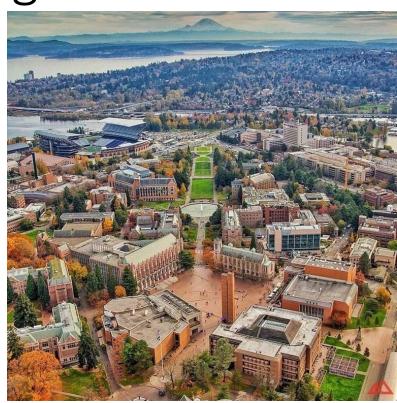
Self-assembly of Microsystems

Karl F. Böhringer, Ph.D.

Professor, Electrical & Computer Engineering and Bioengineering
Director, Institute for Nano-Engineered Systems (NanoES)
University of Washington
Seattle, WA, USA

University of Washington



University of Washington

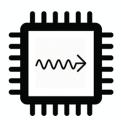
- Founded November 4, 1861
- Public research university:
 - Campuses in Seattle, Tacoma, Bothell
- University community:
 - Instructional faculty: 5,800
 - Faculty and staff: 35,000
 - Student enrollment:
 - 60,000 (49,000 on Seattle campus)
 - Undergraduate: 42,500
 - Graduate and professional: 17,500
 - International: 8,400

Research

- Budget: \$1.89B grants and contracts (total UW budget \$8.3B)
- Since 1969, among top 5 US institutions in research funding
- Since 1989, 7 Nobel Prize winners
- U.S. News & World Report 2022: #7 world, #6 U.S., #2 U.S. public

INSTITUTE FOR NANO-ENGINEERED SYSTEMS

- Vision: Catalyzing innovative, interdisciplinary, and industryrelevant research in the design, fabrication, and integration of scalable nano-engineered devices and systems at the University of Washington
- Mission: Developing solutions to grand challenges in nano science and engineering: the scalable, high-yield manufacture of nanoengineered systems in information processing, energy, health, and interconnected life.



nano.uw.edu

Focus Areas

Photonic & Quantum Devices – from single sensors to large-scale integrated networks of photonic devices for cutting-edge optical communication, quantum computing and biosensing.

<u>Augmented Humanity</u> – portable, wearable, implantable and networked technology for personalized medical care or a more efficient interconnected life.

<u>Scalable Nanomanufacturing</u> – development of low-cost, high-volume nanomanufacturing solutions and bio-3D-printing for cells, tissues and scaffolds.

NNCI

- NSF network of leading nanofabrication and characterization facilities
- 16 sites plus partner sites, funded at \$84M until
 2025
- Major NSF program for more than 25 years
- More than 1M user hours per year

nnci.net

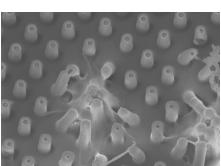
NNCI

Molecular Analysis Facility (MAF)

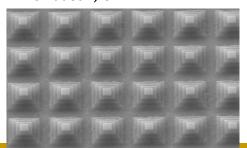
- Fully staffed instrumentation facility for microscopy, spectroscopy, and surface science
- Housed on MolES/NanoES ground floor
- moles.washington.edu/facilities/molecular-analysis-facility

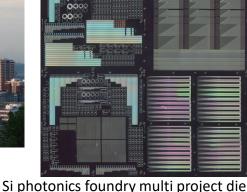
Washington Nanofabrication Facility (WNF)

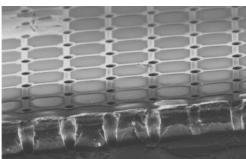
- Full-service nanotechnology user facility focused on enabling basic and applied research, advanced R&D, and prototype production
- Housed in Fluke Hall
- wnf.uw.edu



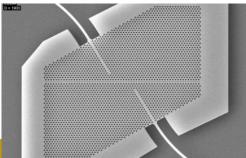
UW NNCI WASHINGTON NANOFABRICATION FACILITY


- Located at the University of Washington, Seattle
- Largest publicly accessible cleanroom facility in the Pacific Northwest of the US
- Foundry capabilities
 - Si photonics
 - JEOL JBX 6300FS (8 nm e-beam litho)
 - Packaging
 - General MEMS fab


Seattle, WA



Nano-posts for cell study N. Sniadecki, UW ME



Grayscale EBL holography R. Bojko, UW WNF

Electrochemical nano-pores North Shore Bio

Photonic crysta August 2022 J. Young, UBC

