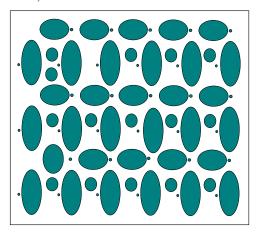
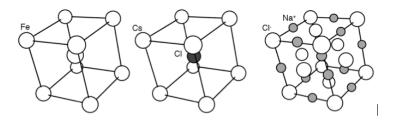
Matériaux: de la chimie aux propriétés

Série N° 4 — Semaine du 30 Septembre 2024 Structures des matériaux

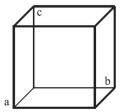

1. Vrai ou faux?

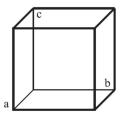
		Vrai	Faux
a.	La viscosité d'un liquide compris entre deux plaques de surface S peut se mesurer par le rapport entre la force F nécessaire pour cisailler une couche de ce liquide à une vitesse v divisée par la surface S, et la vitesse v, divisée par la distance d entre les 2 plaques.		
b.	En général (sauf pour quelques exceptions comme l'eau), la masse volumique d'un matériau augmente lorsque l'on passe de l'état gazeux à l'état liquide, puis à l'état solide.		
c.	En refroidissant un matériau rapidement depuis l'état liquide, il est possible de le "figer" dans une structure amorphe qui n'est pas son état de plus basse énergie ("état métastable").		
d.	Comme on peut changer le motif à l'envie, on peut trouver une infinité de réseaux de Bravais en trois dimensions.		
e.	Dans une structure cubique, toutes les droites d'un plan (hkl) sont perpendiculaires à la direction [hkl].		
f.	Les métaux cristallisent dans des structures plutôt compactes, d'où leurs masses volumiques élevées.		
g.	Tous les solides ont un arrangement régulier d'atomes (ordre à longue distance).		
h.	Pour caractériser la structure cristallographique d'un matériau, on peut utiliser des rayons X de longueur d'onde comparable à la distance caractéristique entre les atomes de ce matériau, soit de l'ordre de 0.1 nm (ou $1=10^{-10}m$).		
i.	Une structure cubique à faces centrée comporte 4 atomes par maille.		
j.	Une structure polycristalline, ou une poudre faite de petits monocristaux, donnera une image de diffraction formée de points distincts.		

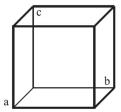

2. Motif, réseau et défauts

Matériaux: de la chimie aux propriétés

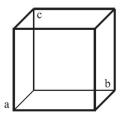
- a. Dessinez la maille élémentaire et le motif du réseau bidimensionnel ci-dessous et déterminez son type (hexagonal, rectangulaire ou carré).
- b. Le réseau présente des défauts ponctuels. Identifiez-les et indiquez les sur le dessin (il y en a trois, on verra dans le cours 4.2 et suivants le role de ces défauts...).

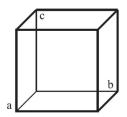


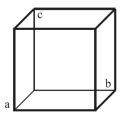

c. Déterminez le type de réseau cristallin (cubique, cubique centré ou cubique à faces centrées) et les motifs des structures tridimensionnelles ci-dessous. Donnez pour chaque le nombre de motifs par maille. Solution: 2 atomes par maille, 1 motif par maille, 4 motifs par maille.

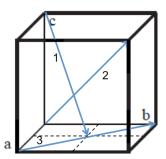


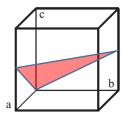
3. Plans et directions

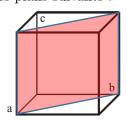

a. Dessinez les directions [101], [1 $\overline{1}$ 0] et [1 $\overline{1}$ 2] ainsi que les plans (100), (10 $\overline{1}$) et (11 $\overline{1}$) dans les cubes ci-dessous.





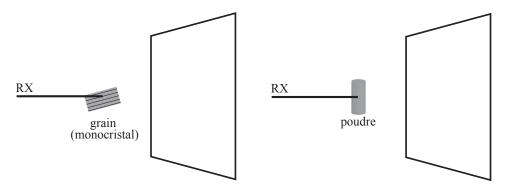

Matériaux: de la chimie aux propriétés



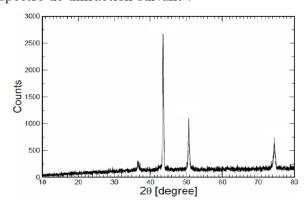


b. Trouvez les indices de Miller des directions (notées 1, 2 et 3) représentées dans le cube ci-dessous. Quel est l'angle entre les directions 1 et 3? A quel plan appartiennent-elles?

c. Quels sont les indices de Miller des plans suivants :


4. Nickel

Le nickel est un élément cubique à faces centrées.


- a. Etant donné sa masse molaire $M_A=58.7\,\mathrm{g\,mol^{-1}}$ et son paramètre de maille $a_0=352.4\,\mathrm{pm}$, calculez sa masse volumique théorique. Solution : $\rho=8.91\times10^3\,\mathrm{kg/m^3}$
- b. Dans un tel cristal combien de plans de la famille $\{111\}$ non-parallèles existe-t-il? Solution : 4
- c. Calculez l'angle entre ces plans. Solution : 70.52 degrés
- d. En considérant que le cristal est un empilement de sphères denses, quelle compacité (espace occupé par les atomes vs. espace total) atteint-on? Solution: 74%

5. Diffraction

On considère la diffraction d'une poudre de cuivre polycristalline sous un faisceau de rayons X de longueur d'onde λ .

- a. Pour un petit grain dont un plan donné hkl diffracte le faisceau incident, dessinez une trajectoire possible du faisceau diffracté sur le schéma de gauche ci-dessus et indiquez l'angle de diffraction sur le même schéma.
- b. Comment se présente l'ensemble des faisceaux diffractés de tous les grains situés dans le faisceau et satisfaisant la condition de Bragg (schéma de droite)?
- c. En utilisant un diffractomètre avec une longueur d'onde $\lambda{=}1.54\,\text{Å},$ on obtient le spectre de diffraction suivant :

Le paramètre de maille du cuivre vaut $3.6\,\text{Å}$. Sachant que pour un réseau CFC on observe des pics seulement pour les plans avec des indices hkl tous pairs ou tous impairs, à quelles familles de plans correspondent les 3 pics visibles (diffraction de premier ordre)? Solution: $\{111\}, \{200\}, \{220\}$

d. Si on regarde le spectre plus large (pas visible sur la figure donnée ici), on trouve encore un pic de diffraction à 2θ =89.93°. Quel pourrait être le plan qui donne ce pic de diffraction? Solution: {311}