
Exercise dopage (10 minutes)

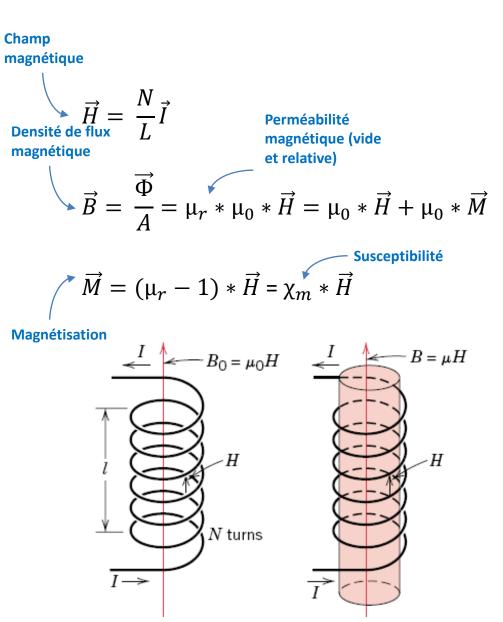
Le cellule primitive du silicium est cubique à faces centrées avec un taille de 0.54 nm. La concentration intrinsèque de porteur dans le Si est de 10¹⁰ cm⁻³.

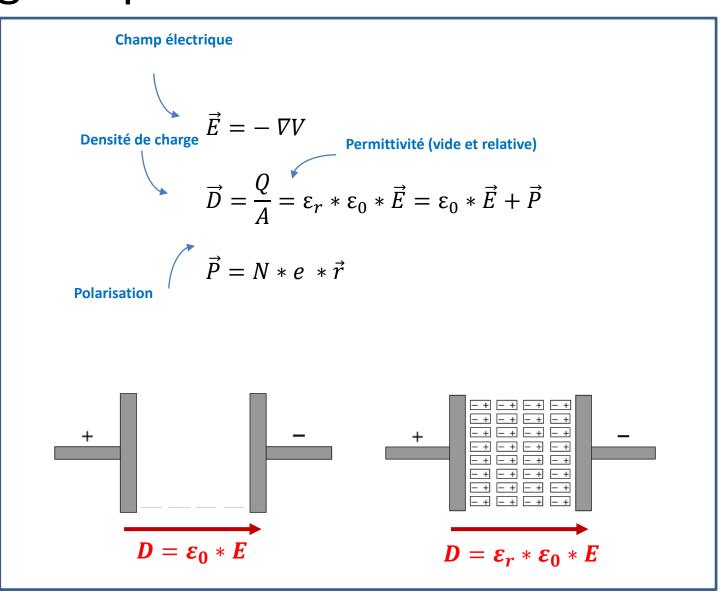
Calculez le dégrée de pureté d'un échantillon de Si dopé nécessaire pour augmenter la conductivité d'un factor 1'000'000.

Exercise dopage (10 minutes)

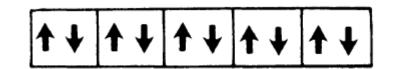
Cellule avec 8 atomes et volume de 0.16 nm³ Densité des atomes: 5 *10²² atomes /cm³

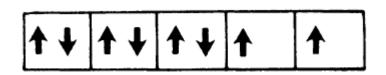
Concentration de dopage necessaire: $10^6 * 10^{10} = 10^{16}$ atomes/cm³


[Dopants] =
$$\frac{10^{16}}{5*10^{22}}$$
 = 2*10⁻⁷

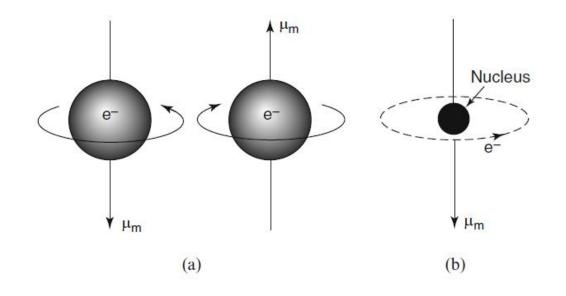

Pureté du Si: (1- 2*10⁻⁷)*100% = 99.99998 %

Propriétés magnétiques


- Concepts basiques
- Type de magnétisme dans les matériaux
- Domaines magnétiques et hystérèse
- Matériaux magnétiques durs et mous
- Application: Enregistrement Magnétique et Mémoires Magnétiques


Les coefficients magnétiques

Si un solide possède des bandes électroniques complètement remplies, il y a autant d'électrons avec un spin vers le haut que de spin vers le bas. Cela entraîne une annulation des moments de spin, et aucun paramagnétisme net de spin n'est attendu. Ces matériaux sont donc diamagnétiques.


Dans les matériaux ayant des bandes partiellement remplies, les spins des électrons sont arrangés, selon la « règle de Hund », de manière à maximiser le moment de spin total. Par exemple, dans un atome avec huit électrons de valence d, cinq des spins sont orientés, disons, vers le haut, et trois spins vers le bas, ce qui donne un total net de deux spins vers le haut. L'atome est alors censé avoir deux unités de (para-)magnétisme.

Exercise + pause (20 minutes)

Déterminez si les éléments/composés suivants sont paramagnétiques ou diamagnétiques, et classez-les en fonction de leur susceptibilité magnétique

Pt W Cu Na NaCl H₂O Al Ag

Elément	Configuration électronique	Orbitaux partiellement remplis	Para/Dia	χ_m
Pt	[Xe]4f ¹⁴ 5d ⁹ 6s ¹	2	Para	Moyenne
W	[Xe]6s² 4f¹⁴ 5d⁴	4	Para	Eleveé
Cu	[Ar] 4s¹ 3d¹o	1	Para	Faible
Na	[Ne] 3s ¹	1	Para	Faible
NaCl	[Ne] + [Ar]	0	Dia	-
H_2O	[Ne]	0	Dia	-
ĀĪ	[Ne] 3s ² 3p ¹	1	Para	Faible
Ag	[Kr]4d ¹⁰ 5s ¹	1	Para	Faible

Chaque électron non apparié contribue à la magnétisation avec un moment magnétique élémentaire appelé le magnéton de Bohr (μ_B)

Elément	Para/Dia	χ_m
Pt	Para	Moyenne
W	Para	Eleveé
Cu	Para	Faible
Na	Para	Faible
NaCl	Dia	-
H ₂ O	Dia	-
ĀĪ	Para	Faible
Ag	Para	Faible

Susceptibilité magnétiques χ_m at 20°C $[(\mu_r-1)^*10^5]$

Paramagnetic		Diamagnetic	
Iron oxide (FeO)	720	Ammonia	26
Uranium	40	Bismuth	-16.6
Platinum	26	Mercury	-2.9
Tungsten	6.8	Silver	-2.6
Cesium	5.1	Carbon (diamond)	-2.1
Aluminum	2.2	Carbon (graphite)	-1.6
Lithium	1.4	Lead	-1.8
Magnesium	1.2	Sodium chloride	-1.4
Sodium	0.72	Copper	-1.0
Oxygen gas	0.19	Water	-0.91