MSE-213 Probability and statistics for materials science Lecture 10

Recap: ANOVA / F-test for groups/discrete factors

Source of Variation	Degrees of Freedom,	Sum of Squares,	Mean square,	Fisher statistic,
	V	SS	MS	F _{MEASURED}
Between Groups/Factors	k-1	SS _B	SS _B /(k-1)	MS _B /MS _E
Error within Group	N _{ST} -k	SS _E	SS _E /(N _{ST} -k)	
Total	N _{ST} -1	SS _T		

Quantiles de la loi F_{ν_1,ν_2} de Fisher

	$\nu_1 = 1$	2	3	4	5	6	7	8	10	12	24	∞
$\nu_2 = 1$	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	241,9	243,9	249,1	254,3
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,40	19,41	19,45	19,50
3	10,13	9,552	9,277	9,117	9,013	8,941	8,887	8,845	8,786	8,745	8,639	8,526
4	7,709	6,944	6,591	6,388	6,256	6,163	6,094	6,041	5,964	5,912	5,774	5,628
5	6,608	5,786	5,409	5,192	5.050	4.950	4,876	4,818	4.735	4.678	4,527	4,365
6		5,143										
7		4,737										
8		4,459										
9		4,256										
10	4,965	4,103	3,708	3,478	3,326	3,217	3,135	3,072	2,978	2,913	2,737	2,538
11		3,982										
12		3,885										
13		3,806										
14		3,739										
15	4,543	3,682	3,287	3,056	2,901	2,790	2,707	2,641	2,544	2,475	2,288	2,066
16	4,494	3,634	3,239	3,007	2,852	2,741	2,657	2,591	2,494	2,425	2,235	2,010
17	4,451	3,592	3,197	2,965	2,810	2,699	2,614	2,548	2,450	2,381	2,190	1,960
18		3,555										
19	4,381	3,522	3,127	2,895	2,740	2,628	2,544	2,477	2,378	2,308	2,114	1,878
20	4,351	3,493	3,098	2,866	2,711	2,599	2,514	2,447	2,348	2,278	2,082	1,843
21	4,325	3,467	3,072	2,840	2,685	2,573	2,488	2,420	2,321	2,250	2,054	1,812
22	4,301	3,443	3,049	2,817	2,661	2,549	2,464	2,397	2,297	2,226	2,028	1,783
23	4,279	3,422	3,028	2,796	2,640	2,528	2,442	2,375	2,275	2,204	2,005	1,757
24	4,260	3,403	3,009	2,776	2,621	2,508	2,423	$2,\!355$	2,255	$2,\!183$	1,984	1,733
25	4.242	3,385	2,991	2,759	2.603	2.490	2,405	2.337	2.236	2.165	1.964	1.711
26		3,369										
27		3,354										
28		3,340										
29		3,328										
30	4,171	3,316	2,922	2,690	2,534	2,421	2,334	2,266	2,165	2,092	1,887	1,622
32		3,295										
34		3,276										
36		3,259										
38		3,245										
40	4.085	3,232	2,839	2,606	2.449	2.336	2,249	2,180	2.077	2.003	1,793	1,509
60		3,150										
120		3,072										
∞		2,996										
	0,011	2 ,000	2,000	2,012	-,-1T	<u></u>	2,010	1,000	1,001	1,102	1,011	1,000

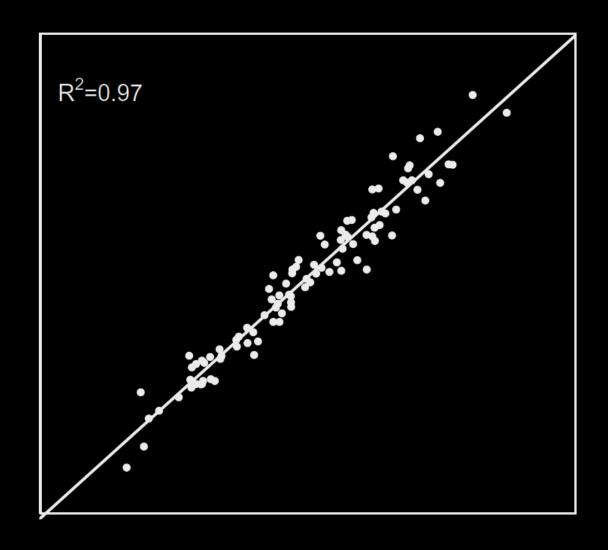
Table 5 – Les 95%-quantiles, $qF_{\nu_1,\nu_2}(95\%)$, des distributions F_{ν_1,ν_2} .

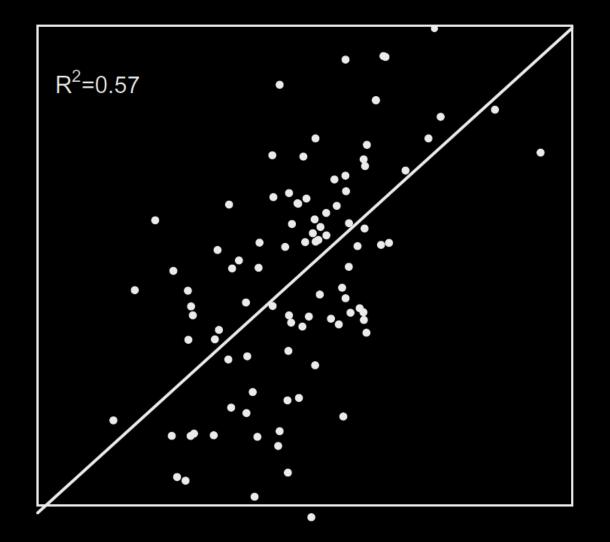
Quantiles de la

	$\nu_1 = 1$	2	3	4	5
$\nu_2 = 1$ 2	18,51		19,16	19,25	19,30
3 4	7,709	9,552 6,944	6,591	6,388	6,256
5 6 7	5,987	5,786 5,143 4,737	4,757	4,534	4,387
8 9	5,318	4,459	4,066	3,838	3,687 3,482
10 11	,	4,103 3,982	,	,	,
		0.00	0 100	0.080	0.100

What does the one-factor F-test correspond to when k=2?

A two-sample z-test


A two-sample t-test

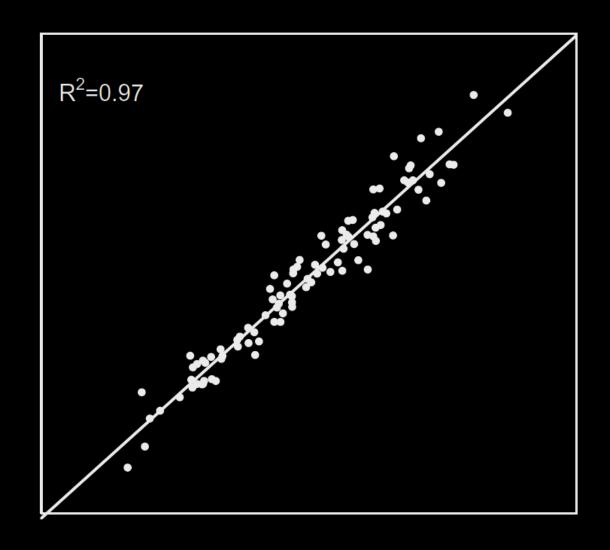


A two-sample Welch test

Linear Regression with one slope

Linear Regression with one slope

(a) Strong linear relationship

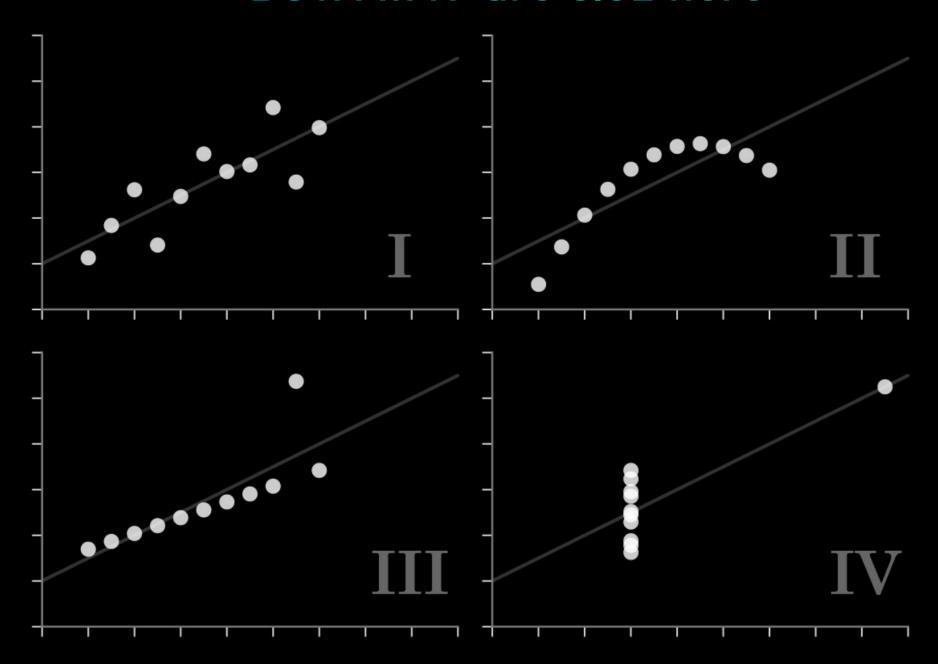

(b) Weak linear relationship


Linear Regression with one slope

ANOVA / F-test for linear regression with one slope

Source of Variation	Degrees of Freedom,	Sum of Squares,	Mean square,	Fisher statistic,	
	ν	SS	MS	F _{MEASURED}	
Model (with 1 slope)	1	SS _M	SS _M /1	MS _M /MS _E	
Error within Residuals	N _{ST} -2	SS _E	SS _E /(N _{ST} -2)		
Total	N _{ST} -1	SS _T			

Linear Regression – The R² "goodness of fit"



(a) Strong linear relationship

(b) Weak linear relationship

BUT: All R² are 0.82 here

