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Part |V
Computational Aspects

of Self-assembly

Models for deterministic and stochastic assembly; analogy to
chemical reaction kinetics; equivalence between computation
and self-assembly; DNA computation, Turing machines and

Wang tiles




Self-assembly and Chemical Reactions

e Hosokawa, Shimoyama and Miura observed in 1994
the analogy between self-assembling systems and
chemical reactions.

 They modeled self-assembly with equations for reaction
kinetics.

e This approach provides the means to generate the time
evolution of a self-assembling system, and to determine
its equilibrium state(s).




Self-assembly Reactions (1)

e Chemical reaction:
3SiH, +6N,0—>3Si0,+4 NH;+4 N,

* Industrial assembly:
ICs + resistors + capacitors + ... = iPhone

Obviously, there are limitations to this approach.
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Self-assembly Reactions (2)

e Consider a system with two types of components A
and B that join one-on-one to form assembly C:

A+B—->C

with a forward reaction rate constant k;

* If there is the possibility of disassembly, we write:
A+Bo C

with a reverse reaction rate constant k;




Self-assembly Reactions (3)

* If we have very large numbers of components:
dA

Ez_kaB-l_kTC
dB
Ez_kaB-l_kTC

dC

e System of ordinary differential equations.
Steady state when (A - B)/C = k,./k¢
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Self-assembly Reactions (4)

* If we have a smaller number of components:

State 1: Matrix of transition rates:
(10 10 0)
. k. .
102kf . 2kr
92kf

Steady states are
eigenvectors of matrix.

Markov process
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Chemical Reaction Kinetics

* There are two mathematical formalisms to describe
behavior of a chemical system:
e “Reaction rate equations” are coupled ordinary differential

equations that provide a deterministic time evolution of the
system.

 The “master equation” is a single differential-difference
Equation that captures the stochastic behavior of chemical
inetics.

o P(X,X5,...,X\;1) = probability that at time t, there will be X,
molecules of species S;, X, molecules of species S,, ...
* |t can be shown that as the number of reactants goes
towards infinity, the two formalisms converge.

e Daniel Gillespie developed an algorithm for exact
stochastic simulation in 1977.




Deterministic Solution for
Reaction Kinetics

Assume we have N components A and n sites B.
* Initially, the rate of reaction is k nZ.

 If there are X complete assemblies then the rate of
reaction is kK (n — X)2.

* This leads to a differential equation for X(t):
dx/dt = k (n = x)?

S0

e Equilibrium: dx/dt=0 =2 x=n
e Solution of this
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Kinetics with Reverse Reaction

Assume we have N components A and n sites B.
* Forward rate of reaction is k: [A] [B].
 Reverse rate of reaction is k. [A-B].

 |f there are X complete assemblies then the forward rate of
reaction is K; (N — X)? and the reverse rate of reaction is k. X.

 This leads to a new differential equation for X(t):
dx/dt = k; (n — x)? — Kk, x.
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Limitations to the Analogy with
Chemical Reaction Kinetics

* The number of components is finite, may not be
assumed as infinite.

e Self-assembly components are geometrically and
physically more complex than atoms and molecules.

e Deriving reaction rate constants from first principles is

very difficult.
e What is “temperature” in a self-assembly system?

e Describing a self-assembly system is a multi-physics

problem.

 Models may require techniques spanning from molecular
dynamics to robotics to computational geometry.




Self-assembly: the Big Picture

* > 100 years ago:
“energy = mass”
e Einstein 1905 (Nobel Prize Physics 1921)

* > 10 years ago:
“assembly = computation”

e Adleman 1994 (Turing Award 2002)
e DNA computation of NP-hard combinatorial problems

* Proposition:

e This equation not only applies to DNA, but in particular also to

assemblies of micro and nano systems




Self-assembly: the Big Picture

“assembly = computation”

Direction of equations is important for practical
engineering purposes:

* energy = mass:
e “” esoteric physics
e “«” most powerful known source of energy

e assembly = computation:

e “” esoteric computers

* “<~" most powerful known method of manufacturing

e from CAD to VLSI
e from DNA to living organisms




Self-assembly: the Big Picture

Thus, “assembly = computation” means:

If |can create a (data) structure with some program
then | can create a corresponding (physical)
structure by self-assembly
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Assembly and Computation

e Background
 NP-hard problems
e Turing machines
* Wang tilings

 Adleman: DNA strands compute solutions to

combinatorial problems
* Winfree: DNA tiles perform arithmetic calculations




DNA Computing

e |n 1994, Leonard M. Adleman showed that hard
computational problems can be solved by self-
assembly:

 The problem is encoded in DNA.
e The solution is found by processing the DNA.

 Why is this important?
* A new way for nano-scale, massively parallel computing.

* |f self-assembly can simulate any algorithm, then any
structure that can be described by an algorithm can also
be realized with self-assembly.




Background: NP-hard Problems

 NP-hard problems are problems that are very difficult
to solve with a computer (or without one).

NP stands for nondeterministic polynomial-time.

 An NP-hard problem is a decision problem:
e yes/no answer.

e |f a possible solution is found, it is “easy” to check
whether the solution is correct:

e “easy” means “with a polynomial-time algorithm”.
e But it is “difficult” to find a solution:

o “difficult” means “combinatorically many”.




Background: NP-hard Problems

e Example: “SUBSET-SUM”

e Given a set S of n integers, does any non-empty subset
of S add up to zero?

* |tis easy to verify a given solution S:
* Check whether S, is a subset of S.
* Check whether S, adds up to zero.

e |tis difficult to find a solution:

e To find a solution, or to prove that there is none, we have to
enumerate (more or less) all possible subsets.

e This leads to a “combinatorial explosion”, i.e.,
an algorithm that is exponential in n.




Background: NP-hard Problems

* There exist many such problems.

* Another example: “KNAPSACK”
Given n items with cost ¢; and value v,, are there items of
value at least V without exceeding cost C ?

* Interestingly, all these problems are similarly hard.

e |f | can find an efficient algorithm for KNAPSACK then |
can also find an efficient algorithm for SUBSET-ZERO,
and vice versa.

* These problems are “NP-hard”, they are the most
difficult ones that can be solved nondeterministically in
polynomial time.




Hamiltonian Path

 Another NP-hard problem:

* Traces back to 19t century Irish mathematician W. R.
Hamilton, who invented a game: find a path along the
edges of a dodecahedron that visits each vertex exactly

once.

* In a general graph, a
Hamiltonian path is a path
that connects all vertices
via edges without visiting
any vertex twice.

Fig. 1. Directed graph. Whenv,, = 0and v, . = 6,
a unigue Hamiltonian path exists: 0—1, 1—2,
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Finding a Hamiltonian Path

A nondeterministic algorithm for a Hamiltonian path of a graph with n
vertices fromv, tov,,:

1. Generate random paths through graph
(i.e., random sequences of vertices).

2. Delete all paths that do not start with v,, or do not end with v, .
3. Delete all paths of length not equal to n.
4. Delete all paths that visit a vertex more than once.

If there is a path left over, then it is a Hamiltonian path.

Adleman realized all these steps with DNA processing

for the graph with 7 vertices on the previous slide.




1. Encoding a Graph in DNA

e Each vertex v; is represented by a 20-base sequence
(20-mer) of DNA.

* Each directed edge (v,v)) is represented by the last 10-mer of v,
and the first 10-mer of v;.

e Exception 1: all edges (v
first 10-mer of v;.

e Exception 2: all edges (Vi)Vour) Use the last 10-mer of v; and the
entire 20-mer of v,

v;) use the entire 20-mer of v;, and the

in?

* Experiment:
 50pmol of complementary DNA for each vertex.
e 50pmol of DNA for each edge.

e The complementary strands bind and thus represent random paths
in the graph.




1. Encoding a Graph in DNA

* There were about 3 1013 oligonucleotides for each
vertex and edge in the solution.

* How many different paths exist?

 Infinitely many, but very long paths (i.e., very long DNA
sequences) are unlikely to be created sincev,, and v,
terminate the DNA sequence.

e Count all possible sequences up to length 14:
714 =6.8 1011,

 |tis very likely that the solution is among the self-
assembled DNA sequences.




2. Select Paths from v, to v,

e DNA amplification with polymerase chain reaction
(PCR):
e PCR splits DNA between two markers and duplicates it in
each cycle.

* Here, we use markers for v, and v
representing paths fromv, tov

oyt Such that only DNA

-, are amplified.
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3. Select Paths of Length n

 Run DNA through agarose gel:

e Separation of DNA molecules by length: the mobility of
the DNA molecule is directly proportional to its size.

e Extract the DNA sequences with 20n = 140 base pairs,
representing paths with exactly 7 vertices.

e PCR amplification to improve purity.




4. Delete Missing-Vertex Paths

e Create single stranded DNA.

e Fori=0ton

* Add complementary DNA sequence representing v; with
biotin-avidin bound magnetic beads.

e Hybridization.
e Separate labeled DNA from unlabeled DNA.
* Repeat

* Here, we are left only with paths that include all
vertices.

e ... and we have solved the Hamiltonian Path.




Pro’s and Con’s

* Massively parallel computing.

e High density (theoretically, 1 molecule = 1 data
structure).

* Energy efficiency (near thermodynamic optimum).

 Linear in number of vertices (as opposed to
exponential).

* Demo for a trivial problem size. Ultimately,
combinatorial explosion is unavoidable.

e Lengthy lab procedure.




Turing Machine

* Proposed 1936 by English mathematician Alan Turing.

* An extremely simple machine that can perform
computation.

* Various versions of Turing Machines exist; a typical
configuration consists of
e an endless tape,
e a head that can read and write symbols on the tape,

* alook-up table that decides
* whether to move the tape left of right,
* whether to read or what to write on the tape,
e what “state” to transition to.




Turing Machines

* It has been shown that computations with modern
computers / programming languages can also be
performed by Turing Machines.

* It is generally agreed that any computation can be
performed by a Turing Machine.

* In fact, one way to define what is meant by
“computation” is a program executed by a Turing
Machine.




Wang Tiles

e Introduced by Chinese-American mathematician and
philosopher Hao Wang in 1961.

 Wang gave an algorithm to decide whether a given tile set
can cover the plane (adjacent colors must match, and tiles

cannot be rotated).
e Robert Berger (his student) . . . . . .

proved in 1966 that this
algorithm was wrong.
In fact, no such
algorithm can exist.
It has been shown that Wang tiles are equivalent to
Turing machines.
e This means that any computational problem can be
represented with Wang tiles.
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http://upload.wikimedia.org/wikipedia/commons/f/f3/Wang_tiles.svg

Example: Sierpinski Triangle

(a) rule tiles boundary tiles

seed tile
g —

/ o ~ A ~ A
output @ <> <> C{{} @"w\ @"‘\ @ strength—2 (strong) bond
input "' " A sth—1 (weak) bond
1 I’k&__ ¥/ streng (weak) bon

0H0=0 0+I=1 1+0=1 I+1=0 A — -_‘:'_’_Tstrangﬂl—ﬂ (null) bond

(b)
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(a)

DNA Tiles

* Double cross-over (DX) #2¢bene
molecules are ideal to R
implement Wang tiles at k
the molecular level.

e DX provide stiffness for
2D assembly. )

e 4 sticky ends connect %o
neighbor tiles.

e ssDNA on sticky ends
provide a high degree of
programmability.

o, 'l', T T 2
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DNA Arithmetic

* Winfree (among others) showed that tiles can
perform arithmetic. The following 7 tiles create a
binary counter:

-—'_'l'—- Y bit=0

= bhit=1

u '-I_rl? Iﬂi no rollover
ﬁ ég I{ rollover
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DNA Arithmetic

e Self-assembly, starting with “S” _ 1
in the lower right corner, ) L
produces rows of 1( 1( 1
increasing binary “oCoCol1(1
numbers. P+ o+ -|—"1'—|- 1

e This works well only R I S S S
if the new tiles AP AL AN 1
assemble prefer- 1( 1
entially with 2 "ot ol ol ol of ol ol 1
already assembled +F + + + + + + +
tiles. 1

EEEEEEEEEE
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DNA Computation: Conclusions

 Molecular computation by DNA self-assembly is
attractive because of
* massively parallel processing,
e high data density,
e abstraction that separates computation from chemistry.

e Adleman (Science 1994):

 “One can imagine the eventual emergence of a general
purpose computer consisting of nothing more than a single
macromolecule conjugated to a ribosome-like collection of
enzymes that act on it.”

e Currently, DNA computation is not widely expected to

replace electronic computers for the solution of hard
computational problems.




DNA Computation: Conclusions

e Consider an analogy: E = mc?

e Converting energy into mass realizes (sort of) the alchemists’
dream of converting one element into another.

e But it is not practical (based on today’s physics and
engineering knowledge).

 However, the inverse process (generating nuclear energy) is
possible and — arguably — useful.

e Similarly:

e Using DNA self-assembly for computation may not be

practical.

e But applying theory of computation to create DNA structures
via programmable self-assembly is practical.
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