EPFL Probability and statistics for materials science
Autumn Semester 2024 Prof. Gregor Jotzu

Python Cheat Sheet

Functions and Description

1 Basic Python Functions

Importing the libraries. The "as np" part lets you run a function from numpy by writing for example
np.mean() instead of numpy.mean()

import numpy as np
import matplotlib.pyplot as plt

Python Lists

myList = [] # Defines an empty List

myList [1,2,3] # Defines a 1D list with numbers 1, 2 and 3

myList [0] # Accesses the first element of the 1list, this will return 1

myList.append (4) # Adds the new element 4 to the list, the list hence becomes
[1,2,3,4]

myList.extend ([5,6,7]) # Extends the myList with the elements of the list [5,6,7],
so myList then becomes [1,2,3,4,5,6,7]

len(myList) # Returns the length of your list.

newlList = myList + [8,9] # another way to extend a list. newList will be
[1,2,3,4,5,6,7,8,9]. Note that myList + 8 does NOT work (you would have to write
newList + [8]

Python Functions

def functionName (paraml, param2=defaultValue):
Define what function does
By default, param2 is equal to the defaultValue
return paramlx**2+param2 # Return the result, this is an example

You can then call the function from elsewhere in the code. For example, if you later write
y = functionName(4,3)

then y will be set to 42 4- 3 as *x* is the exponent /power operator in Python.
Python Loops
An iterable can be a list, a numpy array, and many other things. You can use the iterable range (N)

to make item go from 0 to N-1 (i.e. N loops). For the while loop, the condition is a logic statement for
example myVariable < 5. The loop will run as long as this statement is true (which can be for ever).

For loop
for item in iterable:
Code block

While loop
while condition:
Code block

=W N

[

o w

If-else Statements

You can use only if and else (but having an else is mandatory) and add as many elif as you want.

if condition:

Code block
elif condition:

Code block
else:

Code block

A compact notation that is sometimes useful is for example
y = 2xx if x>0 else O

which sets y to 2*x for positive x and to 0 for negative x.

Common Built-in Functions You Should Know

e len(), range(),
e print()

e sum(), min(), max()

Important Variable and Data Types

Numbers: int, float

Text: str

Boolean: bool (True/False)

e Containers: list, dict

2 Numpy Library

Creating Arrays

myArr = np.array([1, 2, 3]) # Creates a 1D NumPy array called myArr with values 1,2,3

zeros = np.zeros((2, 2)) # Creates the 2D 2x2 NumPy array filled with zeros

ones = np.ones((3, 3)) # Creates the 2D 3x3 NumPy array filled with ones

linspace = np.linspace(0, 10, 5) # Creates 5 equally spaced points between 0 and 10 (
including O and 10)

arange = np.arange(0, 10, 2) # Creates points in the range between 0 and 10 with the
spacing of 2 (including O but not 10)

Selecting Elements

myArr [0] # Selects the first element

myArr [1:5] # Selects elements from second to fifth.

myArr [[2,4,5]] # Selects 3rd,5th and 6th element

myArr [-1] # Selects last element

myArr[index] # Selects elements from ‘myArr‘, which are listed in array ‘index‘ if
index contains only integers.

myArr [condition] #Selects only elements that fulfil a condition. For example myArr[
myArr>4] will select only elements that are >4

N O Ot W N

W N =

NumPy Array Operations

Note that these are different from the list operations intorduced above.

arrl + arr2 # Element-wise summation

arrl - arr2 # Element-wise subtraction
arrl * arr2 # Element-wise multiplication
np.dot (arrl, arr2) # Matrix multiplication

Common NumPy Functions

np.sum(myArr) # Sums all the elements

np.max (myArr) # Returns the max element

np.min(myArr) # Returns the min element

np.mean (myArr) # Returns the mean value of all elements

np.std(myArr) # Returns the biased standard deviation of elements

np.std (myArr, ddof=1) # Returns the unbiased standard deviation of elements

np.histogram(myArr, bins) # Returns the frequencies of the histogram defined by the
bins (bins can be a number or an array, see the documentation of this function
for details.

np.count_nonzero (myArr) # Returns the number of non zero elements in the array

All functions can be applied along a certain axis, e.g.

np.sum(myArr, axis=0) # Sums all the elements in each column - axis O

np.sum(myArr, axis=1) # Sums all the elements in each row - axis 1

If an axis is given (e.g. axis=1), the resulting array will have the shape of the
remaining axis.

Generating Random Numbers

np.random.randint (low, high, shape) # Returns a np array of a certain shape, filled
with random integers between low and high.

np.random.normal (mean, std, shape) # Returns a np array of a certain shape, filled
with numbers following a normal distribution N(mean, std**2)

np.random.uniform(low, high, shape) # Returns a np array of a certain shape, filled
with numbers following a uniform distribution between low and high

Shape Manipulations

np.shape (myArr) # Returns the shape of your array, for example (4,2) if you have 4
rows and 2 columns

np.reshape (myArr, newShape) # Reshapes the array to a newShape while saving the total
number of elements in the original myArr. I.e. if myArr.shape = (10,), thennp.
reshape (myArr, (5,2)) will give the new array with the shape of (5,2).

Loading Data

myArr = np.loadtxt(path, delimiter, skiprows, usecols, dtype) # Loads the data from a
text file in ‘path‘, using the symbol in ‘delimiter ¢ to separate columns,
¢ ¢ columns (i.e. usecols=(1,

skipping first ‘skiprows ¢ rows, reading only ‘usecols
3) - will read only columns 2 and 4), and coverting data to ‘dtype‘ in the end.

L I N N

N

3 Matplotlib Library

Basic Plotting

This code will create a line connecting the points (1,4), (2,5), and (3,6), with round markers at each
point (if you do not specify "marker" it will just be a line). You can use lists or numpy arrays for the
data.

x = [1, 2, 3]

y = [4, 5, 6]

plt.plot(x, y, marker="o")
plt.title(’Title’)
plt.xlabel (’X-axis’)
plt.ylabel (’Y-axis’)
plt.show ()

If you want to plot several data sets together, you can write for example
plt.plot(x,y2)

after the first plot command. Python will automatically choose different colours.

Other Plots

plt.scatter(x, y) # Creates points instead of a line

plt.bar(x, y) # Creates vertical bars located at positions in x array with heights
defined in y array.

plt.hist (data, bins=10) # Creates a histogram of points in data array. The number of
bins can be set by ‘bins‘ argument. Instead of a number, you can also provide an
array of edges.

plt.errorbar(x, y, yerr=yerr) # Creates the scatter-plot of ‘x and ‘y‘ arrays with

errorbars defined in ‘yerr ¢ array.

4 Other

If you write a function that makes sense for a single number, but not for an array (for example if it
contains "if a>0" somewhere but it is not clear if this should hold for each item in the array separately,
or for the array as a whole), you will get an error message. To avoid this, the function np.vectorize
exists:

np.vectorize (functionName) # Returns a version of your function that can be run with
NumPy arrays.

Which you can then run for example like this:
y = np.vectorize(functionName) (4,2)

(note the positions of the brackets).

