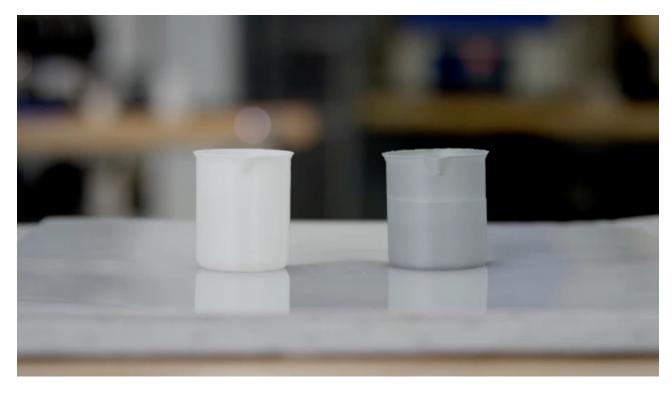

Crystallization leads to shrinkage on solidification from the melt → Dimensional inaccuracies



Solvent/chemical resistance

Amorphous

Crystalline


Solvents/chemicals cannot easily penetrate the crystalline domains.

Need to overcome the strong interactions between chains to disrupt them.

Crystallinity imparts chemical and solvent resistance

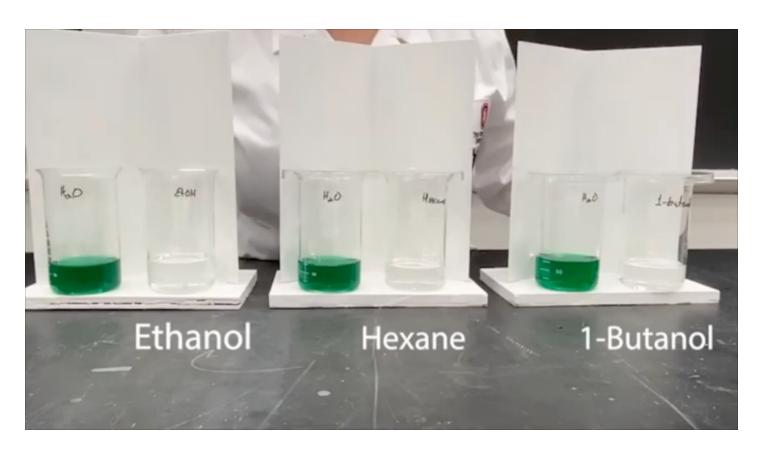
Acetone (solvent) inside these cups

Acetone dissolves the amorphous polymer

Whether to use an amorphous or semicrystalline polymer will depend on your application

Requirement	Type of polymer
High strength, little strain expected	High crystallinity polymer
Low strength, high strains expected	Amorphous polymer
Strong and tough	Semicrystalline
Flexible in Norway in the winter	Amorphous and low T _g
Load-bearing inside an oven	Semicrystalline with high T _m
Transparent and rigid	Amorphous with high T _g
Transparent and flexible	Amorphous with low T _g
Extrusion 3D printing	Low T _g and/or low T _m
Chemical storage	High crystallinity polymer

Key takeaway:


If you understand the impact of T_g and T_m on properties, you can select polymers for your own use cases

Polymer Blends: Beyond a Single Polymer

Similar in concept to composites: mix two polymers* to get in-between properties

But polymers don't always like to mix with each other! → Degree of miscibility

Miscible blends → Homogenous

Immiscible blends → Phase separation

Partially miscible blends >
Homogenous only under certain conditions

T_g of Polymer Blends

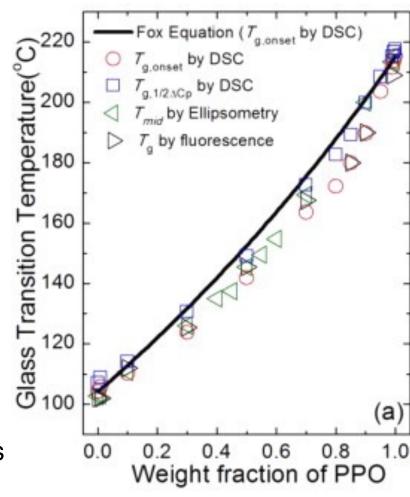
Miscible blends

One T_g value that is inbetween the T_g s of both polymers

$$\frac{1}{T_g} = \frac{M_1}{T_{g,1}} + \frac{M_2}{T_{g,2}} \qquad \left(\begin{array}{c} \text{Fox} \\ \text{equation} \end{array}\right)$$

 T_q = Glass transition for polymer blend

 $T_{q,1}$ = Glass transition for polymer 1


 $T_{a,1}$ = Glass transition for polymer 2

 M_1 = Mass fraction of polymer 1

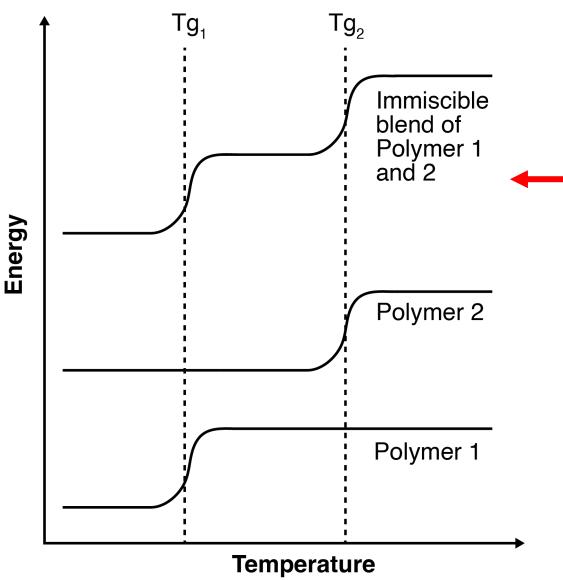
 M_2 = Mass fraction of polymer 2

Miscible blends allow you to tune properties without having to resynthesize the polymer

Poly(phenylene oxide) (PPO) blended with polystyrene

Aside from tuning T_g , other properties can also be tuned, e.g. mechanical properties

T_g of Polymer Blends


Immiscible blends

Two T_g values

Each T_g value is associated with one polymer in the immiscible blend

T_g(s) can be used to determine if a blend is miscible or not

(If these were semi-crystalline polymers, you would expect 2 T_m s as well!)

We won't cover this but
 Differential Scanning
 Calorimetry is one technique used to determine T_a

Why use immiscible blends?


Access to unique microstructures that are inaccessible to homogenous polymers → New properties → New applications

High Impact Polystyrene (HIPS)

HIPS = Immiscible blend of polystyrene and polybutadiene

Atomic Force Microscopy (AFM) of HIPS

Polybutadiene spheres in polystyrene matrix

Polystyrene = strong and brittle

Polybutadiene = soft and tough

Rubbery polybutadiene phases helps to dissipate energy that would have caused the polystyrene to break

HIPS = Strong and tough

Mechanical Properties of Polymers

Polymers are viscoelastic^{*} materials → Time-dependent mechanical properties

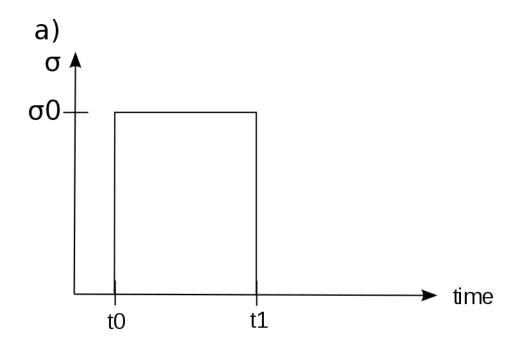
Polymers can deform in two ways:

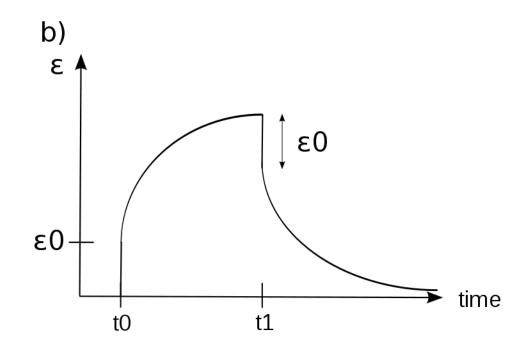
- 1. Distortion between atoms → This is small and quick
- 2. Movement and deformation of the polymer chains itself \rightarrow Depends on chain mobility

Below T_g , we only see the first behavior Way above T_g , we see both behaviors, but chains can move quickly to respond to deformation

Close to T_g , we see both behaviors but chains move slowly to respond to deformation \rightarrow Time dependent response to deformation

A very simplified model to describe this: Maxwell model


Dashpot (Damper)

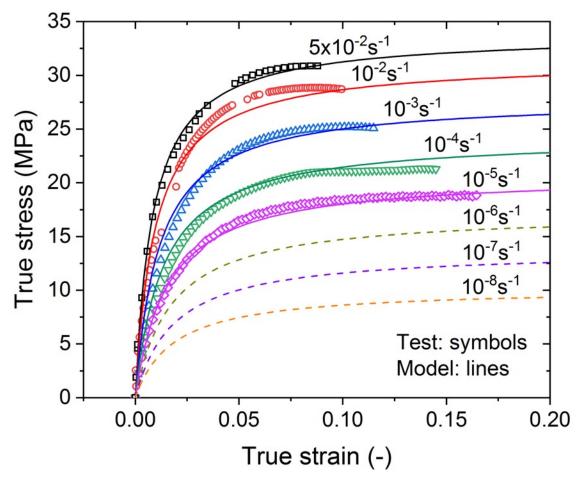


Mechanical Properties of Polymers

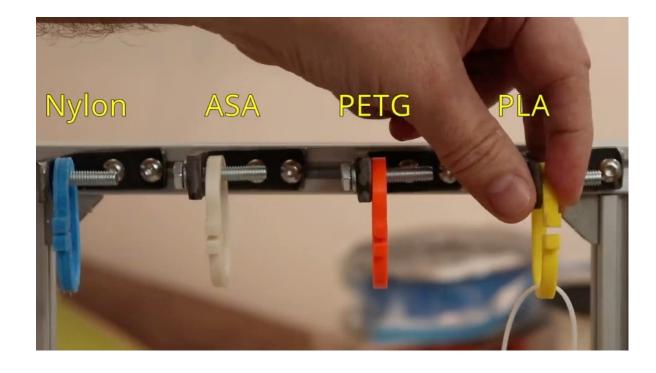
Applied stress as a function of time

Induced strain as a function of time

Elastic response


$$E = \frac{\sigma 0}{\varepsilon 0}$$

Strain evolves over time when force is applied and when force is removed



Mechanical Properties of Polymers

The strain rate at which you use/test polymers are important!

Creep can occur: slow deformation over time with a constant load

Need to take viscoelasticity of polymers into consideration when using them

Week 4 Learning Objectives

- Understand the difference between amorphous, semi-crystalline, and crystalline polymers
- Understand the factors that favors polymer crystallization
- Understand what the glass transition temperature is and how it differs from the melting temperature
- Understand the factors that impact the T_q and T_m temperature
- Understand the impact that T_g and T_m has on material properties and behavior

