

EXAMEN PROPEDEUTIQUE 24 JANVIER 2024

MATERIAUX : DE LA CHIMIE AUX PROPRIETES

Section Génie Mécanique

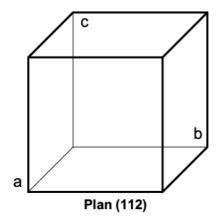
NOM:	Total des points : /
Numéro de place :	100
RAPPEL IMPORTANT	-
Vous n'avez droit à <u>aucune documentation</u> , à part le formulaire besoin de rendre avec votre copie.	remis avec l'énoncé, que vous n'avez pas
Vous avez <u>droit à une calculatrice non programmable (Type T</u> examen (montrer aux assistants dans la salle que c'est bien	
Seules les réponses développées et écrites sur ce questio pour la note. Utilisez les feuilles de brouillon à la fin pour fa réponses finales dans les cases correspondantes, et résume prévues à cet effet.	ire des calculs provisoires. Inscrivez les
Laissez les feuilles de brouillon attachées au questionnair dans chaque salle à disposition). Vous pouvez aussi supplémentaires.	
Les <u>réponses doivent être écrites LISIBLEMENT A L'ENCRE</u> au crayon sont considérées comme nulles).	(stylo-bille, feutre ou plume, les réponses
Utilisez une <u>REGLE</u> pour les traits de construction dans approximatives seront jugées comme fausses.	un graphique. Les constructions trop
<u>LISEZ ATTENTIVEMENT LES DONNEES</u> . Il y a 11 questions in A l'intérieur de chaque question, il y a aussi souvent plusieurs so autres.	dépendantes, pour un total de 100 points. us-questions indépendantes les unes des
Bon examen !	

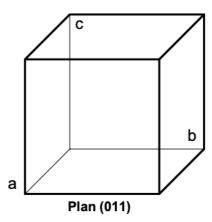
Question 1	/12
------------	-----

Cochez la réponse juste, après avoir lu **ATTENTIVEMENT** (jusqu'au bout) la question. (Attention : réponse juste +1 pt, réponse fausse -1 pt, total \geq 0 pt).

		Vrai	Faux
a.	La variation d'énergie interne lors d'une réaction chimique, ΔU est la quantité de chaleur formée ou absorbée à volume constant.		
b.	Les niveaux d'énergie de l'atome d'hydrogène varient comme -13.6eV/n², la différence d'énergie entre le niveau fondamental, n=1 et le niveau excité n=2 est de 3.4 eV.		
C.	Pour une liaison atomique modélisée par un potentiel de Lenard Jones, la valeur de la distance interatomique d'équilibre correspond à l'énergie potentielle la plus basse.		
d.	Un matériau ayant un coefficient de Poisson nul ne change pas de volume lorsqu'il est soumis à une traction uniaxiale dans le régime élastique.		
e.	Il faut plus d'énergie pour fondre 1 kg d'aluminium que pour préparer 1 kg d'aluminium à partir de l'électrolyse de l'alumine.		
f.	Dans le domaine élastique, la densité d'énergie de déformation pour un essai de traction uniaxiale est donnée par l'aire sous la courbe $\sigma(\varepsilon)$, et cette énergie est restituée lorsqu'on revient à une contrainte nulle.		
g.	Une dislocation-coin a un vecteur de Burgers perpendiculaire à la ligne de dislocation.		
h.	Les métaux ont tendance à être des éléments électropositifs, formant des anions.		
i.	Les aimants durs se distinguent des aimants doux par leur aimantation résiduelle beaucoup plus élevée.		
j.	La polarisation électrique d'un matériau est définie comme la densité de dipôles électriques, dont l'unité est donc As/m².		
k.	Les matériaux polymères sont en général moins rigides que les métaux, qui sont en général moins rigides que les céramiques.		
I.	Un matériau soumis à une contrainte uniaxiale σ_0 et qui comporte une fissure de longueur l'transverse à la direction de chargement, cassera spontanément si le produit de la contrainte par la racine carrée de Pi fois la longueur de fissure est plus grand que la ténacité du matériau.		

Question 2 Le silicium		/ 10
Le silicium est l'élément n°14 de la table pério	dique des éléments.	
2a. Quelle est sa configuration électronique?	(0.5pt)	
Configuration électronique du silicium:		
2b. Le silicium est obtenu de manière industric 2000°C en présence de carbone:	elle à partir de la silice, SiO ₂ , selon la réacti	on suivante à
SiO ₂ + 2C -> Si + 2 CO		
De quel type de réaction s'agit-il? Pourquo	i (indiquez les états d'oxydation si besoi	i n)? (1pt)
2c. La structure du silicium, analogue à celle d	du diamant, est donnée ci-dessous : Quelle est sa structure (cochez la bonne i Cubique Cubique centré Cubique à faces centr	
2d. Saabast qua la massa malaira du all'airea	Quel est le motif? Entourez le motif sur le coordonnées des atomes du motif ci-dess Motif:	sous. <i>(1pt)</i> :
2d. Sachant que la masse molaire du silicium a = 0.54 nm, calculez la masse volumique du		ille (arrondi) vaut
Masse volumique:		


2e. Le silicium peut aussi réagir à haute température avec le carbone pour former du carbure de silicium, un matériau presque aussi dur que le diamant, qui est utilisé comme abrasif dans les papiers de polissage. La structure est donnée ci-dessous:


Si	Quelle est la différence avec le Silicium pur? Quelle est la formule du carbure de silicium?	(0.5 pt) (1 pt)
	Quel est l'état d'hybridation des atomes C et Si?	(1 pt)
qui va diffuser dans le silicium (utile po diffusion du bore dans le silicium dans	silicium que l'on place dans un four, dans lequel du Bore ur la fabrication des semi-conducteurs). On connait le ces conditions là: D = 10^{-12} cm ² /s. Quel temps estimez diffuser le Bore sur une profondeur de 1 μ m? (1pt)	coefficient de
Calcul du temps de diffusion :		
composition atomique de bore dans le	s du silicium (28 g/mole) et du bore (11 g/mole), de silicium correspondant à une composition en poids of mplifier pour l'application numérique. (2pts)	
Calcul de la composition atomique Générale :):	
Application :		

Question 3

/ 5

3a. Dans la structure cubique simple, dessinez le plan (112) et le plan (011). (2 pts)

3b. Dessinez sur la structure cubique de droite ci-dessus, la droite de direction $[1\bar{1}2]$ (1pt)

3c. Sachant que le paramètre de maille vaut 2Å et que l'on observe qu'un faisceau de rayons X de longueur d'onde inconnue λ diffracte sur les plans de la famille {011} sous un angle θ = 22 deg., que vaut cette longueur d'onde λ ? (2 pt)

Calcul:		

Question 4

Chimie dans l'espace

/12

4a. Dans les véhicules spatiaux habités et la station orbitale, se pose le problème de l'évacuation du gaz carbonique CO₂ exhalé par l'équipage. Une des solutions utilisée notamment par la NASA est d'utiliser des cartouches contenant de l'hydroxyde de lithium LiOH (s) qui réagit avec CO₂ pour former du carbonate de lithium Li₂CO₃ (s) et de l'eau H₂O (l).

Un membre d'équipage exhale typiquement 12'000 L d'air par jour à P = 1 atm et $T = 35^{\circ}C$, dans lequel la pression partielle en CO_2 s'élève à $P(CO_2)=0.04$ par atm. En considérant la réaction comme totale et tous les gaz comme parfaits, on voudrait calculer quelle masse de LiOH serait nécessaire à l'absorption du dioxyde de carbone produit par une personne de l'équipage pendant 10 jours ?

(i) Pour cela, calculez d'abord le nombre de moles de CO₂ produites par la personne, en prenant l'hypothèse que la loi des gaz parfaits s'applique, avec la pression partielle de gaz carbonique: *(1pt)*

Trippotitione que la lei dee gaz partaite e applique, avec la preceien partiene de s	gaz darborngad. (1pt)
Solution:	
	n=
	11-

(ii) Ecrivez ensuite l'équation chimique équilibrée, avec la stoec	hiométrie correcte: (1pt)
LiOH (s) + CO ₂ -> Li ₂ CO ₃ (s) + H ₂ O (l)	
(iii) Calculez ensuite combien de moles de LiOH faut-il pour r masse molaire de LiOH pour calculer la masse nécessaire. (1p	
Solution:	
	Massa da LiOU.
	Masse de LiOH: kg
4b. Dans les stations spatiales, une façon de produire de hydrogène. Le principe de base est la réaction de formation de	
gazeux. (i) Equilibrez l'équation : $H_{2 (g)} + G_{2 (g)} \rightarrow H_{2}O$	(1) (1pt)
(ii) Calculer l'enthalpie molaire standard de cette réaction pour donne ΔH^f_0 (H ₂ O, I) = -285.6 kJ/mol à 298K (1pt)	la formation d'une mole de H₂O. On
Calcul:	
(iii) Calculer l'entropie libre molaire standard de la réaction, pui réaction pour la formation de l'eau selon cette réaction. On don	
S_{298K}^{0} (H ₂ , g) = 130.5 J/molK	(
S^{0}_{298K} (O ₂ , g) = 205 J/molK	
S^{0}_{298K} (H ₂ O, I) = 69.9 J/molK	
` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Calculs :	
	Résultat : $\Delta_r G^0_{298K} = \frac{kJ/mol}{}$

(iv) Est-ce que la formation de l'eau est spontanée ou pas? (0.5pt)
Réponse
(v) Interpréter le signe de l'entropie et expliquer pourquoi (0.5pt)
Réponse
4c. Il s'agit bien sûr aussi en fait d'une réaction d'oxydo-réduction, que l'on va analyser.
Une cellule de pile à hydrogène est constituée de deux électrodes poreuses séparées par un électrolyte (acide dans le cas présent), voir figure ci-contre. Un catalyseur permet la dissociation de l'hydrogène H ₂ à l'anode et son oxydation en protons. Ces derniers migrent à travers l'électrolyte jusqu'à la cathode, où ils se combinent avec les ions OH ⁻ provenant de la réduction sur un autre catalyseur de l'oxygène O ₂ . (i) Selon le texte ci-dessus (et le formulaire) écrivez les deux demi-réactions d'oxydo-réduction: (2pt)
Quel est le degré d'oxydation de l'oxygène O dans O_2 , dans H_2O , et de l'hydrogène dans H_2 et H^+ ? (1pt)
Réponse: dans O_2 : dans H_2O : , dans H_2 : , et dans H^+ :
(ii) Quelle est la Force électromotrice de cette pile, dans les conditions standard? (1pt)

Question 5 Réactions d'oxydo-réduction

/6

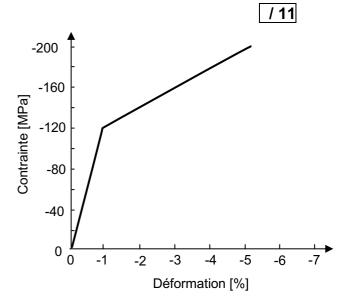

5a. Voici une photo de coque de bateau en acier, sur lequel on voit des pastilles de zinc fixées dessus. Pourquoi est ce que l'on fait cela? Cochez la bonne case. *(1pt)*

Photo deal marine	Le zinc est une anode sacrificielle qui va donc se consommer et protéger la coque en acier de la corrosion. Le zinc est une cathode sacrifielle qui va donc se consommer et protéger la coque en acier de la corrosion. Le zinc est la pour rester et va permettre de faire une réaction chimique avec l'acier en dessous qui le protège de la corrosion. Le zinc est la pour aider le bateau à se propulser et n'est pas relié à des problèmes de corrosion.	
(i) Évaluez à l'aide des potentiels standards quel méta demi-réactions, en considérant que le fer présent dans formée, dans les conditions standard: (2pt)		
Oxydation :		
Réduction :		
ΔE_0 =		
5b. Après un naufrage sur une ile déserte, et afin de petite ampoule, vous proposez de faire une pile, en préparez aussi des solutions des ions correspondar contient des ions Na+ et Cl ⁻ (eau de mer), fait dans un compactés.	récupérant du Zn et du Fe sur le bateau its dans des récipients, ainsi qu'un pont	, et vous salin qui
(i) Ecrivez l'équation d'oxydo-réduction de cette pile (e	n faisant attention à l'équilibrer): (1pt)	
(ii) On a malheureusement pas réussi à atteindre les c solutions des ions, et on a [Fe³+]= 10-2 M, et [Zn²+]= 10- ces conditions, est-ce ok pour avoir un peu de courant	¹ M. Quelle force électro-motrice peut on a	
Calcul:		

Un cube de côté a=1cm est lancé d'une hauteur h (on supposera h >> a), sur une surface plane extrêmement dure (on négligera donc la déformation de celle-ci), avec une face carrée exactement parallèle à celle-ci, sur laquelle il rebondit partiellement et est capturé. Une fois immobilisé, le cube est devenu parallépipédique, avec un coté de longueur a' plus petite qui correspond à une déformation de -1%.

Le matériau de ce cube est supposé avoir un comportement idéal élastique-plastique dont la courbe de compression (contrainte et déformation ont un signe "-" pour indiquer que l'on considère un comportement en compression) est représentée ci-contre.

6a. En vous aidant de la courbe, et notant vos calculs ci-dessous, quel est le module d'Young en compression du matériau, et son coefficient d'écrouissage? (1 pt)

E =	[GPa]
_	[မီး မျ

Calculs:

6b. Quelle est la contrainte maximale σ_{max} subie par la barre <u>durant le choc</u> sur la surface (justifiez **graphiquement** votre réponse par une construction <u>précise</u> à la règle) ? (1 pt)

6c. La section carrée de la barre après le choc est-elle changée?

Oui

(1 pt)

Pourquoi?

Non

6d. En lâchant un nouveau cube dans les mêmes conditions mais d'une autre hauteur h', on a déduit que la contrainte maximum subie par le cube lors du choc était de -160 MPa. Quelle est alors la densité d'énergie de déformation subie par le cube pendant le choc (justifiez également graphiquement vos calculs)?

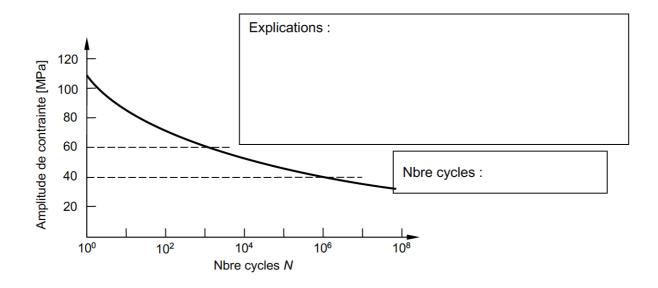
(3 pts)

 $w = [J/m^3]$

Calculs :			

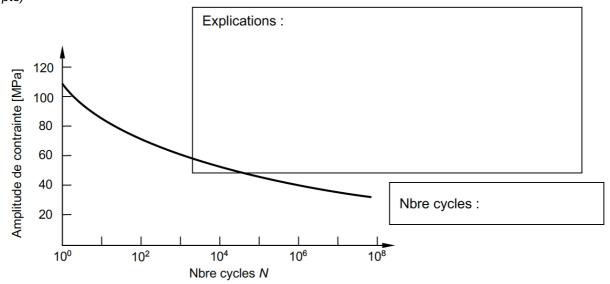
	E _{el} =	[J]		
Calculs :				
6f. En lâchant, toujours dan la densité d'énergie de déforque la masse spécifique du la densité d'énergie potentie thermiques lors du choc)?	mation au mor matériau vaut 1	ment du choc (co 10 ⁴ kg/m³, de qu	ontrainte maximum) es elle hauteur a-t-on lâch	t de 5.1 MJ/m³. Sachant é la barre (on considera
	h"=	[m	1	(3 pts)
Calculs :				

6e. Quelle serait alors l'énergie restituée par le cube, lorsqu'il rebondit? Faites un calcul et non une


construction graphique (mais vous pouvez vérifier par le graphique) (2pts)

Question 7

/ 6


On considère un matériau dont la courbe de fatigue, mesurée avec une contrainte moyenne nulle, est représentée ci-dessous.

7a. Une pièce de ce matériau est sollicitée en fatigue pendant 10⁵ cycles avec une amplitude de contrainte de 40 MPa et une valeur moyenne nulle. On augmente ensuite l'amplitude de la contrainte à 60 MPa. Combien de cycles tiendra-t-elle encore? (*Justifiez graphiquement et par un raisonnement votre réponse*). (3 pts)

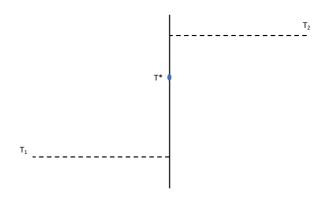
7b. On prend une nouvelle pièce sur laquelle on fait un test de fatigue avec une contrainte minimale de 35 MPa et une contrainte maximale de 75 MPa. Combien de cycles pourra-t-on faire ? (Justifiez graphiquement et par un raisonnement votre réponse).

(3 pts)

Que	stion 8								/ 9
	ous : Al p	à choix plusieu presque pur (#10							
					8a. Le	quel choisisse	ez-vous	s pour a	voir:
	⁵⁰⁰ 7	70:	00 T6		1.	la plus grand	de limite	e d'élas	ticité?
[.	400 -	/0.	20-T6						
Contrainte [N/mm²]	E 400]/ E 6082		<u>-</u> T6		2.	la plus grande ductilité ?			
<u>Z</u>	300 -					, ,			
ainte		5083-0			3.	le plus grand	 Lácroui	ممدععا	
ontr	200 -				5.	ie plus grand	i ecioui	issage	
0	100 -		1050-0		,				
	0				4.	Le module d appréciabler			
	0	0.05	0.1	0.15		oui [non	
		Déforn	nation		5.	Pourquoi ces	s alliage	es sont	-ils différents
Coeff	icient d'A	Archard :		MPa ⁻¹					(2.5 pts)
Cal	culs :								
On tr	ouve, en	i pu faire des me unités (Hv, Vic réattribuer les va	kers): 95, 20,	87 et 127. En	vous aidar				
Hv(70)20-T6)=	·		Hv(5083-0)=				
Hv(60)82-T6)=	·		Hv(1050-	O)=				
L'une	des vale	eurs peut sembl	er poser probl	lème, laquelle e	et pourquoi	à votre avis?			

8d. Et pour finir, on donne la ténacité de l'alliage 7020-T6, qui est de 27.5 MPa√m, alors que cel l'alliage 6082 T6 est de 17 MPa√m. On considère deux barreaux de ces alliages respectifs, qui sont so à une contrainte de 100MPa. Une analyse de ces barreaux a révélé des fissures tranverses de profor <i>I</i> = 500 μm. Est ce que l'on risque de casser ces barreaux sous la contrainte? <i>(2pts)</i>	oumis
Calculs:	
Réponse :	
Question 9 / 10	
On dépose un film mince d'un vernis protecteur polymère (appelé résine), d'épaisseur 1mm, sur un sut métallique, épais, en acier. Pour cela, on chauffe la pièce d'acier à 70° C, on coule la résine polymère la laisse réticuler à 70° C, puis on sort le tout du four, et on laisse refroidir. On connait les coefficien dilatation thermique de la résine, et de l'acier, que l'on va supposer constants avec la température, $\alpha = 30 \times 10^{-6} ^{\circ}$ C-1, $\alpha_{acier} = 10 \times 10^{-6} ^{\circ}$ C-1. On connait aussi les modules d'Young de la résine ($\alpha = 10^{-6} ^{\circ}$ C-1) de l'acier ($\alpha = 10^{-6} ^{\circ}$ C-1), supposés constants aussi. On suppose que le comportement mécanique l'acier n'est pas affecté par la présence du film de résine et qu'à $\alpha = 10^{-6} ^{\circ}$ C, le système est libre de contrainte.	et on its de arésine a), et ue de
9a. Calculez la déformation élastique dans la résine, quand la pièce est passée de 70 à 20°C. Est ce la couche de résine est en compression ou en traction? <i>(3pts)</i>	que
Calcul de la déformation élastique :	
9b. Calculez la contrainte dans le film de résine, et connaissant la limite d'élasticité de la résine, qui e de 30MPa, indiquez si on est bien resté dans la gamme de contrainte élastique <i>(1pt)</i>	est

9c. On prend maintenant cette pièce et on la trempe dans un bain à -30°C. Pour simplifier, on considère que toute la couche de résine extérieure est immédiatement à -30°C, et on va calculer la température d'interface entre la résine et l'acier.


Pour cela, on va d'abord évaluer la température d'interface T* entre la résine initialement à -30°C et la pièce à 20°C, qui viennent d'être mises en contact, en prenant l'hypothèse que les flux thermiques sont égaux, pour les 2 cas.

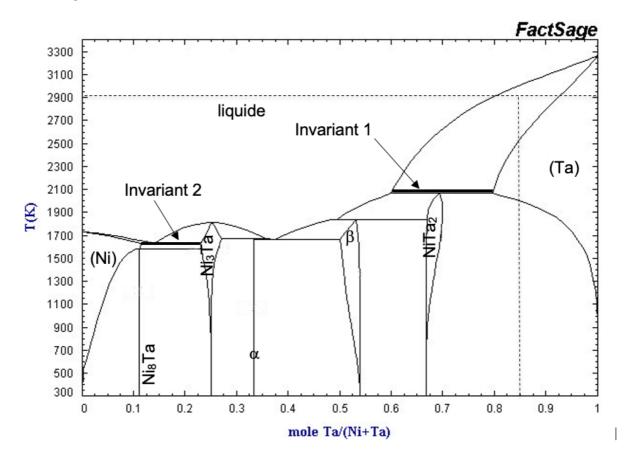
On vous donne:

krésine = 0.2 Wm⁻¹ K⁻¹,
$$\rho$$
 résine =1200 kg m⁻³, **c**p résine =1.2 Jkg⁻¹ K⁻¹

$$k_{acier} = 32Wm^{-1} K^{-1}$$
, $\rho_{acier} = 7850 kg m^{-3}$, c_{p} acier $= 0.46 Jkg^{-1} K^{-1}$

Indiquez sur le dessin ci-dessous, la direction des flux thermiques, le profil estimé de température, les longueurs caractéristiques et températures caractéristiques utiles pour votre calcul simplifié. (1 pt)

Ecrivez l'équation d'équilibre des flux thermiques et calculez la température d'interface. (3pts)


Réponse:		

9d. On néglige maintenant la présence de la couche de résine, on considère simplement la pièce en acier, initialement à 20°C qui est placée dans un environnement à -30°C. Au bout de combien de temps pourra t'on estimer que l'on a une température en dessous de -5°C sur 10 cm de profondeur dans la pièce? *(2pts)*

Réponse:

Question 10 / 9

Les alliages Tantale (Ta)-Nickel (Ni) sont potentiellement intéressants comme nouveaux matériaux d'anodes pour les réactions électro-chimiques. Le diagramme de phase Ni-Ta en composition molaire (ou atomique) est donné ci-dessous. De nombreuses phases intermétalliques sont formées, comme on peut voir sur le diagramme.

10a. Pourquoi les phases pure Ni et Ta sont-elles indiquées entre parenthèses sur le diagramme? (0.5pt)

10b. Quelles sont les températures de fusion du Ta pur, et de la phase Ni₃Ta? (0.5pt)

Eutectique

Péritectique

10c. Quelle est la formule de la procomposition de la phase à 1700K),		
Phase α	Phase β	
10d. Hachurez les zones biphasées	(Liquide – Ni ₃ Ta) et (β - NiTa ₂) su	r le diagramme. <i>(2 pts)</i>
10e. Quelle est la nature des invariar	nts 1 et 2 (inscrivez le(s) numéro(s) dans les cases) (2 pts)

Eutectoïde

Péritectoïde

⊎z la page

10f. Quelle est la fraction de phase solide du matériau qui comporte 85 at% de Tantale à 2900°K (indiquez les points importants sur le diagramme)? Quelle est alors la composition de la phase solide? (3pts)

Calcul:

Réponse:

/ 10

Vous devez débarasser un vieux garage qui contient divers produits chimiquesde l'ammoniac, de l'acide chlorhydrique et du méthane.			
11a. On considère la solution aqueuse d'ammoniac, de concentration 0.2M. On vous donne le pK _b = 4.74			
pour cette base. Quel est le pH de cette solution? (1.5 pt)			
Calcul:			
	pH =		
11.b Quel sera le pOH de cette solution ? (0.5pt)			
Calcul:			
	pOH =		
11.c On voudrait neutraliser cette solution afin de s'en débarasser sans risque. P d'une solution d'acide chlorhydrique à $0.1M$. Le pK _a de l'acide chlorhydrique est -			
Quel est le pH de cette solution? (1.5pt)			
Calcul:			
	pH=		
11.d. On décide de mélanger les deux solutions prédécentes, d'ammoniac et d'a	•		
(i) Quelle réaction obtient-on? Ecrivez les deux couples en présence. (1.5 pt)	olde officitiyarique.		
(,, and the property of the pro			
Donner les couples :			
acide base conjuguée			
base acide conjugué			
(ii) Quel volume de la solution aqueuse d'acide à 0.1 M doit-on ajouter à 50ml d'ammoniac à 0.2 M pour atteindre une solution neutre ? (1.5pt)	L de la solution aqueuse		
Calculs:			

Question 11

11.e. On s'intéresse maintenant au récipient qui contient du méthane, on décide de le chauffer dans un récipient à paroi mobile qui garde la température T=773K constante, ainsi que la pression P=1atm constante. Le gaz à cette température donne la réaction réversible suivante:

$$CH_4(g) \rightleftarrows C(s) + 2 H_2(g)$$

A l'équilibre, la pression partielle de dihydrogène dans le récipient est de $P(H_2)=0.47$ atm. Déduisez en la constante d'équilibre K_p de cette réaction (les pressions partielles des gaz s'ajoutent pour donner la pression totale de 1atm) et l'enthalpie molaire standard ΔG_r^0 de la réaction. (2 pt)

Reportse.
11.f. En invoquant un principe qui permet de trouver comment se déplace un équilibre (nommez ce principe), indiquez comment est ce que la pression totale P et la température T peuvent influer sur l'équilibre (sachant que la formation de CH_4 à partir de H_2 et C est endothermique)? Quel serait l'effet de l'introduction de 12,0 g de carbone $C(s)$ au fond du récipient ? <i>(1.5 pt)</i>
Réponses:
Principe:
1) une augmentation de la pression totale (compression):
2) une augmentation de la température:
,
3) addition de C(s):

Feuille de brouillon pour développer les calculs (les réponses sur cette feuille ne sont pas corrigées et doivent être reportées dans la copie).

Feuille de brouillon pour développer les calculs (les réponses sur cette feuille ne sont pas corrigées et doivent être reportées dans la copie).