Propriétés électriques des solide ioniques et introduction aux propriétés optiques

- Resistivité et temperature dans les metaux
- Resistivité des alliages metalliques
- Solides ioniques et lacune
- Diffusivité et énergie d'activation
- Oxydes et polymères conducteurs
- Introduction aux propriétés dielectriques

Exercice (10 minutes)

- a) Calculer la conductivité $(\frac{1}{Ohm*m})$ du cuivre à température ambient en sachant sa densité d'électrons $(N = 8.47*10^{22} \text{cm}^{-3})$ et le temps moyen de collision $(\tau = 2.47*10^{-14} \text{ s})$.
- b) La résistivité de l'aluminium à température ambient est de $2.625*10^{-8}$ Ohm*m et son coefficient de coefficient linéaire en température de la résistivité de $0.0043~K^{-1}$. À quelle température sa résistivité devient-elle égale à la résistivité du cuivre trouvée précédemment ?

	Symbol		Unité
Charge électron	е	1.602*10 ⁻¹⁹	С
Masse électron	m	9.11*10 ⁻³¹	kg

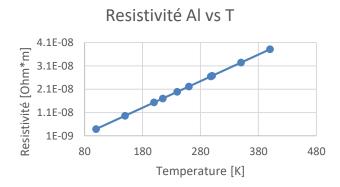
a) Calculer la conductivité $(\frac{1}{ohm*m})$ du cuivre à température ambient en sachant sa densité d'électrons (N =

 $8.47*10^{22}$ cm⁻³) et le temps moyen de collision ($\tau = 2.47*10^{-14}$ s).

$$J = \frac{kg * m^2}{s^2} = \frac{Ohm * C^2}{s}$$

$$\sigma = \frac{N * e^2 * \tau}{m} \qquad \sigma[=] \frac{\text{cm}^{-3} * C^2 * s}{kg} [=] \frac{10^6 * C^2 * s}{\text{m}^3 * kg} [=] \frac{10^6 * C^2}{\text{m} * s} * \frac{s}{Ohm * C^2} [=] \frac{10^6}{Ohm * m}$$

$$\sigma_{Cu}^{298K} = \frac{8.47*10^{22}*(1.602*10^{-19})^2*2.47*10^{-14}}{9.11*10^{-31}} \frac{10^6}{Ohm*m}$$


σ 298 <i>K</i> —	E 0	0 4 10	17	1
$\sigma_{Cu}^{298K} =$	3.0	7 * 10	0hn	$\overline{\imath * m}$

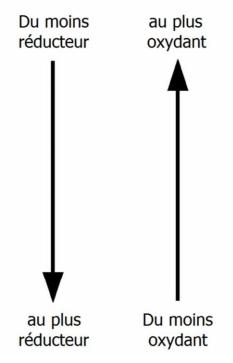
	Symbol		Unité
Charge électron	e	1.602*10 ⁻¹⁹	С
Masse électron	m	9.11*10 ⁻³¹	kg

b) La résistivité de l'aluminium à température ambient est de $2.65*10^{-8}$ Ohm*m et son coefficient de coefficient linéaire en température de la résistivité de 0.0043 K⁻¹. À quelle température sa résistivité devient-elle égale à la résistivité du cuivre trouvée précédemment ?

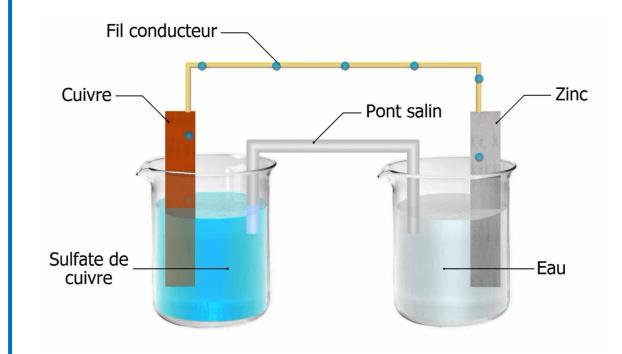
$$\rho_2 = \rho_1 * [1 + \alpha (T_2 - T_1)] \qquad \rho_{Al}^{T2} = \rho_{Al}^{298K} * [1 - \alpha (T_2 - 298)] = \rho_{Cu}^{298K}$$

$$T_2 = \frac{\rho_2 - \rho_1}{\alpha \rho_1} + T_1$$
 $T_2 = \frac{1.7 * 10^{-8} - 2.65 * 10^{-8}}{0.0043 * 2.65 * 10^{-8}} + 298 = 215 K$

Exemple: battérie


Principe de fonctionnement:

Réaction d'oxydoréduction


- réduction de l'oxyde de fer : $Fe_2O_3 + 6 e^- \rightarrow 2 Fe + 3 O^{2-}$
- oxydation de l'aluminium : 2 Al + 3 $O^{2-} \rightarrow Al_2O_3 + 6 e^{-}$

Quelques potentiels redox standard à 25°C

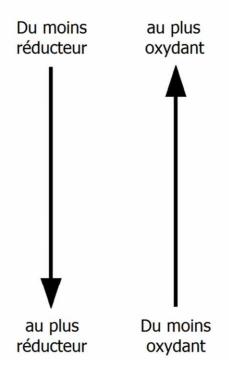
	Réducteur	Oxydant	E° (V)
Or	Au	Au ³⁺	1,50
Eau	H ₂ O	O ₂	1,23
Mercure	Hg	Hg ²⁺	0,85
Argent	Ag	Ag ⁺	0,80
lon fer II	Fe ²⁺	Fo ³⁺	0,77
Cuivre	Cu	Cu ²⁺	0,34
Dihydrogène	H ₂	H⁺	0
Plomb	Pb	Pb ²⁺	-0,13
Etain	Sn	Sn ²⁺	-0,14
Nickel	Ni	Ni ²⁺	-0,23
Cobalt	Co	Co ²⁺	-0,29
Cadmium	Cd	Cd ²⁺	-0,40
Fer	Fe	Fe ²⁺	-0.44
Zinc	Zn	Zn ²⁺	-0,76
Aluminium	Al	Al ³⁺	-1,67
Magnésium	Mg	Mg ²⁺	-2,37
Sodium	Na	Na ⁺	-2,71
Potassium	K	K ⁺	-2,92
Lithium	Li	Li ⁺	-3,02

Schématique d'une batterie

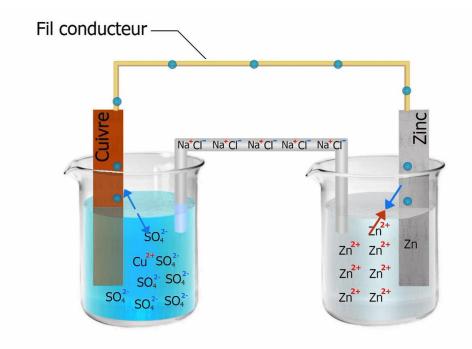
Question (5 min):

Dans quelle partie on trouve une conduction ionique?

Exemple: battérie


Principe de fonctionnement:

Réaction d'oxydoréduction


- réduction de l'oxyde de fer : $Fe_2O_3 + 6 e^- \rightarrow 2 Fe + 3 O^{2-}$
- oxydation de l'aluminium : 2 Al + 3 $O^{2-} \rightarrow Al_2O_3 + 6 e^{-}$

Quelques potentiels redox standard à 25°C

	Réducteur	Oxydant	E° (V)
Or	Au	Au ³⁺	1,50
Eau	H ₂ O	O ₂	1,23
Mercure	Hg	Hg ²⁺	0,85
Argent	Ag	Ag ⁺	0,80
lon fer II	Fe ²⁺	Fe ³⁺	0,77
Cuivre	Cu	Cu ²⁺	0,34
Dihydrogène	H ₂	H ⁺	0
Plomb	Pb	Pb ²⁺	-0,13
Etain	Sn	Sn ²⁺	-0,14
Nickel	Ni	Ni ²⁺	-0,23
Cobalt	Co	Co ²⁺	-0,29
Cadmium	Cd	Cd ²⁺	-0,40
Fer	Fe	Fe ²⁺	-0.44
Zinc	Zn	Zn ²⁺	-0,76
Aluminium	Al	Al ³⁺	-1,67
Magnésium	Mg	Mg ²⁺	-2,37
Sodium	Na	Na ⁺	-2,71
Potassium	К	K ⁺	-2,92
Lithium	Li	Li ⁺	-3,02

Schématique d'une batterie

Question (5 min):

Dans quelle partie on trouve une conduction ionique?

Electrolyte