
Homework 5 solutions 
 

1. Short questions  
 
The following questions test the basic concepts of classical thermodynamics. When giving your 
answer, please provide a brief explanation on how you were led to this answer. 

 
a. In the comic song by Flanders and Swann about the laws of thermodynamics, they summarize 

the first law by the statement: “Heat is work and work is heat.” Is this statement correct based on 
your understanding of the first and second law of thermodynamics? Explain your reasoning with 
regards to the two laws. 

 
According to the first law, ΔU=ΔQ+ΔW, where only U is a state function. Therefore, having 
ΔQ=5 and ΔW=2 or ΔQ=2 and ΔW=5 could both lead to the same final state. In that sense, we 
can “convert” heat to work and vice versa, so we could say that the quote is accurate. 
On the other hand, Kelvin’s formulation of the second law states that it is not possible to have a 
process whose sole effects are to completely convert heat into work. Therefore, according to the 
second law, the quote would be inaccurate. 
 

b. What is the difference between an adiabatic process and an isentropic one (i.e. a process at 
constant entropy)? 

 
 During an adiabatic process, no heat is exchanged and thus ΔQ=0. 

In a process at constant entropy, ΔS=0. 
If the process is reversible, δQ=TdS according to the second law and thus a change in heat means 
a change in entropy. Thus, for the special case of reversible processes, the two concepts are the 
same. For irreversible processes, this is not true anymore. 

 
c. The change of Gibbs free energy for 1 mole of water at 2 and 10 degrees Celsius is about 50 J. 

Can you approximate the change in the Helmholtz free energy of the same system? Would your 
method work if it were a gas in question? 

 
The Gibbs and the Helmholtz free energy are related by A = G – pV. 
Since there is no mention of the pressure in the text, we assume that the heating process is taking 
place at constant pressure (most likely: ambient pressure). For such processes, the change in the 
Gibbs and Helmholtz free energy between the initial and final state are related by: 

𝛥𝛥𝐴𝐴 = 𝛥𝛥𝛥𝛥 − 𝑝𝑝𝑝𝑝𝑝𝑝 
For most condensed materials like solids and liquids, the change in the volume due to a change 
in temperature by 8 degrees Celsius is not going to be significant, and we can thus drop the second 
term (this is especially true for water which first contracts up to 4 degrees Celsius, which 
compensates some of the expansion afterwards). We can this approximately say that 

𝛥𝛥𝐴𝐴 ≈ 𝛥𝛥𝛥𝛥 = 50𝐽𝐽 
For a gases, the change in volume would typically be larger by many orders of magnitude. Thus, 
neglecting the change in volume would not be acceptable. 

 
 
 
 
 
 
 

  



 
d. i. Consider a binary mixture of the components A and B. The figure below shows the total volume 

per mole, i.e. 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡/𝑛𝑛, as a function of the concentration 𝑥𝑥𝐴𝐴. Which quantity do the endpoints (red 
ponts on the plot) correspond to? 

 

 
 

The height of the endpoints simply are the molar volumes of the pure substances B (at 𝑥𝑥𝐴𝐴 = 0) 
and A (at 𝑥𝑥𝐴𝐴 = 1), respectively. 

 
ii. Based on the mixture above, plot qualitatively the change of volume of mixing per mole ∆𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉

∑ 𝑛𝑛
 

as a function of the mole fraction 𝑥𝑥𝐴𝐴 and label both axes. Draw the tangent of the curve at 𝑥𝑥𝐵𝐵 =
0.3 and annotate the intercepts with the y axis. 
 

 
 

 
  



 
2. Entropy of the universe  

 
While walking along Lac Leman one summer day, Pierre spots a crumpled-up aluminium can whose 
mass is 100 grams. It has been sitting in the sun all day and it is at a temperature of 80 ºC. Pierre is 
not thinking about the environment and throws the hot aluminium can into the lake, which has a 
temperature of 20 ºC. Calculate the change of entropy of the universe after the can has finished 
transferring its energy into the lake. 

 

Data: The specific heat capacity of aluminium is 890 𝐽𝐽
𝑘𝑘𝑔𝑔 𝐾𝐾

. 
 
The change of the entropy of the universe is determined by the change in the entropy of the can and 
the change in the entropy of the lake. 
 

𝛥𝛥𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛥𝛥𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛥𝛥𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
 
The change in the entropy of the can is calculated as following: 
 

𝛥𝛥𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇

 

→ 𝛥𝛥𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 = �
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𝛥𝛥𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 = 0.1 [𝑘𝑘𝑘𝑘] ⋅ 890 �
𝐽𝐽

𝑘𝑘𝑘𝑘 ⋅ 𝐾𝐾�
⋅ln�

293.15 [𝐾𝐾]
353.15[𝐾𝐾]�  = −16.6 �

𝐽𝐽
𝐾𝐾�

 

 
The change in the entropy of the lake is calculated as following: 
 

𝛥𝛥𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

= −
𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 

→ 𝛥𝛥𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
𝑇𝑇𝑓𝑓

𝑇𝑇𝐼𝐼
−
𝜕𝜕𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

= �
𝑇𝑇𝐹𝐹

𝑇𝑇𝐼𝐼
−
𝑚𝑚 ⋅ 𝑐𝑐 ⋅ 𝑑𝑑𝑑𝑑
𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 

 
We assume the temperature of the lake to be constant as the lake is playing the role of a heat reservoir 
in this problem. Thus 
 

𝛥𝛥𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −
1

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
⋅ �
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𝛥𝛥𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = − 0.1 [𝑘𝑘𝑘𝑘] ⋅ 890 �
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Thus, the change of entropy of the universe after the can has finished transferring its energy into the 
lake is  
 

𝛥𝛥𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛥𝛥𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛥𝛥𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −16.6 �
𝐽𝐽
𝐾𝐾�

+ 18.2 �
𝐽𝐽
𝐾𝐾�

= 1.6 �
𝐽𝐽
𝐾𝐾�

 
 
This result agrees with the second law of thermodynamics. It also means that on top of polluting the 
lake, Pierre is also increasing the entropy of the universe by throwing the aluminum can in the lake! 
 



3. The Third Law of thermodynamics  
 
In this exercise, we will try to deepen our understanding of the third law and its experimental 
consequences. Consider two crystal structures of the same element carbon such as diamond and 
graphite, which we shall label A and B, respectively. We shall keep the pressure 𝑝𝑝 fixed. 
 

 
 
a. The figure above shows the change in the Gibbs free energy 𝛥𝛥𝐺𝐺(𝑇𝑇) between the two structures 

as a function of temperature at constant pressure. Three hypothetical curves of 𝛥𝛥𝐺𝐺(𝑇𝑇) are 
included in the figure. All curves begin at the same point at absolute zero 𝛥𝛥𝐺𝐺(0). Which change 
in a thermodynamic function (other than the Gibbs free energy) does the numerical value of that 
point represent? 

 
The change in enthalpy ΔH(0), since ΔG(T) = ΔH(T) – TΔS(T) and the second term is zero for T=0.  
 
b. What happens to 𝛥𝛥𝑆𝑆(𝑇𝑇) = 𝑆𝑆𝐵𝐵(𝑇𝑇) − 𝑆𝑆𝐴𝐴(𝑇𝑇)  as 𝑇𝑇 → 0K? [based on your knowledge of 

thermodynamics] 
 
It approaches zero by the third law, since the (molar) entropy of both structures approaches the same 
value at absolute zero temperature. 
 
c. Using the previous result, what can you say about the slope of 𝛥𝛥𝐺𝐺(𝑇𝑇) = 𝐺𝐺𝐵𝐵(𝑇𝑇)− 𝐺𝐺𝐴𝐴(𝑇𝑇) 

as 𝑇𝑇 → 0K? [Hint: Δ𝐺𝐺(𝑇𝑇) = Δ𝐻𝐻(𝑇𝑇) − 𝑇𝑇Δ𝑆𝑆(𝑇𝑇). For the enthalpy difference, you can assume that 
the slope as a function of 𝑇𝑇 goes to zero as 𝑇𝑇 → 0 K.] 
 
The slope of ∆G(T) is given by ∆S(T), which approaches zero as T → 0K. Therefore, by the third 
law, the slope must approach zero. 

 
d. The figure above shows three possible curves for the measured change in Gibbs free energies as 

a function of the temperature. Which of the three curves is thus most likely to be obtained 
experimentally? Explain. 

 
The curve whose slope approaches zero as T→0K is most likely, which is curve 1. 
 

Next, we will study how we can experimentally determine the change of entropy between two 
structures at absolute zero. 



 
e. Let us assume that the experimental heat capacities of structures A and B follows Debye’s law: 
 

𝐶𝐶𝑝𝑝,𝐴𝐴(𝑇𝑇) = 𝑎𝑎𝑇𝑇3,   𝐶𝐶𝑝𝑝,𝐵𝐵(𝑇𝑇) = 𝑏𝑏𝑇𝑇3 
 
Using this, express the entropy of A and B as a function of temperature and the constants 𝑎𝑎, 𝑏𝑏. 
Consider that the entropies at absolute zero are 𝑆𝑆𝐴𝐴,0: = 𝑆𝑆𝐴𝐴(𝑇𝑇 = 0) and 𝑆𝑆𝐵𝐵,0 = 𝑆𝑆𝐵𝐵(𝑇𝑇 = 0). (Hint: 
Express the heat capacity using the entropy first) 

 
The heat capacities are related to the entropy by: 

𝐶𝐶𝑝𝑝(𝑇𝑇) = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑝𝑝

=  𝑇𝑇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝

  

Dividing by the temperature and integrating both sides, we obtain 

𝑆𝑆𝐴𝐴(𝑇𝑇) = 𝑆𝑆𝐴𝐴(0) + �
𝑇𝑇

0

𝐶𝐶𝑝𝑝,𝐴𝐴

𝑇𝑇
𝑑𝑑𝑑𝑑 = 𝑆𝑆𝐴𝐴,0 +

𝑎𝑎𝑇𝑇3

3
 

𝑆𝑆𝐵𝐵(𝑇𝑇) = 𝑆𝑆𝐵𝐵(0) + �
𝑇𝑇

0

𝐶𝐶𝑝𝑝,𝐵𝐵

𝑇𝑇
𝑑𝑑𝑑𝑑 = 𝑆𝑆𝐵𝐵,0 +

𝑏𝑏𝑇𝑇3

3
 

 

f. At the temperature 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 of equilibrium between A and B, we can determine the change of 
entropy between the two structures from heat capacities: 

 
𝑆𝑆𝐵𝐵�𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� − 𝑆𝑆𝐴𝐴�𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� = 𝛥𝛥𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 
Use this relation to express 𝛥𝛥𝑆𝑆0 = 𝑆𝑆𝐵𝐵,0 − 𝑆𝑆𝐴𝐴,0 at absolute zero as a function of 
𝛥𝛥𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑎𝑎, 𝑏𝑏. 

 
𝛥𝛥𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑆𝑆𝐵𝐵�𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� − 𝑆𝑆𝐴𝐴�𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� 

=  𝑆𝑆𝐵𝐵,0 +
𝑏𝑏𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3

3
− 𝑆𝑆𝐴𝐴,0 −

𝑎𝑎𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3

3
= 𝛥𝛥𝑆𝑆0 +

(𝑏𝑏 − 𝑎𝑎)𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3

3
 

Thus: 𝛥𝛥𝑆𝑆0 = 𝛥𝛥𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −  
(𝑏𝑏−𝑎𝑎)𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

3

3 = 𝛥𝛥𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 
(𝑎𝑎−𝑏𝑏)𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

3

3   
 

g. For two structures of Phosphine, the experimental parameters for 1 mole of substance are 
𝛥𝛥𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 3.75 J/K, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 49.43K, 𝑎𝑎 = 1.09 ⋅ 10−4 J/K4 and 𝑏𝑏 = 2.02 ⋅ 10−4 J/K4. Calculate 
the change of entropy at absolute zero. Discuss the result. 

 
Plugging in to the previous formula results in 𝛥𝛥𝑆𝑆0 = −0.012𝐽𝐽/𝐾𝐾. This is indeed significantly 
smaller than 𝛥𝛥𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, and its discrepancy with the true value zero (as ∆S = 0 at T = 0K) likely 
comes from measurement errors. 

 
Finally, we look at an interesting application of these ideas. 
 
h. The material SiO2 comes in crystalline α-quartz and β-quartz structures as well as an amorphous 

state (a glass). If we repeat the same experiment as above, the change of entropy at absolute zero 
between the two crystalline structures 𝑆𝑆𝛼𝛼 − 𝑆𝑆𝛽𝛽 goes to zero, but the change of entropy between 
the amorphous and the crystalline states 𝑆𝑆𝛼𝛼 − 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑆𝑆𝛽𝛽 − 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 remains finite. What do 
these experimental results tell us? In the initial figure showing the curves for 𝛥𝛥𝐺𝐺(𝑇𝑇), which of 



the curves could correspond to the change of the Gibbs free energy between the amorphous and 
the crystalline structures?  

 
[This sub-question h gives 2 extra-bonus points] 
 
 Since the third law states that the entropy difference should go to zero as T→0, the 
experimental results suggest that the third law does not apply to the glassy state of SiO2, 
although it does to the two crystalline phases. 
In the initial figure, curve 2 shows a behavior that could correspond to the Gibbs free energy 
difference between the amorphous and the crystalline phases. Curve 3 strictly speaking has an 
infinite slope at T=0, but since this is not completely clear from the figure, if someone says that 
both curves 2 and 3 would work they should get the full points as well. 

 
  



 
4. Thermodynamics of electrochemical cells  

 

In general, an electrochemical cell is a simple device in which an electric current (a flow of electrons 
through a circuit) can be produced by two different types of chemical reaction. In the case of voltaic 
cells (also known as galvanic cells), the electric current is produced by a spontaneous chemical 
reaction, whereas in the case of electrolytic cells a non-spontaneous reaction occurs. 
 
The objective of this exercise is to determine which cell is described by the following thermodynamic 
properties and understand its thermodynamic properties. 
 
We consider the cell to provide a positive electromotive force 𝜀𝜀 that enables a transfer of a quantity 
of positive charge 𝑑𝑑𝑍𝑍 to an external circuit. Under this convention, the electrical work is defined by: 

𝛿𝛿𝑤𝑤𝑒𝑒𝑒𝑒 = −𝜀𝜀𝜀𝜀𝜀𝜀 
Consider the system to be closed. 
 
 
a. Write the differential form of the enthalpy. 

 
𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝜀𝜀𝜀𝜀𝜀𝜀 

 
b. Write the differential form of the Gibbs free energy. 

 
𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝜀𝜀𝜀𝜀𝜀𝜀 
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From now on, assume that the process is taking place under isothermal and isobaric conditions. 
 
d. Determine the change in the enthalpy 𝛥𝛥𝐻𝐻 with respect to the change of charge ∆𝑍𝑍. Note that the 

electromotive force is only temperature-dependent (𝜀𝜀 = 𝜀𝜀(𝑇𝑇)). 
 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝜀𝜀𝜀𝜀𝜀𝜀 = ⏞𝑝𝑝 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐→𝑑𝑑𝑑𝑑=0𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜀𝜀𝜀𝜀𝜀𝜀 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑇𝑇

= 𝑇𝑇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇
− 𝜀𝜀 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑇𝑇

= −�𝜀𝜀 − 𝑇𝑇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑍𝑍
� 

Since 𝜀𝜀 = 𝜀𝜀(𝑇𝑇) 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑇𝑇,𝑉𝑉

= − �𝜀𝜀 − 𝑇𝑇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 

Thus, we have 



�
𝐻𝐻

𝐻𝐻0
𝑑𝑑𝑑𝑑 = −�

𝑍𝑍

𝑍𝑍0
�𝜀𝜀 − 𝑇𝑇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑 

𝛥𝛥𝛥𝛥 = −�𝜀𝜀 − 𝑇𝑇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�𝛥𝛥𝛥𝛥 

 
e. It has been experimentally verified that the electromotive force varies linearly with temperature 

in this case. Draw, qualitatively, a plot of epsilon as a function of temperature and indicate which 
thermodynamic quantities i) the slope and ii) the intercept with the y axis of this curve relate to. 

 

 
 

f. Starting from the definition of the Gibbs free energy, calculate 𝛥𝛥𝛥𝛥. Which of the two cells has a 
thermodynamic behavior that is consistent with your results? Explain. 

 
𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝜀𝜀𝜀𝜀𝜀𝜀 

As we assume that the process is occurring under isobaric and isothermal conditions, we have 𝑑𝑑𝑑𝑑 = 0 
and 𝑑𝑑𝑑𝑑 = 0. Thus, we get 
 

𝑑𝑑𝑑𝑑 = −𝜀𝜀𝜀𝜀𝜀𝜀 
𝛥𝛥𝐺𝐺 = −𝜀𝜀𝜀𝜀𝜀𝜀 

 
As both the electromotive force 𝜀𝜀 and the change in charge 𝛥𝛥𝑍𝑍 are positive, we have 𝛥𝛥𝐺𝐺 < 0, which 
means the process is spontaneous and thus that the thermodynamic behavior consistent with this result is 
the behavior of a voltaic/galvanic cell. 

 
Finally, lets calculate how efficient this electrochemical cell can be. It is reminded that the efficiency 
is related to the cell’s conversion ability of its energy (which in the form of chemical energy) to 
electric energy. 
 
g. Consider that the cell generates an electromotive force of 𝜀𝜀 = 1.015 𝑉𝑉 at the temperature of 0 ºC 

and at atmospheric pressure. From the measurement of 𝜀𝜀 as a function of temperature the 
derivative at 0 ºC can be determined: �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑝𝑝,𝑍𝑍

= −4.02 10−4 𝑉𝑉
𝐾𝐾

. Using these data, calculate the 

change of enthalpy of the cell, assuming that the change of charge is equal to 2 C. What part of 
heat produced in the cell cannot be used to perform work? In other words, do you think the cell 
is efficient? [Hint: Remember what are the physical meanings of 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥.] 
Data: 1 V = 1 J/C where C is Coulomb (the unit of charge). 
 
From d), we have 



 

𝛥𝛥𝛥𝛥 = −�𝜀𝜀 − 𝑇𝑇
𝑑𝑑𝜀𝜀
𝑑𝑑𝑑𝑑
�𝛥𝛥𝛥𝛥 

𝛥𝛥𝐻𝐻 = −�1.015[𝑉𝑉] − 273.15[𝐾𝐾] ⋅ �−4.02 ⋅ 10−4 �
𝑉𝑉
𝐾𝐾��� ⋅ 2[𝐶𝐶] = −2.25 [𝐽𝐽] 

 
The maximum work that can be obtained from a reversible cell at constant pressure and 
temperature is equal to 𝛥𝛥𝐺𝐺. 
 
The part of the enthalpy of reaction which can not be changed into work is equal to 
 

𝛥𝛥𝐻𝐻 − 𝛥𝛥𝛥𝛥 = 𝑇𝑇𝑇𝑇𝑇𝑇 = −�𝜀𝜀 − 𝑇𝑇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�𝛥𝛥𝛥𝛥+ 𝜀𝜀𝜀𝜀𝜀𝜀 = 𝑇𝑇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝛥𝛥𝛥𝛥 

= 273.15[𝐾𝐾] ⋅ �−4.02 ⋅ 10−4 �
𝑉𝑉
𝐾𝐾�

 � ⋅ 2[𝐶𝐶] = −0.22 [𝐽𝐽] 
 
This corresponds to 10% of the enthalpy of reaction. This means that 90% can be used to perform 
electrical work, meaning the cell has a 90% efficiency. 


