Self-assembly of Microsystems

Karl F. Böhringer, Ph.D.

Professor, Electrical & Computer Engineering and Bioengineering
Director, Institute for Nano-Engineered Systems (NanoES)
University of Washington
Seattle, WA, USA

Part I: Self-assembly Basics

Motivation; overview; history; examples

What Is Self-assembly?

Is it ...

- chemistry?
- materials science?
- nanotechnology?
- tossing components into a box, shaking it, and hoping that after some time, the assembled product appears?

What Is Self-assembly?

 "The autonomous and spontaneous organization of components into patterns and structures" – George Whitesides

 "The science of things that put themselves together" – John Pelesko

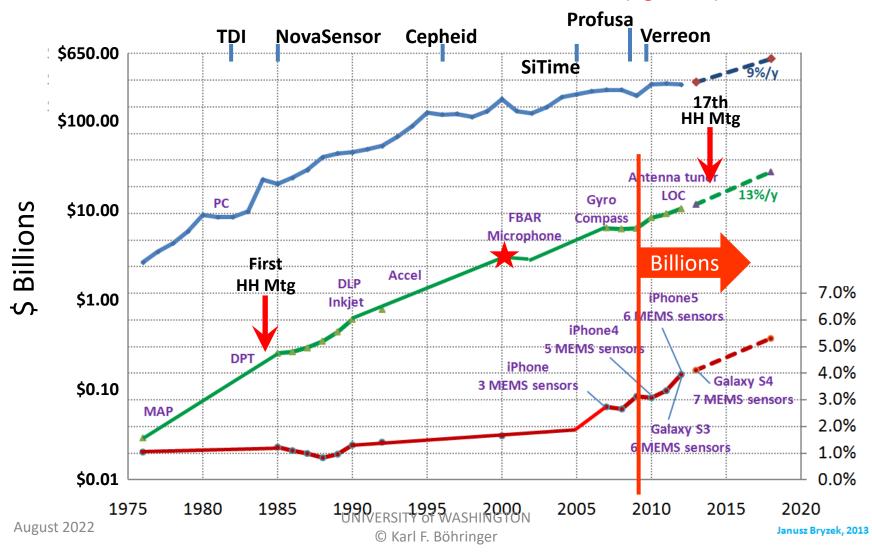
 "A scalable manufacturing method for heterogeneous integrated microsystems"

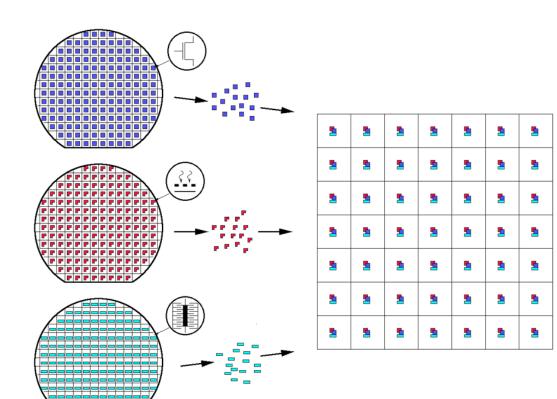
Why Study Self-assembly?

- Because it occurs frequently in nature (organic and inorganic).
- Because it is a concept that is equally interesting for mathematicians, chemists, computer scientists, biologists, electrical engineers, and others.
- Because it may hold enormous potential for the development of novel manufacturing techniques, especially at small scales.

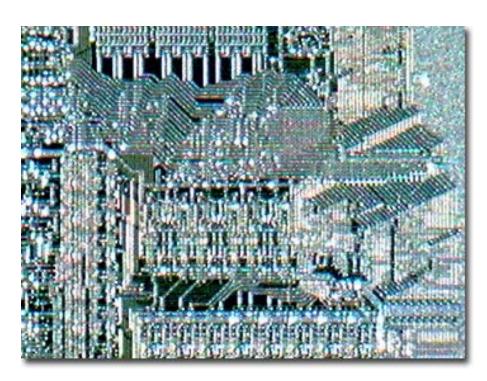
Why Is Self-assembly Important?

- Microfabrication is, for the most part, a parallel manufacturing technology
 - Key to success of VLSI electronics
- Packaging is a bottleneck as it requires sequential processing steps
- This is an increasing problem, esp. for a new generation of hybrid integrated microsystems
- Unlike pick-and-place, self-assembly is a parallel manufacturing technology
 - Enabler of complex heterogeneous microsystems




Global SEMI and MEMS (Component) Markets

Blue: SEMI, Green: MEMS, Red: MEMS/SEMI (right axis)


Micro-assembly

- Very large numbers of very small components
- Independent parallel fabrication of components
- Fabrication at high density, assembly at lower density
- Hybrid systems built from standard components

 Enabling technology for complex heterogeneous microsystems

Circuit City

Integrated circuit, microscopic view

City landscape, macroscopic view

Key Features of Self-assembly

1. Structured particles (components)

 The basic building blocks that form an assembly; their structure ultimately determines the assembly product.

2. Binding force

Holding the particles together.

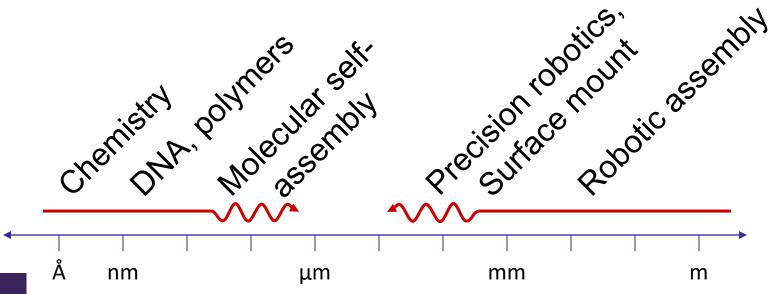
3. Environment

 Controlled conditions that provide the framework for physical interactions and lead to reproducible results.

4. Driving force

 Provides the energy to keep the assembly going; typically it has a stochastic nature (e.g., vibration, oscillation, noise, heat, ...).

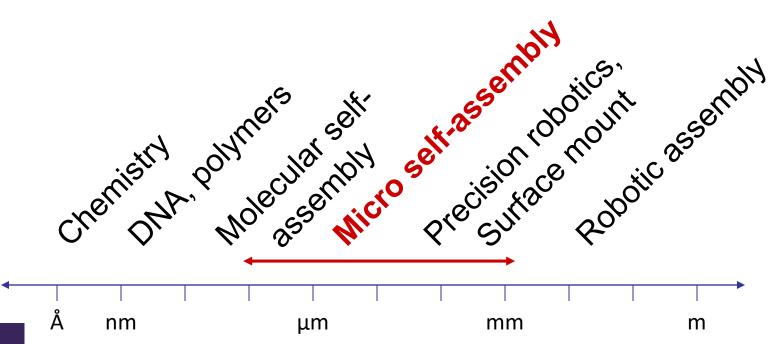
Other Features of Self-assembly


- Is there anything missing?
 - Reduction of entropy
 - Parallelism
 - Performance metrics (time, yield)
 - •

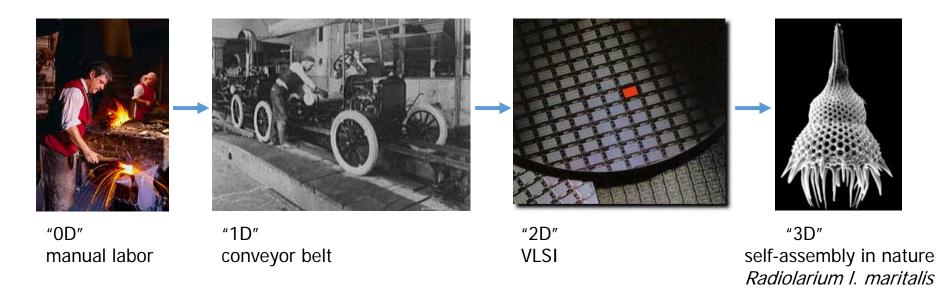
Motivation

In the micro range (approx. $0.1 \mu m - 100 \mu m$) there exists a "no-man's-land" for engineered assembly

- Conventional robots get very expensive
- Chemical synthesis cannot produce non-periodic or heterogeneous assemblies



Motivation


Goals:

- High volume, flexible manufacturing
- Complex hybrid microsystem integration

Motivation

It is time for a paradigm shift in the manufacture of complex, heterogeneous microsystems that integrate sensing, actuation, computation, and communication.

Landmarks in Self-assembly

- 1930s Turing develops the theory of universal computation
- 1950s von Neumann develops theory of automata replication
- 1953 Watson & Crick discover the structure of DNA
- 1955 Fraenkel-Conrat & Williams self-assemble the tobacco mosaic virus in a test tube
- 1957 Penrose & Penrose construct a simple selfreplicating system
- 1961 Wang develops "Wang tiles" demonstrating the equivalence of tiling problems and computation

Landmarks in Self-assembly

- 1991 Seeman & Chen self-assemble a cube from DNA
- 1991 Cohn, Kim & Pisano create self-assembling electrical networks
- 1993 Yeh & Smith file patent on fluidic self-assembly (FSA)
- 1994 Adleman launches field of DNA computation by using DNA to solve a Hamiltonian path problem
- 1994 Shimoyama & Miura's group model milli-scale self-assembly with chemical reaction kinetics
- 1996 Shimoyama & Miura's group demonstrates microscale self-assembly using surface tension

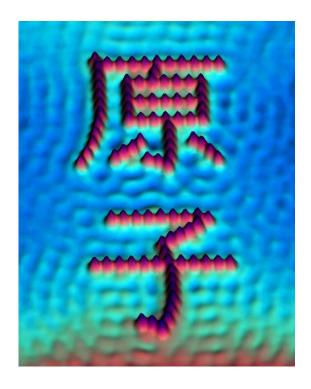
Landmarks in Self-assembly

- 2000 Whitesides's group self-assembles 3D electrical networks from millimeter-scale polyhedra
- 2003 Böhringer's group modulates surface energy to achieve programmable self-assembly
- 2004 Shih adapts the methods of Seeman to self-assemble a DNA octahedron
- 2004 Winfree & Rothemund self-assemble a Sierpinski triangle from DNA
- 2006 Rothemund folds DNA origami

Taxonomy of Assembly

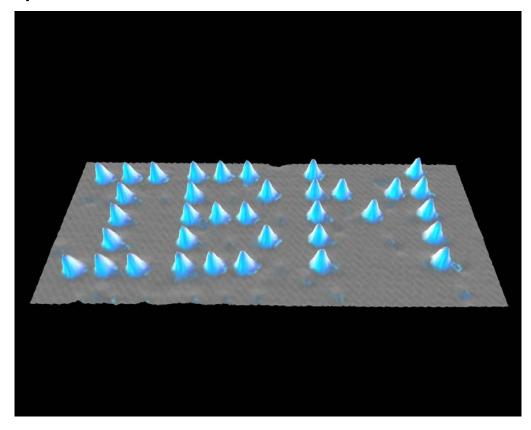
- Serial assembly
 - One or more components (identical or different) assembled one-by-one
 - Manual, tele-operated, or autonomous
 - Common technique in manufacturing: pick-and-place
- Parallel assembly
 - Multiple components (identical or different) assembled simultaneously, or in multiple batches
 - Common techniques in manufacturing and nature:
 - synthesis (chemistry)
 - growth (biology)

Taxonomy of Assembly


- Parallel assembly
 - Deterministic: order of assembly and destination of components is uniquely determined in advance
 - Stochastic: order of assembly or destination of components is determined in part by a random process
- Compare with
 - Motion planning (robotics)
 - Annealing (chemistry, materials science)

Example: Serial, Deterministic Nano-assembly by STM

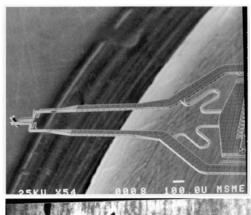
Carbon Monoxide on Platinum (111) [Zeppenfeld & Eigler]


Iron on Copper (111) [Lutz & Eigler]

Example: Serial, Deterministic Nano-assembly by STM

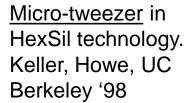
Xenon on Nickel (110)

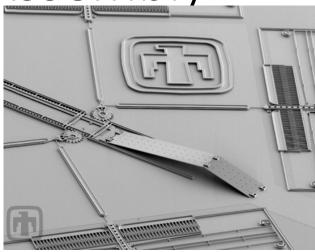
[Eigler]

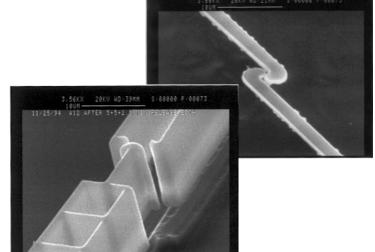


Examples: Deterministic Parallel Assembly

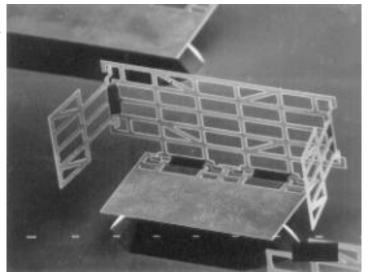
- Self-assembling 3D structures
 - "micro origami"
 - [Pister et al. '92], [Syms et al. '95, '98], [Fujita et al. '96]
- Flip-chip, wafer-to-wafer transfer
 - Combine devices from two (or more) wafers
 - [Cohn & Howe '97], [Singh et al. '97]
- Microgripper arrays
 - Parallel pick-and-place
 - [Keller & Howe '97]

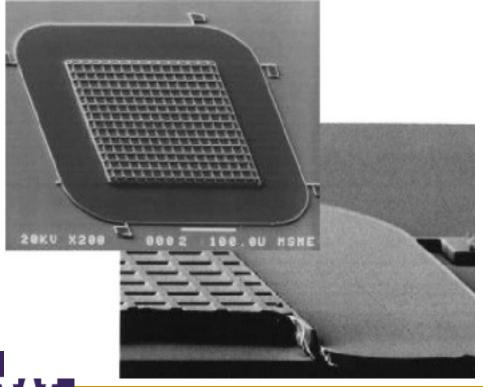



Deterministic Parallel Assembly



Self-deploying Micromirror Assembly. Sandia National Labs, Albuquerque '98

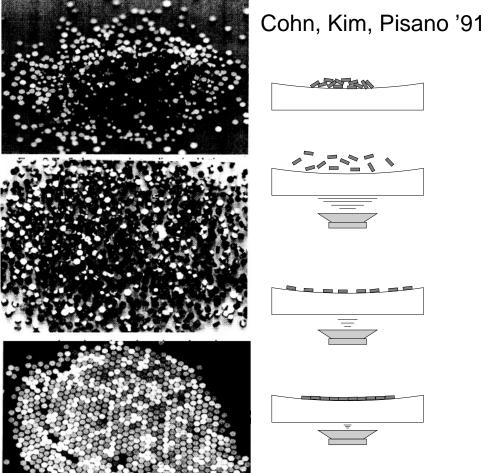


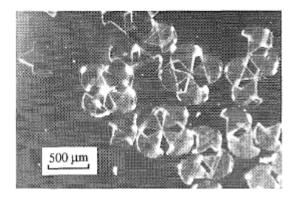

Micro snap fasteners. Böhringer, Prasad, Donald, MacDonald, Cornell University '95

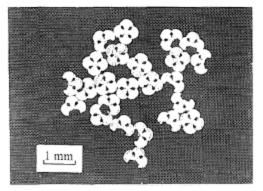
Deterministic Parallel Assembly

Solder reflow assembly.

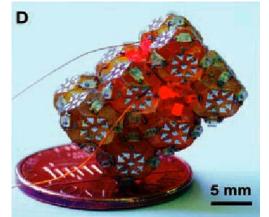
R. Syms, Imperial
College, London, '95

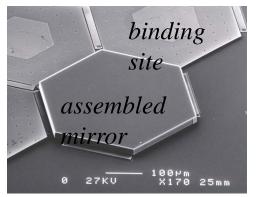

Flip-chip assembly and hermetic sealing. Cohn, Liang, Howe, Pisano, UC Berkeley, '97


Examples: Stochastic Parallel Assembly

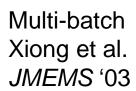

- Shape matching
 - Early work: hexagon packing [Cohn et al. '91], fluidic self-assembly [Yeh, Smith '94], [Hosokawa et al. '96]
 - Lock-and-key assemblies [Rothemund '00...], [Fang, Böhringer '06]
- Capillary force driven
 - 3D circuits [Gracias et al. '00], adaptive optics [Srinivasan et al. '02], [Jacobs et al. '02], programmable assembly [Xiong et al. '03]
- DNA origami
 - [Rothemund '06]

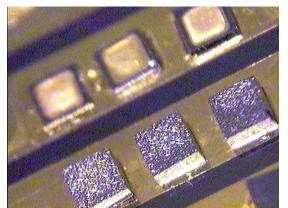
Stochastic Parallel Assembly

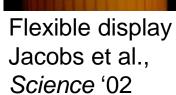




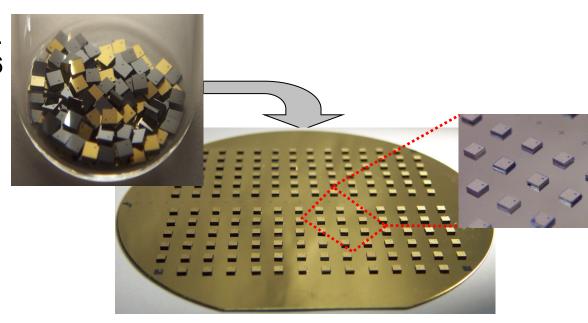
Hosokawa, Shimoyama, Miura '96

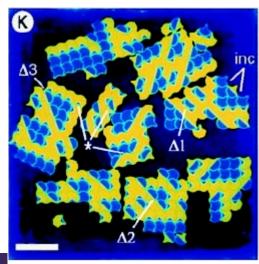

Capillary Force Driven Self-Assembly




3d circuit Gracias et al., Science '00

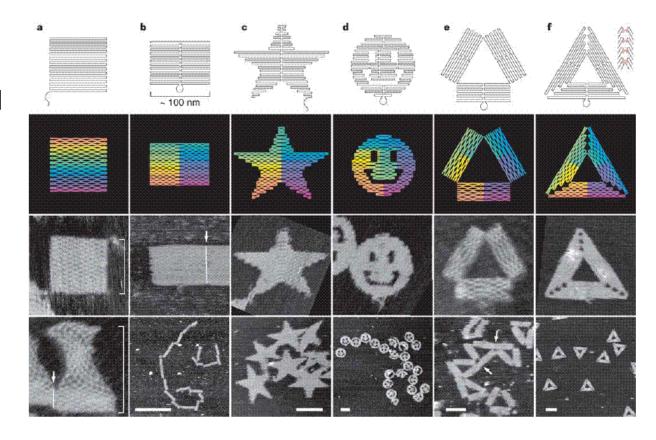
Srinivasan et al., IEEE Quantum El. '02




400 µm

Lock-and-key Self-Assembly

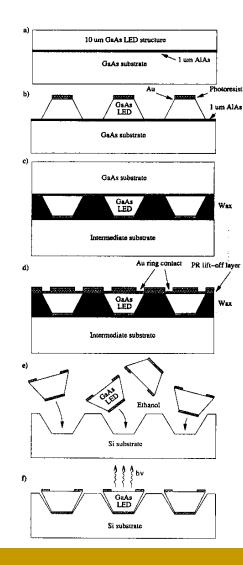
Fang et al. JMEMS '06

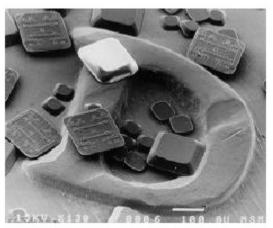


Logic assembly Rothemund *PNAS* '00

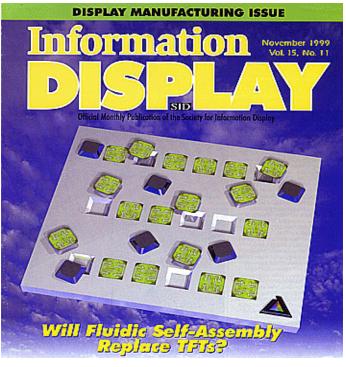
Nano Self-Assembly Systems

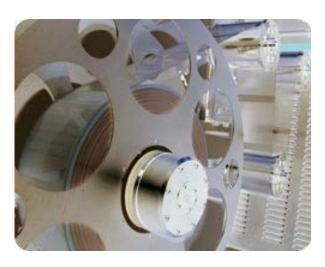
DNA Origami P. Rothemund Nature '06


Also see work by Winfree, Dwyer, Reif, Seeman, and many others



Template Driven Assembly


Fluidic self-assembly (FSA)


- H.-J. J. Yeh, J. S. Smith, "Fluidic Self-assembly of Microstructures and its Application to the Integration of GaAs on Si", IEEE MEMS, 1994
 - Goal: integrate GaAs components onto Si substrate
 - Anisotropic wet etching in Si forms pyramid-stump shaped holes
 - GaAs components with (almost) matching shapes self-assembly
 - Subsequent formation of electrical connections
 - Extension to molded plastic substrates
- Patented in 1996: Smith, Yeh, Method for fabricating self-aligned microstructures, US Patent 5,545,291.

Assembly of RFID tags at 2M/hr (Alien Technology)

"Nanoblocks": fluidic agitation, assembly by gravity and shape matching (J. S. Smith)

Original assembly principle:

- Large-scale substrate with assembly sites, positioned at a sloped angle inside a water bath
- Parts delivered with flow of water
- Sink and slide over substrate (gravity driven), captured by assembly sites
- Additional parts are not captured because of good shape match between part and site
- Capillary forces during drying help alignment
- Evaporation and patterning of thin film metal (Al) for electrical connectivity

Modified assembly principle:

- Replace fixed substrate by "endless" polymer film with embossed assembly sites
- Rolls of film with width from tens of cm to meters
- Continuous assembly process with parts feeding and recycling in water
- Lamination, laser patterning of vias, printing of metal patterns
- Assembly rate: 2M / hour

- Alien Technology original business plan: self- ALIEN assembly of high-resolution large-scale displays
- Si amplifiers on molded plastic
- mating part shapes with gravity as driving force
- sub-micron alignment
- 99.9999% yield
 - 4-fold symmetry
 - double redundancy
 - excess supply of parts

- Alien Technology revised business plan: selfassembly of low-resolution low-cost displays on "smart" credit or cash cards for the European market.
- Substantial development contract with Philips in this area.

Another pivot: RFID tags

Sample Products

 <u>Earlier:</u> ALL-9238 tag "SquiggleT" antenna design, approximate size: 95mm x 10mm, small UHF form factor, very low-cost UHF tag, low-cost 4x6 label solution

 Recent: ALN-9640 RFID tag is a high-performance, general purpose RFID inlay. For applications that demand more on-tag storage of up to 800 NVAM bits. This enables storage of data for the purpose of avoiding additional network access that would otherwise be required for data retrieval.

