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Exercise Set 7 - Solution

1 Photodetector Efficiency

a) In this case, we are given the mean X = 1.3A/W of our sample and the true standard devia-
tion o = 0.1p9 = 0.13A/W of our process, so we use the z-test. Furthermore, we want to make
sure our efficiency is higher than the reference mean py = 1.2A/W, so we use a one-sided z-test.

b) It is always good practice to formulate our hypothesis. Here the hypothesis is that our efficiency
is higher, so Hy : > 1.2A/W and hence Hy : p < 1.2A/W. We also choose a level of significance
a = 0.01.

We can calculate the z-value for our statistic : Z(X) = @\/41 = 1.54. From here there are
two ways of solving the problem : either compare the z-values, or compare the probabilities.

e Comparing the z-values. We calculate the z-value corresponding to a confidence level o =
0.01, z9.99 = 2.33. This creates an exclusion interval K = [2.33, +o0].
Here Z(X) = 1.54 ¢ K so we cannot refute Hy.

e Comparing the probabilities. From the z-value of our statistic, we can deduce a confidence
level. Using the z-table, we have zg 9332 = 1.54, meaning we have a confidence level
ag ~ 0.94 < 0.99 for our true mean to actually be greater than pg.

In both cases, we conclude that our photodetector do not meet the standard with sufficient
confidence level.

c) Here we want to know with which confidence level our value of the mean would be on the edge
of refuting Hy. If we already computed the probability in exercise b), we can already answer
that agimit =~ 0.94. In this case, the probability that our probability is actually worse than the
reference value is P =1 — 0.94 = 6%.

d) Now we want to know how many times we should do the experiment to be able to reject Hy
(assuming the sample mean stays the same). This means setting the condition :

X —
FOUN > 2990 = N > (= ? 20.99)*
o X — o

Doing so we get N > 9.25, so we need to do at least 10 experiments.

2 Novel diets for a healthy lifestyle

We do not know the true variance of the diets, so we have to estimate the standard deviation from the
sample. This means we need to run two one-sided T-test. Our hypothesis is that they lost weight,
such that H; : p < 105kg and hence Hy : p > 105kg.



First, we calculate the sample parameters for the 2 series, with s; calculated with the unbiased standard

deviation 3%72 = W :
X1 =930  s?=48.18 X, =103.6  s2=73.17

Second, we calculate the t-statistics:

X, — 105 Xy — 105
=217 P 12 = —5.99 ty = 227 2 /12 = —0.55
S1 52

Third, we compute the critical regions. As low values of t disprove Hy in our one-sided test, we need
to compute %0.05,11, the t-value for o = 0.05 with 11 degrees of freedom. We can look at the t-table
and find t0_05711 = —1.796.

Diet 1 clearly falls deep into the critical region, such that Hy must be rejected. This appears to be a
very effective diet. For fun, we could compute the p-value and find p = 4.52 - 1075, The probability
that this is compatible with Hy is very small, and this makes sense when one looks at the data. Most
weights are significantly below 105, only one at 105, and none above. Diet 2 still has an average below

105,

but the scatter is so high that we cannot conclude this is due to the diet. The T-value is very

low, deep in the acceptance region, thus it is very likely that this small deviation from 105 is only due
to random fluctuations and that, in fact, our diet 2 had no effect.
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Error of type 1 (false discovery/positive) and 2 (false negative),
power of a test

We have to compute the probability that the statistic \/nY falls outside of [—2,2]. This proba-
bility is the area under the bell curve of the centred of reduced normal law A (0, 1) between —oo

and —2 plus the area between 2 and oo. This simply is 1 minus the quantile associated with
z=2,times 2. S0 2- (1 —®(2)) =2—-2-0.9772 = 4.56%.

When taking 9 measurements, the mean follows the distribution A(0,1/9). 2 has to be reduced
by being divided by the standard deviation. This implies that the probability of a) does not
change. This simply reflects the fact that taking more measurements sharpens the distribution
function in the same way as the window of acceptance of our test shrinks.

A type 2 error means that the test accepts the null hypothesis 8 = 0 while it is not true. Lets
assume that it is not true, and the real # = 1. As we saw in b), the random variable Y then
follows the distribution A (1,1/9).

\V)

P(Error type 2) = P(|v/n-Y| <2)=P([Y] < §)

To evaluate this, we need the CDF of the distribution function of Y, N(1,1/9). Let us denote
this CDF by ®. Then,

) B(—2)

P(lY| <
3

)=a(

wil N

We first have to transform Y to the standard normal variable Z = Y% = 3(Y — ). For this
variable, we can use the standard CDF ®. We find:

ol

PV < 2) = ®(2 - 30) — B(—2 — 30)

wl N

The z-table (or calculator or computer) gives us 15.9% for 6 = 1.



Our null hypothesis is Hy : 8 = 0. If the test rejects Hy while in reality 8 = 0, the test does a
type I error. If the test accepts Hy, thus claiming that § = 0 while it is in reality not, then it
makes a type II error.

d) Using the same reasoning as before:

Typel Type2  Power
4.56% - -

0.5 - 69.1% 30.9%

1 - 15.9% 84.1%

1.5 - 0.62%  99.38%

2 - ~0.00%  100%

Table 1: Type 1 (false discovery/positive) and 2 (false negative) error probabilities and associated
power.

The power is the probability the test rejects the null hypothesis (6 = 0) when 6 # 0, so it is
1 — P(Error type 2).

1.0

0.6
|

Power of the test

04

02
1

0.0 05 1.0 15 20

Theta

Figure 1: Power of the test for different 6.

In the graph, for # = 0, we plot the level of the test, which is the probability the test rejects
the null hypothesis (§ = 0) when 6 = 0. Note that all these numbers critically depend on the
number of experiments, n.



