EPFL Probability and statistics for materials science
Spring Semester 2024 Prof. Gregor Jotzu

Exercises Set 6 - Solution

1 Nanoparticles with a normal distribution

The z-value is z = (x — p)/o. To get ®(z) you can look it up in a z-table ("standard normal table")
e.g. on Wikipedia, z-table.net, ztable.io (has nice illustrations)... Or compute it using

3(2) = 5 (1 + exflz/\/2)) = 5 (erfel—2/V/(2))

where erf is the "error function" and erfc the "complementary error function" (which some calculators
feature). Also keep in mind that ®(—z) =1 — ®(z)

a)

90% interval means between a cumulative probability (®(z)) of 5% and 95%. For ®(z) = 95%
the z-value is 1.645, for 5% it is consequently -1.645.

In method A this corresponds to 359nm to 441nm.
In method B this corresponds to 374nm to 506nm.

z4 = —2 and zp = —2.25. In principle this is enough to say that method B is better (lower
z-value means lower probability).

We can still caclulate the probabilities, which are Ps(z < 350nm) = 0.02275 and Pp(z <
350nm) = 0.01222. So method B is almost twice as good.

z4 = —4 and zp = —3.5, so now method A is better. P4(xz < 300nm) = 0.00003 and Pp(z <
300nm) = 0.00023, so it is indeed much better. Note that although the mean of method B is
further away from 300nm when measured in nm, it is less far away when measured in standard
deviations.

The z-value we look for is still the same (1.645). But now the standard deviation of the mean
for N = 1'000'000 nanoparticles is given by oean = /v 17000'000 = ¢ /1’000 (this you get from
the central limit theorem or just from the fact that they are i.i.d.). So for method A we have the
range 399.96nm to 400.04nm, and for method B we have 439.93nm to 440.07

So in this case we know opean and can use it to estimate o of the population/process. This gives
0 = Omean * VIV, where N is now 10'000. So ¢ = 10nm for method C, lower than for any for the
other methods.

The z-value is now -4 for the requirement in b, and -9 for the requirement in ¢ (giving a probability
of only about 1 in 10" for particles below 300nm!). So in both cases your method C is the best.
Well done!

2 Poisson’s law and supernova explosions

a)

The random variable X can be any integer equal or greater than zero. The cumulative probability
over all the possible value should be equal to 1 (so it is a well-defined probability distribution)..
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b) To obtain the mean we have to take a sum over all possible values, weighted by their probabilities.
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We can drop the k£ = 0 element of the sum as this one is now 0 (we multiply with 0 there)
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Then we use the fact that k/k! = 1/(k — 1)! and also factor out one A before the sum.
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We substitute (k — 1) for some dummy variable (here called [), so we recognize again the form
of the Maclaurin series of the exponential function.
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¢) The value of k is the number of events per century, hence \ = i.

d) Now we can simply evaluate the Poissonian distribution function:
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P(X>2) = 1-PX=1)-P(X=0)=1-¢e2%(0.2541) = 0.0265
P(X>1) = 1-P(X=0)=1-e"%=0221
P(X =0) e 025 = 0.779

3 Maxwell-Boltzmann law and the particle speeds in an ideal gas

a) The speed of the particle v can be any positive real number. As before, the sum of the probability
for all possible values should give 1.
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Here we have used "integration by parts" (i.e. [ f¢' = fg— [ f'g). The first term vanishes since

the exponential function decreases much faster than x increases (try typing 10 - exp [-10] and

100 - exp [—100] into your calculator!).

The second term can be found from the scaled Gaussian integral (see last week’s exercise) and
taking into account the fact that the Gaussian function is symmetric around 0 - so the integral
from 0 to oo is just half of the total integral.

It follows:




b) The average speed is given by. Again we start by integrating by parts, and for the last integral
we look at the derivative of exp[—az?] and work backwards.:
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4 Aircraft wing probability of failure

First we compute the probability of unsafe fly for both kind of plane. All engine’s failure are indepen-
dent to each other and a Binomial distribution is considered.

P, = P(2-engines plane fails) = P(2 engines fail) = p? = 102
P, = P(4-engines plane fails) = P(2 engines fail on the same side) + P(3 or 4 engines fail)

= 2. p°(1-p)*+ <§>p3(1—p)+p4 =2-p*(1—p)-(1+p)+p’

— 2_p2(1_p2)+p4:2_p2_p4:2_10—12_10—24

So, the 4-reactors planes is slightly less safe.

Let Y be the random variable which indicates the number of failing planes due to reactor issues per

year. Its average is:

P+ Py

E(Y) = 365 - 24'000 - =13.14-107°

We can model the event a plane fail with a Binomial distribution of parameter P for 2-reactors planes
and Py for the other ones. The number of trials n = 0.5 - 365 - 24’000 is the same for both kinds of
planes.

Var(Y) = Var(B(Ps,n)+ B(Py,n)) = Var(B(P,,n)) + Var(B(Py,n))
= nP2(1 — Py) 4+ nP4(1 — Py) =13.14-107°
oy = +/Var(Y)=3.62-10"°

Both variances simply add because the event a 2-reactors plane fails is independent to the event a
4-reactors plane fails.

Alternative approach

Since both n-P» and n- Py are really small, it is also possible to use Poisson’s distribution with parameter
Ao =n- Py resp. Ay = n- P,. In fact this law is an approximation of the Binomial distribution for
highly improbable events.

The average and standard deviation are:
E(Y) = E(P(A2)+P(\)) =X+ Ay =13.14-107°

Var(P(A2) + P(M\1)) = Ag + Ag = 13.14 - 1070
oy = +/Var(Y)=3.62-10"°
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Which give the same result as before. We use E(P())) = A (see exercise 2 above) and Var(P(A)) = A.
Var(X) = E(X?) - E(X)?
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