#### Homework 4

# **Exercise 1. Enthalpy of a binary mixture**

In a binary mixture, enthalpy  $H(p, S, n_A, n_B)$  is a homogeneous function of degree n=1.

- a. Write down the equivalence of  $H(p, S, n_A, n_B)$  in terms of its variables as a homogeneous function of degree n=1 (using the extra variable  $\lambda$ ).
- b. Write the fundamental equation for the enthalpy and identify its partial derivatives.
- c. Write the full expression of the partial molar enthalpy of component  $n_A$ .

# Exercise 2. Partial molar volume of a salt-water mixture

The partial molar volume of MgCl<sub>2</sub> in a dilute solution of water is -1.4 cm<sup>3</sup>/mol. Calculate the volume change when 0.2 mol of the salt is added to a large amount of water. Comment on the reason behind this behavior.

### Exercise 3. Water-ethanol mixture

The difference between the volume of 1 mol of mixture of water and ethanol and the volume of its species taken separately at the same pressure and temperature (1atm, 20°C), is given in terms of the mol fraction of ethanol,  $x_e$ , by the equation:

$$\frac{\Delta_{mix}V}{\sum n} = K_1 x_e + K_2 x_e^{3/2} + K_3 x_e^2 + K_4 x_e^{5/2} + K_5 x_e^3$$

When volumes are expressed in cm<sup>3</sup>, the coefficients are:

$$K_1 = 1.0$$
,  $K_2 = -52.0$ ,  $K_3 = 141.5$ ,  $K_4 = -141.0$ ,  $K_5 = 50.2$ 

- a. Calculate the molar volume of a solution at  $x_e$ =0.2
- b. Provide a graphical representation of  $\frac{\Delta_{mix}V}{\sum n}$  (you could do it in excel if you wish). Find the partial molar volumes of water and ethanol at  $x_e$ =0.2
- c. Find the expressions for the partial molar volumes of water and ethanol and represent them graphical on the same plot as in question b.

Use 
$$m_w = 18.0 \text{ g}$$
,  $m_e = 46.0 \text{ g}$ ,  $v_w = 18.0 \text{ cm}^3$ , and  $v_e = 58.3 \text{ cm}^3$ 

## **Exercise 4. Generalized Gibbs-Duhem equation**

In this exercise, we are going to study a second method to compute the partial molar volume of a binary system at arbitrary concentrations using experimental data.

Consider a binary mixture of substances  $A = \text{trichloromethane (CHCl}_3)$  and B = propanone. The molar volume of the mixture at different concentrations (for 298K) are provided in the following table:

| x (CHCl <sub>3</sub> )             | 0     | 0.194 | 0.385 | 0.559 | 0.788 | 0.889 | 1.000 |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| $v  (\text{cm}^3 \text{mol}^{-1})$ | 73.99 | 75.29 | 76.50 | 77.55 | 79.08 | 79.82 | 80.67 |
| $V (cm^3) (at$                     |       |       |       |       |       |       |       |
| constant $n_B$ )                   |       |       |       |       |       |       |       |
| $n_A$ (mol)                        |       |       |       |       |       |       |       |

We now want to calculate the partial molar volumes  $\bar{V}_A$ ,  $\bar{V}_B$  and check that the values we get are consistent with the laws of thermodynamics.

- a) We start by calculating  $\overline{V}_A$ . For this, we need the volume V and the number of moles of trichloromethane  $n_A$  at constant  $n_B$ . We can set  $n_B = 1$ mol. Try to express  $n_A$  as a function of the concentration  $x_A = \frac{n_A}{n_A + n_B}$  and make a table of its values for the experimentally measured points (you can use the table above).
- b) Derive a formula to calculate the volume V from either  $n_A$  or  $x_A$  and make a table of its values like for  $n_A$ .
- c) Use the results of the previous exercises to graphically determine  $\bar{V}_A$ .
- d) Repeat the same steps to calculate  $\bar{V}_B$  from the same data. What is the partial molar volume of propanone in trichloromethane at x = 0.5?
- e) Now, we want to make sure that our values are consistent with the laws of thermodynamics, because  $\bar{V}_A$  and  $\bar{V}_B$  are not independent! Write the generalized Gibbs—Duhem equation for the partial molar volume at constant pressure and temperature and show that  $d\bar{V}_B = -\frac{n_A}{n_B}d\bar{V}_A$ . Are the results obtained for the two partial molar volumes consistent with this equation?
- f) Rewrite the above expression using the concentrations  $x_A = \frac{n_A}{n_A + n_B}$  and  $x_B = \frac{n_B}{n_A + n_B}$  instead. Show that the partial molar volume of the component B can be obtained if the partial molar volume of A is known for all compositions up to the one of interest by deriving this formula from part 1:

$$\overline{V_B} = v_B - \int_{v_A}^{\overline{V_A}} \frac{x_A}{1 - x_A} d\overline{V_A}$$

Is this expression consistent with the values of because  $\bar{V}_A$  and  $\bar{V}_B$  that we obtained?