Chaleur spécifique de matériaux

Materials	Cp [kJ/(kg*K)]
Borax	1.0
Brass	0.38
Calcite 32 - 100F	0.8
Calcite 32 - 212F	0.84
Calcium	0.76
carbonat	
Graphite	0.71
Charcoal	1
Chalk	0.9
Chromium	0.5
Cobalt	0.46
Water	4.19

Copper	0.39
Cotton	1.34
Diamond	0.63
Glass	0.84
Gold	0.13
Iron, 20°C	0.46
Limestone	0.91
Mercury	0.14
Porcelain	1.07
Silicon	0.75
Steel	0.49
Titanium	0.47
Tungsten	0.134
Zinc	0.38

Exercices (10 minutes) [Considèrez $c_p = c_v$]

Quelle quantité de chaleur est nécessaire pour élever la température d'un bloc de cuivre de 0.5 kg de 0 °C à 100 °C ?

Quelle sera la température finale si une pièce d'or de 2 kg à 200°C est insérée dans un récipient contenant 10 kg d'eau à 50°C ?

Chaleur spécifique de matériaux

Materials	Cp [kJ/(kg*K)]
Borax	1.0
Brass	0.38
Calcite 32 -	0.8
100F	
Calcite 32 -	0.84
212F	
Calcium	0.76
carbonat	
Graphite	0.71
Charcoal	1
Chalk	0.9
Chromium	0.5
Cobalt	0.46
Water	4.19

Copper	0.39
Cotton	1.34
Diamond	0.63
Glass	0.84
Gold	0.13
Iron, 20°C	0.46
Limestone	0.91
Mercury	0.14
Porcelain	1.07
Silicon	0.75
Steel	0.49
Titanium	0.47
Tungsten	0.134
Zinc	0.38

Exercices (10 minutes)

Quelle quantité de chaleur est nécessaire pour élever la température d'un bloc de cuivre de 0.5 kg de 0 °C à 100 °C ?

$$Q = mc_v \Delta T$$
 $Q = 0.5 * 0.39 * 100 = 19.5 kJ$

Quelle sera la température finale si une pièce d'or de 2 kg à 200°C est insérée dans un récipient contenant 10 kg d'eau à 50°C ?

$$m{Q}_{\rm eau} = m{m}_{\rm eau} \, m{c}_{
u, \, {\rm eau}} \, ({\rm T_f - Ti}_{\rm i, \, eau}) = 10^* 4.19^* \, ({\rm T_f - 50})$$
 $m{Q}_{\rm Au} = m{m}_{\rm Au} \, m{c}_{
u, \, {\rm Au}} \, ({\rm T_f - Ti}_{\rm i, \, Au}) = 2^* 0.13^* \, (200 - {\rm T_f})$
 $m{Q}_{\rm eau} = m{Q}_{\rm Au}$

$$T_f = 50.9 \, ^{\circ}C$$

Exercices (15 minutes)

Table 22.1. Linear Expansion Coefficients, α_L , for Some Solids Measured at Room Temperature.

Substance	$\alpha_L \text{ in } 10^{-5} \text{ [K}^{-1}\text{]}$
Hard rubber	8.00
Lead	2.73
Aluminum	2.39
Brass	1.80
Copper	1.67
Iron	1.23
Soda-lime glass	0.90
Borosilicate glass	0.32
NaCl	0.16
Invar (Fe-36% Ni)	0.07
Quartz	0.05

Exercices (15 minutes)

Une barre de fer de 15 cm de long et une barre de matériau inconnu de 45 cm de long sont fixées l'une à l'autre à 20 °C. Trouvez le matériau inconnu en sachant que la longueur totale augmente de 1.25 mm à 120 °C.

Un volume de matériau V= 16 cm³ est chauffé de 12 °C et se dilate de 10.4 mm³. Quel est ce matériau?

En considérant que sa densité à 20 °C est de 8.6 * 10³ kg/m³, calculez la densité à 150 °C

Exercices (15 minutes)

Table 22.1. Linear Expansion Coefficients, α_L , for Some Solids Measured at Room Temperature.

Substance	$\alpha_L \text{ in } 10^{-5} \text{ [K}^{-1}]$
Hard rubber	8.00
Lead	2.73
Aluminum	2.39
Brass	1.80
Copper	1.67
Iron	1.23
Soda-lime glass	0.90
Borosilicate glass	0.32
NaCl	0.16
Invar (Fe-36% Ni)	0.07
Quartz	0.05

Exercices (15 minutes)

Une barre de fer de 15 cm de long et une barre de matériau inconnu de 45 cm de long sont fixées l'une à l'autre à 20 °C. Trouvez le matériau inconnu en sachant que la longueur totale augmente de 1.25 mm à 120 °C.

$$\Delta l_{TOT} = l_i^{Fe} \alpha_l^{Fe} \Delta T + l_i^{??} \alpha_l^{??} \Delta T$$
Aluminium

Un volume de matériau V= 16 cm³ est chauffé de 12 °C et se dilate de 10.4 mm³. Quel est ce matériau?

$$\Delta V = V_i^{??} \alpha_V^{??} \Delta T$$
 pour le principe Si isotropique: $\alpha_V^{??} = 3* \alpha_V^{??}$ Pourquoi? de von Laiton Neumann

En considérant que sa densité à 20 °C est de 8.6 * 10³ kg/m³, calculez la densité à 150 °C