
EPFL Probability and statistics for materials science
Autumn Semester 2024 Prof. Gregor Jotzu

Python Cheat Sheet
Functions and Description

1 Basic Python Functions

Importing the libraries. The "as np" part lets you run a function from numpy by writing for example
np.mean() instead of numpy.mean()

1 import numpy as np
2 import matplotlib.pyplot as plt

Python Lists

1 myList = [] # Defines an empty List
2 myList = [1,2,3] # Defines a 1D list with numbers 1, 2 and 3
3 myList [0] # Accesses the first element of the list , this will return 1
4 myList.append (4) # Adds the new element 4 to the list , the list hence becomes

[1,2,3,4]
5 myList.extend ([5,6,7]) # Extends the myList with the elements of the list [5,6,7],

so myList then becomes [1,2,3,4,5,6,7]
6 len(myList) # Returns the length of your list.
7 newList = myList + [8,9] # another way to extend a list. newList will be

[1,2,3,4,5,6,7,8,9]. Note that myList + 8 does NOT work (you would have to write
newList + [8]

Python Functions

1 def functionName(param1 , param2=defaultValue):
2 # Define what function does
3 # By default , param2 is equal to the defaultValue
4 return param1 **2+ param2 # Return the result , this is an example

You can then call the function from elsewhere in the code. For example, if you later write

y = functionName(4,3)

then y will be set to 42 + 3 as ** is the exponent/power operator in Python.

Python Loops

An iterable can be a list, a numpy array, and many other things. You can use the iterable range(N)
to make item go from 0 to N-1 (i.e. N loops). For the while loop, the condition is a logic statement for
example myVariable < 5. The loop will run as long as this statement is true (which can be for ever).

1 # For loop
2 for item in iterable:
3 # Code block
4

5 # While loop
6 while condition:
7 # Code block

1

If-else Statements

You can use only if and else (but having an else is mandatory) and add as many elif as you want.

1 if condition:
2 # Code block
3 elif condition:
4 # Code block
5 else:
6 # Code block

A compact notation that is sometimes useful is for example

y = 2*x if x>0 else 0

which sets y to 2*x for positive x and to 0 for negative x.

Common Built-in Functions You Should Know

• len(), range(),

• print()

• sum(), min(), max()

Important Variable and Data Types

• Numbers: int, float

• Text: str

• Boolean: bool (True/False)

• Containers: list, dict

2 Numpy Library

Creating Arrays

1 myArr = np.array ([1, 2, 3]) # Creates a 1D NumPy array called myArr with values 1,2,3
2 zeros = np.zeros ((2, 2)) # Creates the 2D 2x2 NumPy array filled with zeros
3 ones = np.ones((3, 3)) # Creates the 2D 3x3 NumPy array filled with ones
4 linspace = np.linspace(0, 10, 5) # Creates 5 equally spaced points between 0 and 10 (

including 0 and 10)
5 arange = np.arange(0, 10, 2) # Creates points in the range between 0 and 10 with the

spacing of 2 (including 0 but not 10)

Selecting Elements

1 myArr [0] # Selects the first element
2 myArr [1:5] # Selects elements from second to fifth.
3 myArr [[2 ,4,5]] # Selects 3rd ,5th and 6th element
4 myArr[-1] # Selects last element
5 myArr[index] # Selects elements from ‘myArr ‘, which are listed in array ‘index ‘ if

index contains only integers.
6 myArr[condition] #Selects only elements that fulfil a condition. For example myArr[

myArr >4] will select only elements that are >4

2

NumPy Array Operations

Note that these are different from the list operations intorduced above.

1 arr1 + arr2 # Element -wise summation
2 arr1 - arr2 # Element -wise subtraction
3 arr1 * arr2 # Element -wise multiplication
4 np.dot(arr1 , arr2) # Matrix multiplication

Common NumPy Functions

1 np.sum(myArr) # Sums all the elements
2 np.max(myArr) # Returns the max element
3 np.min(myArr) # Returns the min element
4 np.mean(myArr) # Returns the mean value of all elements
5 np.std(myArr) # Returns the biased standard deviation of elements
6 np.std(myArr , ddof =1) # Returns the unbiased standard deviation of elements
7 np.histogram(myArr , bins) # Returns the frequencies of the histogram defined by the

bins (bins can be a number or an array , see the documentation of this function
for details.

8 np.count_nonzero(myArr) # Returns the number of non zero elements in the array

1 # All functions can be applied along a certain axis , e.g.
2 np.sum(myArr , axis =0) # Sums all the elements in each column - axis 0
3 np.sum(myArr , axis =1) # Sums all the elements in each row - axis 1
4 # If an axis is given (e.g. axis =1), the resulting array will have the shape of the

remaining axis.

Generating Random Numbers

1 np.random.randint(low , high , shape) # Returns a np array of a certain shape , filled
with random integers between low and high.

2 np.random.normal(mean , std , shape) # Returns a np array of a certain shape , filled
with numbers following a normal distribution N(mean , std **2)

3 np.random.uniform(low , high , shape) # Returns a np array of a certain shape , filled
with numbers following a uniform distribution between low and high

Shape Manipulations

1 np.shape(myArr) # Returns the shape of your array , for example (4,2) if you have 4
rows and 2 columns

2 np.reshape(myArr , newShape) # Reshapes the array to a newShape while saving the total
number of elements in the original myArr. I.e. if myArr.shape = (10,), thennp.

reshape(myArr , (5,2)) will give the new array with the shape of (5,2).

Loading Data

1 myArr = np.loadtxt(path , delimiter , skiprows , usecols , dtype) # Loads the data from a
text file in ‘path ‘, using the symbol in ‘delimiter ‘ to separate columns ,

skipping first ‘skiprows ‘ rows , reading only ‘usecols ‘ columns (i.e. usecols =(1,
3) - will read only columns 2 and 4), and coverting data to ‘dtype ‘ in the end.

3

3 Matplotlib Library

Basic Plotting

This code will create a line connecting the points (1,4), (2,5), and (3,6), with round markers at each
point (if you do not specify "marker" it will just be a line). You can use lists or numpy arrays for the
data.

1 x = [1, 2, 3]
2 y = [4, 5, 6]
3 plt.plot(x, y, marker="o")
4 plt.title(’Title’)
5 plt.xlabel(’X-axis’)
6 plt.ylabel(’Y-axis’)
7 plt.show()

If you want to plot several data sets together, you can write for example

plt.plot(x,y2)

after the first plot command. Python will automatically choose different colours.

Other Plots

1 plt.scatter(x, y) # Creates points instead of a line
2 plt.bar(x, y) # Creates vertical bars located at positions in x array with heights

defined in y array.
3 plt.hist(data , bins =10) # Creates a histogram of points in data array. The number of

bins can be set by ‘bins ‘ argument. Instead of a number , you can also provide an
array of edges.

4 plt.errorbar(x, y, yerr=yerr) # Creates the scatter -plot of ‘x and ‘y‘ arrays with
errorbars defined in ‘yerr ‘ array.

4 Other

If you write a function that makes sense for a single number, but not for an array (for example if it
contains "if a>0" somewhere but it is not clear if this should hold for each item in the array separately,
or for the array as a whole), you will get an error message. To avoid this, the function np.vectorize
exists:

1 np.vectorize(functionName) # Returns a version of your function that can be run with
NumPy arrays.

Which you can then run for example like this:

y = np.vectorize(functionName)(4,2)

(note the positions of the brackets).

4

