Self-assembly of
Microsystems

Karl F. Béhringer, Ph.D.

Professor, Electrical & Computer Engineering and Bioengineering
Director, Institute for Nano-Engineered Systems (NanokES)
University of Washington
Seattle, WA, USA

UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

Part |V
Computational Aspects

of Self-assembly

Models for deterministic and stochastic assembly; analogy to
chemical reaction kinetics; equivalence between computation
and self-assembly; DNA computation, Turing machines and

Wang tiles

Self-assembly and Chemical Reactions

e Hosokawa, Shimoyama and Miura observed in 1994
the analogy between self-assembling systems and
chemical reactions.

 They modeled self-assembly with equations for reaction
kinetics.

e This approach provides the means to generate the time
evolution of a self-assembling system, and to determine
its equilibrium state(s).

Self-assembly Reactions (1)

e Chemical reaction:
3SiH, +6N,0—>3Si0,+4 NH;+4 N,

* Industrial assembly:
ICs + resistors + capacitors + ... = iPhone

Obviously, there are limitations to this approach.

UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

Self-assembly Reactions (2)

e Consider a system with two types of components A
and B that join one-on-one to form assembly C:

A+B—->C

with a forward reaction rate constant k;

* If there is the possibility of disassembly, we write:
A+Bo C

with a reverse reaction rate constant k;

Self-assembly Reactions (3)

* If we have very large numbers of components:
dA

Ez_kaB-l_kTC
dB
Ez_kaB-l_kTC

dC

e System of ordinary differential equations.
Steady state when (A - B)/C = k,./k¢

UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

Self-assembly Reactions (4)

* If we have a smaller number of components:

State 1: Matrix of transition rates:
(10 10 0)
. k. .
102kf . 2kr
92kf

Steady states are
eigenvectors of matrix.

Markov process

UNIVERSITY of WASHINGTON © Karl F. Bohringer September 2022

Chemical Reaction Kinetics

* There are two mathematical formalisms to describe
behavior of a chemical system:
e “Reaction rate equations” are coupled ordinary differential

equations that provide a deterministic time evolution of the
system.

 The “master equation” is a single differential-difference
Equation that captures the stochastic behavior of chemical
inetics.

o P(X,X5,...,X\;1) = probability that at time t, there will be X,
molecules of species S;, X, molecules of species S,, ...
* |t can be shown that as the number of reactants goes
towards infinity, the two formalisms converge.

e Daniel Gillespie developed an algorithm for exact
stochastic simulation in 1977.

Deterministic Solution for
Reaction Kinetics

Assume we have N components A and n sites B.
* Initially, the rate of reaction is k nZ.

 If there are X complete assemblies then the rate of
reaction is kK (n — X)2.

* This leads to a differential equation for X(t):
dx/dt = k (n = x)?

S0

e Equilibrium: dx/dt=0 =2 x=n
e Solution of this

60)

40

x()=kn2t/(1+knt) >

0.5 1 15

differential equation:

Kinetics with Reverse Reaction

Assume we have N components A and n sites B.
* Forward rate of reaction is k: [A] [B].
 Reverse rate of reaction is k. [A-B].

 |f there are X complete assemblies then the forward rate of
reaction is K; (N — X)? and the reverse rate of reaction is k. X.

 This leads to a new differential equation for X(t):
dx/dt = k; (n — x)? — Kk, x.

2k n*

1
K +2K N+ 1k, fk, +k¢n cosh(z\/kr JKe + kfntj

X(t) =

o]
&
4
20

0.2 0.4 0.6 0.8 1

Limitations to the Analogy with
Chemical Reaction Kinetics

* The number of components is finite, may not be
assumed as infinite.

e Self-assembly components are geometrically and
physically more complex than atoms and molecules.

e Deriving reaction rate constants from first principles is

very difficult.
e What is “temperature” in a self-assembly system?

e Describing a self-assembly system is a multi-physics

problem.

 Models may require techniques spanning from molecular
dynamics to robotics to computational geometry.

Self-assembly: the Big Picture

* > 100 years ago:
“energy = mass”
e Einstein 1905 (Nobel Prize Physics 1921)

* > 10 years ago:
“assembly = computation”

e Adleman 1994 (Turing Award 2002)
e DNA computation of NP-hard combinatorial problems

* Proposition:

e This equation not only applies to DNA, but in particular also to

assemblies of micro and nano systems

Self-assembly: the Big Picture

“assembly = computation”

Direction of equations is important for practical
engineering purposes:

* energy = mass:
e “” esoteric physics
e “«” most powerful known source of energy

e assembly = computation:

e “” esoteric computers

* “<~" most powerful known method of manufacturing

e from CAD to VLSI
e from DNA to living organisms

Self-assembly: the Big Picture

Thus, “assembly = computation” means:

If |can create a (data) structure with some program
then | can create a corresponding (physical)
structure by self-assembly

UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

Assembly and Computation

e Background
 NP-hard problems
e Turing machines
* Wang tilings

 Adleman: DNA strands compute solutions to

combinatorial problems
* Winfree: DNA tiles perform arithmetic calculations

DNA Computing

e |n 1994, Leonard M. Adleman showed that hard
computational problems can be solved by self-
assembly:

 The problem is encoded in DNA.
e The solution is found by processing the DNA.

 Why is this important?
* A new way for nano-scale, massively parallel computing.

* |f self-assembly can simulate any algorithm, then any
structure that can be described by an algorithm can also
be realized with self-assembly.

Background: NP-hard Problems

 NP-hard problems are problems that are very difficult
to solve with a computer (or without one).

NP stands for nondeterministic polynomial-time.

 An NP-hard problem is a decision problem:
e yes/no answer.

e |f a possible solution is found, it is “easy” to check
whether the solution is correct:

e “easy” means “with a polynomial-time algorithm”.
e But it is “difficult” to find a solution:

o “difficult” means “combinatorically many”.

Background: NP-hard Problems

e Example: “SUBSET-SUM”

e Given a set S of n integers, does any non-empty subset
of S add up to zero?

* |tis easy to verify a given solution S:
* Check whether S, is a subset of S.
* Check whether S, adds up to zero.

e |tis difficult to find a solution:

e To find a solution, or to prove that there is none, we have to
enumerate (more or less) all possible subsets.

e This leads to a “combinatorial explosion”, i.e.,
an algorithm that is exponential in n.

Background: NP-hard Problems

* There exist many such problems.

* Another example: “KNAPSACK”
Given n items with cost ¢; and value v,, are there items of
value at least V without exceeding cost C ?

* Interestingly, all these problems are similarly hard.

e |f | can find an efficient algorithm for KNAPSACK then |
can also find an efficient algorithm for SUBSET-ZERO,
and vice versa.

* These problems are “NP-hard”, they are the most
difficult ones that can be solved nondeterministically in
polynomial time.

Hamiltonian Path

 Another NP-hard problem:

* Traces back to 19t century Irish mathematician W. R.
Hamilton, who invented a game: find a path along the
edges of a dodecahedron that visits each vertex exactly

once.

* In a general graph, a
Hamiltonian path is a path
that connects all vertices
via edges without visiting
any vertex twice.

Fig. 1. Directed graph. Whenv,, = 0and v, . = 6,
a unigue Hamiltonian path exists: 0—1, 1—2,
UNIVERSITY of WASHINGTON © Karl F. Bohringer 2—3 3—d 435 5—6. September 2022

Finding a Hamiltonian Path

A nondeterministic algorithm for a Hamiltonian path of a graph with n
vertices fromv, tov,,:

1. Generate random paths through graph
(i.e., random sequences of vertices).

2. Delete all paths that do not start with v,, or do not end with v, .
3. Delete all paths of length not equal to n.
4. Delete all paths that visit a vertex more than once.

If there is a path left over, then it is a Hamiltonian path.

Adleman realized all these steps with DNA processing

for the graph with 7 vertices on the previous slide.

1. Encoding a Graph in DNA

e Each vertex v; is represented by a 20-base sequence
(20-mer) of DNA.

* Each directed edge (v,v)) is represented by the last 10-mer of v,
and the first 10-mer of v;.

e Exception 1: all edges (v
first 10-mer of v;.

e Exception 2: all edges (Vi)Vour) Use the last 10-mer of v; and the
entire 20-mer of v,

v;) use the entire 20-mer of v;, and the

in?

* Experiment:
 50pmol of complementary DNA for each vertex.
e 50pmol of DNA for each edge.

e The complementary strands bind and thus represent random paths
in the graph.

1. Encoding a Graph in DNA

* There were about 3 1013 oligonucleotides for each
vertex and edge in the solution.

* How many different paths exist?

 Infinitely many, but very long paths (i.e., very long DNA
sequences) are unlikely to be created sincev,, and v,
terminate the DNA sequence.

e Count all possible sequences up to length 14:
714 =6.8 1011,

 |tis very likely that the solution is among the self-
assembled DNA sequences.

2. Select Paths from v, to v,

e DNA amplification with polymerase chain reaction
(PCR):
e PCR splits DNA between two markers and duplicates it in
each cycle.

* Here, we use markers for v, and v
representing paths fromv, tov

oyt Such that only DNA

-, are amplified.

UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

3. Select Paths of Length n

 Run DNA through agarose gel:

e Separation of DNA molecules by length: the mobility of
the DNA molecule is directly proportional to its size.

e Extract the DNA sequences with 20n = 140 base pairs,
representing paths with exactly 7 vertices.

e PCR amplification to improve purity.

4. Delete Missing-Vertex Paths

e Create single stranded DNA.

e Fori=0ton

* Add complementary DNA sequence representing v; with
biotin-avidin bound magnetic beads.

e Hybridization.
e Separate labeled DNA from unlabeled DNA.
* Repeat

* Here, we are left only with paths that include all
vertices.

e ... and we have solved the Hamiltonian Path.

Pro’s and Con’s

* Massively parallel computing.

e High density (theoretically, 1 molecule = 1 data
structure).

* Energy efficiency (near thermodynamic optimum).

 Linear in number of vertices (as opposed to
exponential).

* Demo for a trivial problem size. Ultimately,
combinatorial explosion is unavoidable.

e Lengthy lab procedure.

Turing Machine

* Proposed 1936 by English mathematician Alan Turing.

* An extremely simple machine that can perform
computation.

* Various versions of Turing Machines exist; a typical
configuration consists of
e an endless tape,
e a head that can read and write symbols on the tape,

* alook-up table that decides
* whether to move the tape left of right,
* whether to read or what to write on the tape,
e what “state” to transition to.

Turing Machines

* It has been shown that computations with modern
computers / programming languages can also be
performed by Turing Machines.

* It is generally agreed that any computation can be
performed by a Turing Machine.

* In fact, one way to define what is meant by
“computation” is a program executed by a Turing
Machine.

Wang Tiles

e Introduced by Chinese-American mathematician and
philosopher Hao Wang in 1961.

 Wang gave an algorithm to decide whether a given tile set
can cover the plane (adjacent colors must match, and tiles

cannot be rotated).
e Robert Berger (his student)

proved in 1966 that this
algorithm was wrong.
In fact, no such
algorithm can exist.
It has been shown that Wang tiles are equivalent to
Turing machines.
e This means that any computational problem can be
represented with Wang tiles.

UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

http://upload.wikimedia.org/wikipedia/commons/f/f3/Wang_tiles.svg

Example: Sierpinski Triangle

(a) rule tiles boundary tiles

seed tile
g —

/ o ~ A ~ A
output @ <> <> C{{} @"w\ @"‘\ @ strength—2 (strong) bond
input "' " A sth—1 (weak) bond
1 I’k&__ ¥/ streng (weak) bon

0H0=0 0+I=1 1+0=1 I+1=0 A — -_‘:'_’_Tstrangﬂl—ﬂ (null) bond

(b)

UNIVERSITY of WASHINGTON © Karl F. Bohringer September 2022

(a)

DNA Tiles

* Double cross-over (DX) #2¢bene
molecules are ideal to R
implement Wang tiles at k
the molecular level.

e DX provide stiffness for
2D assembly.)

e 4 sticky ends connect %o
neighbor tiles.

e ssDNA on sticky ends
provide a high degree of
programmability.

o, 'l', T T 2
UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

r;2

k2 ka

DNA Arithmetic

* Winfree (among others) showed that tiles can
perform arithmetic. The following 7 tiles create a
binary counter:

-—'_'l'—- Y bit=0

= bhit=1

u '-I_rl? Iﬂi no rollover
ﬁ ég I{ rollover

UNIVERSITY of WASHINGTON © Karl F. Bohringer September 2022

DNA Arithmetic

e Self-assembly, starting with “S” _ 1
in the lower right corner,) L
produces rows of 1(1(1
increasing binary “oCoCol1(1
numbers. P+ o+ -|—"1'—|- 1

e This works well only R I S S S
if the new tiles AP AL AN 1
assemble prefer- 1(1
entially with 2 "ot ol ol ol of ol ol 1
already assembled +F + + + + + + +
tiles. 1

EEEEEEEEEE

UNIVERSITY of WASHINGTON © Karl F. Boéhringer September 2022

DNA Computation: Conclusions

 Molecular computation by DNA self-assembly is
attractive because of
* massively parallel processing,
e high data density,
e abstraction that separates computation from chemistry.

e Adleman (Science 1994):

 “One can imagine the eventual emergence of a general
purpose computer consisting of nothing more than a single
macromolecule conjugated to a ribosome-like collection of
enzymes that act on it.”

e Currently, DNA computation is not widely expected to

replace electronic computers for the solution of hard
computational problems.

DNA Computation: Conclusions

e Consider an analogy: E = mc?

e Converting energy into mass realizes (sort of) the alchemists’
dream of converting one element into another.

e But it is not practical (based on today’s physics and
engineering knowledge).

 However, the inverse process (generating nuclear energy) is
possible and — arguably — useful.

e Similarly:

e Using DNA self-assembly for computation may not be

practical.

e But applying theory of computation to create DNA structures
via programmable self-assembly is practical.

	Self-assembly of Microsystems
	Part IV: �Computational Aspects of Self-assembly
	Self-assembly and Chemical Reactions
	Self-assembly Reactions (1)
	Self-assembly Reactions (2)
	Self-assembly Reactions (3)
	Self-assembly Reactions (4)
	Chemical Reaction Kinetics
	Deterministic Solution for Reaction Kinetics
	Kinetics with Reverse Reaction
	Limitations to the Analogy with Chemical Reaction Kinetics
	Self-assembly: the Big Picture
	Self-assembly: the Big Picture
	Self-assembly: the Big Picture
	Assembly and Computation
	DNA Computing
	Background: NP-hard Problems
	Background: NP-hard Problems
	Background: NP-hard Problems
	Hamiltonian Path
	Finding a Hamiltonian Path
	1. Encoding a Graph in DNA
	1. Encoding a Graph in DNA
	2. Select Paths from vin to vout
	3. Select Paths of Length n
	4. Delete Missing-Vertex Paths
	Pro’s and Con’s
	Turing Machine
	Turing Machines
	Wang Tiles
	Example: Sierpinski Triangle
	DNA Tiles
	DNA Arithmetic
	DNA Arithmetic
	DNA Computation: Conclusions
	DNA Computation: Conclusions

