Self-assembly of Microsystems

Karl F. Böhringer, Ph.D.

Professor, Electrical & Computer Engineering and Bioengineering
Director, Institute for Nano-Engineered Systems (NanoES)
University of Washington
Seattle, WA, USA

Part IV: Computational Aspects of Self-assembly

Models for deterministic and stochastic assembly; analogy to chemical reaction kinetics; equivalence between computation and self-assembly; DNA computation, Turing machines and Wang tiles

Self-assembly and Chemical Reactions

- Hosokawa, Shimoyama and Miura observed in 1994 the analogy between self-assembling systems and chemical reactions.
 - They modeled self-assembly with equations for reaction kinetics.
 - This approach provides the means to generate the time evolution of a self-assembling system, and to determine its equilibrium state(s).

Self-assembly Reactions (1)

Chemical reaction:

$$3 SiH_4 + 6 N_2O \rightarrow 3 SiO_2 + 4 NH_3 + 4 N_2$$

Industrial assembly:

ICs + resistors + capacitors + ... \rightarrow iPhone

Obviously, there are limitations to this approach.

Self-assembly Reactions (2)

 Consider a system with two types of components A and B that join one-on-one to form assembly C:

$$A + B \rightarrow C$$
 with a forward reaction rate constant k_f

If there is the possibility of disassembly, we write:

$$A + B \leftrightarrow C$$

with a reverse reaction rate constant k_r

Self-assembly Reactions (3)

If we have very large numbers of components:

$$\frac{dA}{dt} = -k_f A \cdot B + k_r C$$

$$\frac{dB}{dt} = -k_f A \cdot B + k_r C$$

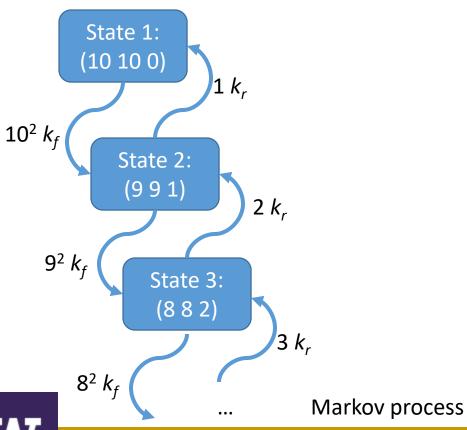
$$\frac{dC}{dt} = k_f A \cdot B - k_r C$$

System of ordinary differential equations.

Steady state when
$$(A \cdot B)/C = k_r/k_f$$

Self-assembly Reactions (4)

If we have a smaller number of components:



Matrix of transition rates:

$$egin{pmatrix} k_r & \cdots & \cdots \ 10^2k_f & 2kr & \ 9^2k_f & \ddots \end{pmatrix}$$

Steady states are eigenvectors of matrix.

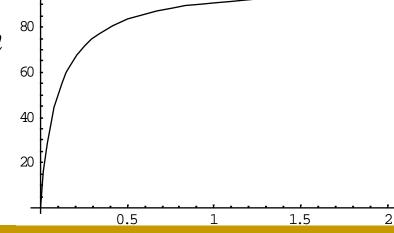
Chemical Reaction Kinetics

- There are two mathematical formalisms to describe behavior of a chemical system:
 - "Reaction rate equations" are coupled ordinary differential equations that provide a deterministic time evolution of the system.
 - The "master equation" is a single differential-difference equation that captures the stochastic behavior of chemical kinetics.
 - $P(X_1, X_2, ..., X_N; t)$ = probability that at time t, there will be X_1 molecules of species S_1 , X_2 molecules of species S_2 , ...
- It can be shown that as the number of reactants goes towards infinity, the two formalisms converge.
- Daniel Gillespie developed an algorithm for exact stochastic simulation in 1977.

Deterministic Solution for Reaction Kinetics

Assume we have n components A and n sites B.

- Initially, the rate of reaction is $k n^2$.
- If there are x complete assemblies then the rate of reaction is k $(n-x)^2$.
- This leads to a differential equation for x(t): $dx/dt = k (n-x)^2$
- Equilibrium: $dx/dt = 0 \rightarrow x = n$
- Solution of this differential equation: $x(t) = k n^2 t / (1 + k n t)$



Kinetics with Reverse Reaction

Assume we have n components A and n sites B.

- Forward rate of reaction is $k_f[A][B]$.
- Reverse rate of reaction is $k_r [A \cdot B]$.
- If there are x complete assemblies then the forward rate of reaction is $k_f (n-x)^2$ and the reverse rate of reaction is $k_r x$.

• This leads to a new differential equation for x(t): $dx/dt = k_f (n-x)^2 - k_r x$.

$$x(t) = \frac{2k_f n^2}{k_r + 2k_f n + \sqrt{k_r} \sqrt{k_r + k_f n} \cosh\left(\frac{1}{2}\sqrt{k_r}\sqrt{k_r + k_f n}t\right)} \left(\frac{k_f n^2}{2}\right)^{\frac{80}{40}}$$

Limitations to the Analogy with Chemical Reaction Kinetics

- The number of components is finite, may not be assumed as infinite.
- Self-assembly components are geometrically and physically more complex than atoms and molecules.
- Deriving reaction rate constants from first principles is very difficult.
 - What is "temperature" in a self-assembly system?
- Describing a self-assembly system is a multi-physics problem.
 - Models may require techniques spanning from molecular dynamics to robotics to computational geometry.

Self-assembly: the Big Picture

• > 100 years ago:

• Einstein 1905 (Nobel Prize Physics 1921)

• > 10 years ago:

"assembly = computation"

- Adleman 1994 (Turing Award 2002)
- DNA computation of NP-hard combinatorial problems
- Proposition:
 - This equation not only applies to DNA, but in particular also to assemblies of micro and nano systems

Self-assembly: the Big Picture

"assembly = computation"

Direction of equations is important for practical engineering purposes:

- energy = mass:
 - "→" esoteric physics
 - "←" most powerful known source of energy
- assembly = computation:
 - "→" esoteric computers
 - "←" most powerful known method of manufacturing
 - from CAD to VLSI
 - from DNA to living organisms

Self-assembly: the Big Picture

Thus, "assembly = computation" means:

If I can create a (data) structure with some program then I can create a corresponding (physical) structure by self-assembly

Assembly and Computation

- Background
 - NP-hard problems
 - Turing machines
 - Wang tilings
- Adleman: DNA strands compute solutions to combinatorial problems
- Winfree: DNA tiles perform arithmetic calculations

DNA Computing

- In 1994, Leonard M. Adleman showed that hard computational problems can be solved by selfassembly:
 - The problem is encoded in DNA.
 - The solution is found by processing the DNA.
- Why is this important?
 - A new way for nano-scale, massively parallel computing.
 - If self-assembly can simulate any algorithm, then any structure that can be described by an algorithm can also be realized with self-assembly.

Background: NP-hard Problems

- NP-hard problems are problems that are very difficult to solve with a computer (or without one).
- NP stands for nondeterministic polynomial-time.
- An NP-hard problem is a decision problem:
 - yes/no answer.
- If a possible solution is found, it is "easy" to check whether the solution is correct:
 - "easy" means "with a polynomial-time algorithm".
- But it is "difficult" to find a solution:
 - "difficult" means "combinatorically many".

Background: NP-hard Problems

- Example: "SUBSET-SUM"
 - Given a set S of n integers, does any non-empty subset of S add up to zero?
 - It is easy to verify a given solution S_0 :
 - Check whether S_0 is a subset of S.
 - Check whether S_0 adds up to zero.
 - It is difficult to find a solution:
 - To find a solution, or to prove that there is none, we have to enumerate (more or less) all possible subsets.
 - This leads to a "combinatorial explosion", i.e., an algorithm that is exponential in *n*.

Background: NP-hard Problems

- There exist many such problems.
 - Another example: "KNAPSACK"
 Given n items with cost c_i and value v_i, are there items of value at least V without exceeding cost C?
- Interestingly, all these problems are similarly hard.
 - If I can find an efficient algorithm for KNAPSACK then I can also find an efficient algorithm for SUBSET-ZERO, and vice versa.
 - These problems are "NP-hard", they are the most difficult ones that can be solved nondeterministically in polynomial time.

Hamiltonian Path

- Another NP-hard problem:
 - Traces back to 19th century Irish mathematician W. R. Hamilton, who invented a game: find a path along the edges of a dodecahedron that visits each vertex exactly once.
- In a general graph, a
 Hamiltonian path is a path
 that connects all vertices
 via edges without visiting
 any vertex twice.

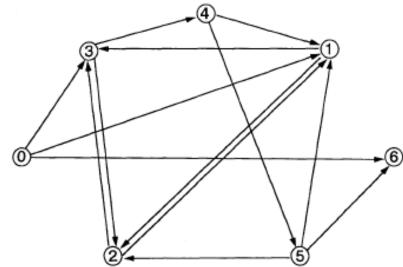


Fig. 1. Directed graph. When $v_{in} = 0$ and $v_{out} = 6$, a unique Hamiltonian path exists: $0 \rightarrow 1$, $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 5$, $5 \rightarrow 6$. September 2022

Finding a Hamiltonian Path

A nondeterministic algorithm for a Hamiltonian path of a graph with n vertices from v_{in} to v_{out} :

- 1. Generate random paths through graph (i.e., random sequences of vertices).
- 2. Delete all paths that do not start with v_{in} or do not end with v_{out} .
- 3. Delete all paths of length not equal to *n*.
- 4. Delete all paths that visit a vertex more than once.

If there is a path left over, then it is a Hamiltonian path.

Adleman realized all these steps with DNA processing for the graph with 7 vertices on the previous slide.

1. Encoding a Graph in DNA

- Each vertex v_i is represented by a 20-base sequence (20-mer) of DNA.
- Each directed edge (v_i, v_j) is represented by the last 10-mer of v_i and the first 10-mer of v_i .
 - Exception 1: all edges (v_{in}, v_j) use the entire 20-mer of v_{in} and the first 10-mer of v_i .
 - Exception 2: all edges (v_i, v_{out}) use the last 10-mer of v_j and the entire 20-mer of v_{out} .
- Experiment:
 - 50pmol of complementary DNA for each vertex.
 - 50pmol of DNA for each edge.
 - The complementary strands bind and thus represent random paths in the graph.

1. Encoding a Graph in DNA

- There were about 3 10¹³ oligonucleotides for each vertex and edge in the solution.
- How many different paths exist?
 - Infinitely many, but very long paths (i.e., very long DNA sequences) are unlikely to be created since v_{in} and v_{out} terminate the DNA sequence.
 - Count all possible sequences up to length 14: $7^{14} = 6.8 \ 10^{11}$.
 - It is very likely that the solution is among the selfassembled DNA sequences.

2. Select Paths from v_{in} to v_{out}

- DNA amplification with polymerase chain reaction (PCR):
 - PCR splits DNA between two markers and duplicates it in each cycle.
 - Here, we use markers for v_{in} and v_{out} such that only DNA representing paths from v_{in} to v_{out} are amplified.

3. Select Paths of Length *n*

- Run DNA through agarose gel:
 - Separation of DNA molecules by length: the mobility of the DNA molecule is directly proportional to its size.
 - Extract the DNA sequences with 20n = 140 base pairs, representing paths with exactly 7 vertices.
 - PCR amplification to improve purity.

4. Delete Missing-Vertex Paths

- Create single stranded DNA.
- For i = 0 to n
 - Add complementary DNA sequence representing v_i with biotin-avidin bound magnetic beads.
 - Hybridization.
 - Separate labeled DNA from unlabeled DNA.
 - Repeat
- Here, we are left only with paths that include all vertices.
- ... and we have solved the Hamiltonian Path.

Pro's and Con's

- Massively parallel computing.
- High density (theoretically, 1 molecule = 1 data structure).
- Energy efficiency (near thermodynamic optimum).
- Linear in number of vertices (as opposed to exponential).
- Demo for a trivial problem size. Ultimately, combinatorial explosion is unavoidable.
- Lengthy lab procedure.
- ...

Turing Machine

- Proposed 1936 by English mathematician Alan Turing.
- An extremely simple machine that can perform computation.
- Various versions of Turing Machines exist; a typical configuration consists of
 - an endless tape,
 - a head that can read and write symbols on the tape,
 - a look-up table that decides
 - whether to move the tape left of right,
 - whether to read or what to write on the tape,
 - what "state" to transition to.

Turing Machines

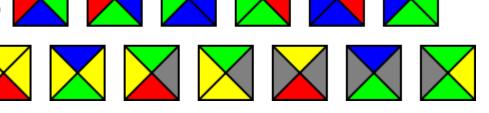
- It has been shown that computations with modern computers / programming languages can also be performed by Turing Machines.
- It is generally agreed that *any* computation can be performed by a Turing Machine.
- In fact, one way to define what is meant by "computation" is a program executed by a Turing Machine.

Wang Tiles

 Introduced by Chinese-American mathematician and philosopher Hao Wang in 1961.

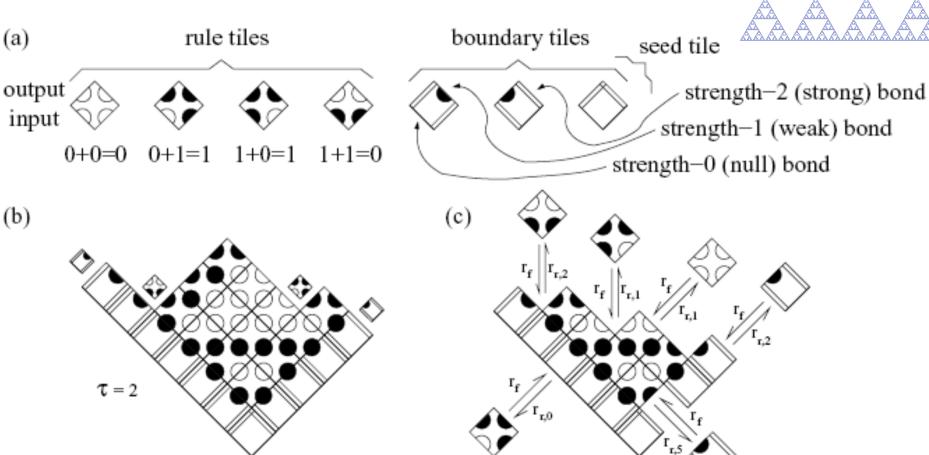
 Wang gave an algorithm to decide whether a given tile set can cover the plane (adjacent colors must match, and tiles cannot be rotated).

Robert Berger (his student) proved in 1966 that this algorithm was wrong. In fact, no such algorithm can exist.



- It has been shown that Wang tiles are equivalent to Turing machines.
 - This means that any computational problem can be represented with Wang tiles.

Example: Sierpinski Triangle



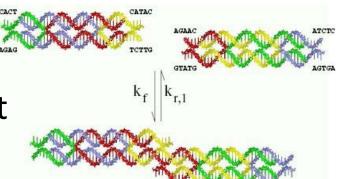
DNA Tiles

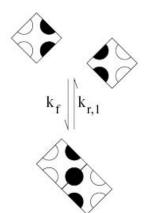
(a)

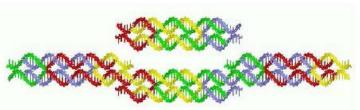
Double cross-over (DX) molecules are ideal to implement Wang tiles at the molecular level.



- 4 sticky ends connect to neighbor tiles.
- ssDNA on sticky ends provide a high degree of programmability.

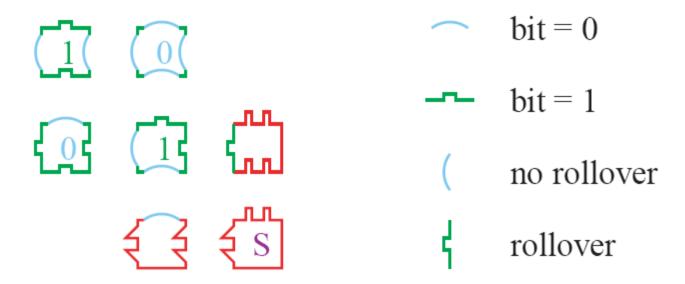






DNA Arithmetic

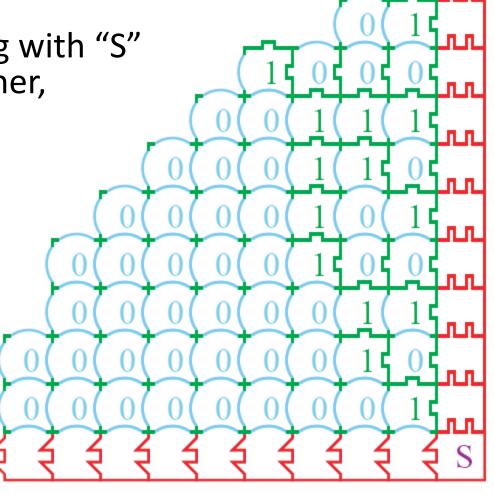
 Winfree (among others) showed that tiles can perform arithmetic. The following 7 tiles create a binary counter:



DNA Arithmetic

 Self-assembly, starting with "S" in the lower right corner, produces rows of increasing binary numbers.

 This works well only if the new tiles assemble preferentially with 2 already assembled tiles.



DNA Computation: Conclusions

- Molecular computation by DNA self-assembly is attractive because of
 - massively parallel processing,
 - high data density,
 - abstraction that separates computation from chemistry.
- Adleman (Science 1994):
 - "One can imagine the eventual emergence of a general purpose computer consisting of nothing more than a single macromolecule conjugated to a ribosome-like collection of enzymes that act on it."
- Currently, DNA computation is not widely expected to replace electronic computers for the solution of hard computational problems.

DNA Computation: Conclusions

- Consider an analogy: $E = mc^2$
 - Converting energy into mass realizes (sort of) the alchemists' dream of converting one element into another.
 - But it is not practical (based on today's physics and engineering knowledge).
 - However, the inverse process (generating nuclear energy) is possible and arguably useful.
- Similarly:
 - Using DNA self-assembly for computation may not be practical.
 - But applying theory of computation to create DNA structures via programmable self-assembly is practical.

