Homework 2

Short questions

- 1. Apply the first law of the thermodynamics to (a) a closed system (b) an isolated system. Write an expression for the change of the internal energy of each system.
- 2. Which of the following are state functions? (1) Volume (2) Work (3) Density
- 3. The higher the internal energy a system has, in general, the more capacity it has to do work. True or false? Please briefly explain.
- 4. If you heat a copper bar and its temperature goes from T₁ to T₂ (assuming T₂>T₁), the change of entropy of the copper bar is positive. True or false? Please use the second law of thermodynamics to briefly explain your answer.
- 5. How is it possible that one can boil water without changing the entropy of the universe?
- 6. The work that is performed by the expansion of a system composed of 1 mole of ideal gas is always numerically equal to the heat that is absorbed by the system. True or false?
- 7. The internal energy of a system and its surrounding is conserved during an irreversible process. True or false?
- 8. According to the second law of thermodynamics, one cannot realize a process adiabatically that results in a decrease in entropy. True or false?
- 9. For any closed system in a reversible isothermal process, it is always true that $q = T\Delta S$. True or False?

Exercise 1

One mole of an ideal gas is expanded from a volume of 1 L to a volume 2 L at a constant temperature of 20°C.

- a. The gas is expanded reversibly.
- b. The gas is expanded **irreversibly** against a constant external pressure equal to the final pressure of the gas.
- c. The gas is expanded against zero external pressure (free expansion).

In all cases, calculate the work performed by the gas. For which case the work is the largest/smallest? Does your result obey the second law of thermodynamics? Please explain.

Exercise 2

An elastomer is a polymer that can stretch and contract.

In a perfect elastomer the force opposing extension is proportional to the displacement x from the resting state of the elastomer, so $|F| = k_f x$, where k_f is a constant. But suppose that the restoring force weakens as the elastomer is stretched, and $k_f(x) = a - bx^{1/2}$. Evaluate the work done on extending the polymer from x=0 to a final displacement l.