Homework 1 Solution

Exercise 1

In thermodynamics a function in the form of $y = x \ln x$ is used extensively. Calculate the first and second derivatives of the function.

Using the product rule, we get

$$y' = lnx + 1 \quad y'' = \frac{1}{x}$$

Exercise 2

You are given the function $y = \frac{1}{6}x^3 - x^2 - 6x + 2$

a) Calculate the local minimum and maximum of the function.

$$y = \frac{1}{6}x^3 - x^2 - 6x + 2$$

$$\frac{dy}{dx} = \frac{1}{2}x^2 - 2x - 6 \; ; \quad \frac{dy}{dx} = 0 \quad \Rightarrow \quad \frac{1}{2}x^2 - 2x - 6 = 0 \quad x = -2 \text{ or } 6$$

$$y(-2) = \frac{26}{3} \quad ; \quad y(6) = -34$$

b) Calculate the inflection point of the function.

$$y'' = x - 2$$
 $y'' = 0$ $\rightarrow x = 2$ $y(2) = -\frac{28}{3}$

Exercise 3

In this exercise, we introduce some mathematical notation and concepts that are used in thermodynamics:

If we have a function like $f(x, y) = 3x^2 + 4xy - 7y^2$, we can compute the partial derivatives

$$\left(\frac{\partial f}{\partial x}\right)_{y} = 6x + 4y, \qquad \left(\frac{\partial f}{\partial y}\right)_{x} = 4x - 14y$$

Using these, the (total) differential of f, also called the total derivative of f, is defined as

$$df = (6x + 4y)dx + (4x - 14y)dy$$

In general

$$\mathrm{d}f = \left(\frac{\partial f}{\partial x}\right)_y \mathrm{d}x + \left(\frac{\partial f}{\partial y}\right)_x \mathrm{d}y$$

Please note that in Analysis III, you will learn about gradients of vector fields which are very closely related but have a different notation.

a) Compute the total derivative of $f(x, y) = x^3y$.

The partial derivatives are $\left(\frac{\partial f}{\partial x}\right)_y = 3x^2y$ and $\left(\frac{\partial f}{\partial y}\right)_x = x^3$. So the total derivative becomes $df = 3x^2y \ dx + x^3 \ dy$.

- b) Compute the total derivative of $f(x, y, z) = x^2y + y^2z + z^4$. Also with three variables, we can use the same method as before. The partial derivatives are $\left(\frac{\partial f}{\partial x}\right)_{y,z} = 2xy$, $\left(\frac{\partial f}{\partial y}\right)_{x,z} = x^2 + 2yz$ and $\left(\frac{\partial f}{\partial z}\right)_{x,y} = y^2 + 4z^3$. The total derivative therefore is $df = 2xy \ dx + (x^2 + 2yz) \ dy + (y^2 + 4z^3) \ dz$.
- c) At the intuitive level, df represents how much f (for example, the energy of a material) changes if we change the inputs x and y (for example, x and y could be the temperature and pressure) by very tiny amounts dx and dy. How can we interpret the two terms in $df = \left(\frac{\partial f}{\partial x}\right)_{x} dx + \left(\frac{\partial f}{\partial y}\right)_{x} dy$?

The function f(x, y) depends on two variables. Therefore, f can change either because x changes or because y changes. The partial derivative $\left(\frac{\partial f}{\partial x}\right)_y$ measures how sensitive f is with respect to changes in x. Thus, $\left(\frac{\partial f}{\partial x}\right)_y dx$ represents how much f changes due to a

tiny change dx of the first input x. Similarly, the second term represents how much f changes due to a tiny change dy of the second input y.

Exercise 4

The ideal gas law states: pV = nRT

a) Calculate the following partial derivatives:

$$\left(\frac{\partial p}{\partial T}\right)_{V}$$
; $\left(\frac{\partial T}{\partial V}\right)_{p}$; $\left(\frac{\partial V}{\partial p}\right)_{T}$

$$pV = nRT$$

$$p = \frac{nRT}{V} \rightarrow \left(\frac{\partial p}{\partial T}\right)_{V} = \frac{nR}{V}$$

$$T = \frac{pV}{nR} \rightarrow \left(\frac{\partial T}{\partial V}\right)_{p} = \frac{p}{nR}$$

$$V = \frac{nRT}{p} \rightarrow \left(\frac{\partial V}{\partial p}\right)_{T} = -\frac{nRT}{p^{2}}$$

b) What does the following equation equal to?

$$\left(\frac{\partial p}{\partial T}\right)_{V} \cdot \left(\frac{\partial T}{\partial V}\right)_{p} \cdot \left(\frac{\partial V}{\partial p}\right)_{T} = ?$$

$$\left(\frac{\partial p}{\partial T}\right)_{V} \cdot \left(\frac{\partial T}{\partial V}\right)_{p} \cdot \left(\frac{\partial V}{\partial p}\right)_{T} = \frac{nR}{V} \cdot \frac{p}{nR} \cdot \left(-\frac{nRT}{p^{2}}\right) = -1$$

This is the famous triple product rule or Euler's chain rule!

c) Calculate the total derivative of pressure as a function of T and V.(dp = ?)

$$dp = \left(\frac{\partial p}{\partial T}\right)_{V} dT + \left(\frac{\partial p}{\partial V}\right)_{T} dV = \left(\frac{nR}{V}\right) dT + \left(-\frac{nRT}{V^{2}}\right) dV$$