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Part IV: 
Computational Aspects 
of Self-assembly
Models for deterministic and stochastic assembly; analogy to 
chemical reaction kinetics; equivalence between computation 
and self-assembly; DNA computation, Turing machines and 
Wang tiles
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Self-assembly and Chemical Reactions

• Hosokawa, Shimoyama and Miura observed in 1994 
the analogy between self-assembling systems and 
chemical reactions.

• They modeled self-assembly with equations for reaction 
kinetics.

• This approach provides the means to generate the time 
evolution of a self-assembling system, and to determine 
its equilibrium state(s).
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Self-assembly Reactions (1)

• Chemical reaction: 
3 SiH4 + 6 N2O → 3 SiO2 + 4 NH3 + 4 N2

• Industrial assembly:
ICs + resistors + capacitors + … → iPhone

Obviously, there are limitations to this approach.
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Self-assembly Reactions (2)

• Consider a system with two types of components A
and B that join one-on-one to form assembly C:

A + B → C
with a forward reaction rate constant kf

• If there is the possibility of disassembly, we write:
A + B ↔ C
with a reverse reaction rate constant kr
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Self-assembly Reactions (3)

• If we have very large numbers of components: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑓𝑓𝐴𝐴 � 𝐵𝐵 + 𝑘𝑘𝑟𝑟𝐶𝐶
𝑑𝑑𝐵𝐵
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑓𝑓𝐴𝐴 � 𝐵𝐵 + 𝑘𝑘𝑟𝑟𝐶𝐶
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑓𝑓𝐴𝐴 � 𝐵𝐵 − 𝑘𝑘𝑟𝑟𝐶𝐶

• System of ordinary differential equations.
Steady state when ⁄(𝐴𝐴 � 𝐵𝐵) 𝐶𝐶 = ⁄𝑘𝑘𝑟𝑟 𝑘𝑘𝑓𝑓
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Self-assembly Reactions (4)

• If we have a smaller number of components: 
State 1:

(10 10 0)

State 2:
(9 9 1)

State 3:
(8 8 2)

102 kf

92 kf

82 kf

1 kr

2 kr

3 kr

Matrix of transition rates:

. 𝑘𝑘𝑟𝑟 . ⋯
102𝑘𝑘𝑓𝑓 . 2𝑘𝑘𝑘𝑘

. 92𝑘𝑘𝑓𝑓 .
⋮ ⋱

Steady states are 
eigenvectors of matrix.

…              Markov process
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Chemical Reaction Kinetics

• There are two mathematical formalisms to describe 
behavior of a chemical system:

• “Reaction rate equations” are coupled ordinary differential 
equations that provide a deterministic time evolution of the 
system.

• The “master equation” is a single differential-difference 
equation that captures the stochastic behavior of chemical 
kinetics. 

• P(X1,X2,…,XN;t) = probability that at time t, there will be X1molecules of species S1, X2 molecules of species S2, …

• It can be shown that as the number of reactants goes 
towards infinity, the two formalisms converge.

• Daniel Gillespie developed an algorithm for exact 
stochastic simulation in 1977. 
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Deterministic Solution for 
Reaction Kinetics
Assume we have n components A and n sites B.
• Initially, the rate of reaction is k n2.
• If there are x complete assemblies then the rate of 

reaction is k (n – x)2.
• This leads to a differential equation for x(t):

dx/dt = k (n – x)2

• Equilibrium: dx/dt = 0  x = n
• Solution of this 

differential equation:
x(t) = k n2 t / (1 + k n t)
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Kinetics with Reverse Reaction

Assume we have n components A and n sites B.
• Forward rate of reaction is kf [A] [B].
• Reverse rate of reaction is kr [A⋅B].
• If there are x complete assemblies then the forward rate of 

reaction is kf (n – x)2 and the reverse rate of reaction is kr x.
• This leads to a new differential equation for x(t):

dx/dt = kf (n – x)2 – kr x.
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Limitations to the Analogy with  
Chemical Reaction Kinetics
• The number of components is finite, may not be 

assumed as infinite.
• Self-assembly components are geometrically and 

physically more complex than atoms and molecules.
• Deriving reaction rate constants from first principles is 

very difficult.
• What is “temperature” in a self-assembly system?

• Describing a self-assembly system is a multi-physics 
problem.

• Models may require techniques spanning from molecular 
dynamics to robotics to computational geometry.
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Self-assembly: the Big Picture

• > 100 years ago:
“energy = mass”

• Einstein 1905 (Nobel Prize Physics 1921)

• > 10 years ago: 
“assembly = computation”

• Adleman 1994 (Turing Award 2002)
• DNA computation of NP-hard combinatorial problems

• Proposition: 
• This equation not only applies to DNA, but in particular also to 

assemblies of micro and nano systems
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Self-assembly: the Big Picture

“assembly = computation”
Direction of equations is important for practical 
engineering purposes:
• energy = mass:

• “→” esoteric physics
• “←” most powerful known source of energy

• assembly = computation:
• “→” esoteric computers
• “←” most powerful known method of manufacturing

• from CAD to VLSI
• from DNA to living organisms
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Self-assembly: the Big Picture

Thus, “assembly = computation” means:

If I can create a (data) structure with some program
then I can create a corresponding (physical) 

structure by self-assembly
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Assembly and Computation

• Background
• NP-hard problems
• Turing machines
• Wang tilings

• Adleman: DNA strands compute solutions to 
combinatorial problems

• Winfree: DNA tiles perform arithmetic calculations
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DNA Computing

• In 1994, Leonard M. Adleman showed that hard 
computational problems can be solved by self-
assembly:

• The problem is encoded in DNA.
• The solution is found by processing the DNA.

• Why is this important?
• A new way for nano-scale, massively parallel computing.
• If self-assembly can simulate any algorithm, then any 

structure that can be described by an algorithm can also 
be realized with self-assembly.
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Background: NP-hard Problems

• NP-hard problems are problems that are very difficult 
to solve with a computer (or without one).

• NP stands for nondeterministic polynomial-time.

• An NP-hard problem is a decision problem: 
• yes/no answer.

• If a possible solution is found, it is “easy” to check 
whether the solution is correct:

• “easy” means “with a polynomial-time algorithm”.
• But it is “difficult” to find a solution:

• “difficult” means “combinatorically many”.
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Background: NP-hard Problems

• Example: “SUBSET-SUM”
• Given a set S of n integers, does any non-empty subset 

of S add up to zero?
• It is easy to verify a given solution S0:

• Check whether S0 is a subset of S.
• Check whether S0 adds up to zero. 

• It is difficult to find a solution:
• To find a solution, or to prove that there is none, we have to

enumerate (more or less) all possible subsets.
• This leads to a “combinatorial explosion”, i.e., 

an algorithm that is exponential in n.
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Background: NP-hard Problems

• There exist many such problems.
• Another example: “KNAPSACK” 

Given n items with cost ci and value vi, are there items of 
value at least V without exceeding cost C ?

• Interestingly, all these problems are similarly hard.
• If I can find an efficient algorithm for KNAPSACK then I 

can also find an efficient algorithm for SUBSET-ZERO, 
and vice versa.

• These problems are “NP-hard”, they are the most 
difficult ones that can be solved nondeterministically in 
polynomial time. 
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Hamiltonian Path

• Another NP-hard problem:
• Traces back to 19th century Irish mathematician W. R. 

Hamilton, who invented a game: find a path along the 
edges of a dodecahedron that visits each vertex exactly 
once.

• In a general graph, a 
Hamiltonian path is a path 
that connects all vertices 
via edges without visiting 
any vertex twice.
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Finding a Hamiltonian Path

A nondeterministic algorithm for a Hamiltonian path of a graph with n
vertices from vin to vout :

1. Generate random paths through graph 
(i.e., random sequences of vertices).

2. Delete all paths that do not start with vin or do not end with vout .
3. Delete all paths of length not equal to n.
4. Delete all paths that visit a vertex more than once.
If there is a path left over, then it is a Hamiltonian path.

Adleman realized all these steps with DNA processing 
for the graph with 7 vertices on the previous slide.
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1. Encoding a Graph in DNA 

• Each vertex vi is represented by a 20-base sequence 
(20-mer) of DNA.

• Each directed edge (vi,vj) is represented by the last 10-mer of vi
and the first 10-mer of vj .

• Exception 1: all edges (vin,vj) use the entire 20-mer of vin and the 
first 10-mer of vj .

• Exception 2: all edges (vi,vout) use the last 10-mer of vj and the 
entire 20-mer of vout .

• Experiment:
• 50pmol of complementary DNA for each vertex.
• 50pmol of DNA for each edge.
• The complementary strands bind and thus represent random paths 

in the graph.
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1. Encoding a Graph in DNA

• There were about 3 1013 oligonucleotides for each 
vertex and edge in the solution.

• How many different paths exist?
• Infinitely many, but very long paths (i.e., very long DNA 

sequences) are unlikely to be created since vin and vout
terminate the DNA sequence.

• Count all possible sequences up to length 14: 
714 = 6.8 1011.

• It is very likely that the solution is among the self-
assembled DNA sequences.
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2. Select Paths from vin to vout

• DNA amplification with polymerase chain reaction 
(PCR):

• PCR splits DNA between two markers and duplicates it in 
each cycle. 

• Here, we use markers for vin and vout such that only DNA 
representing paths from vin to vout are amplified.
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3. Select Paths of Length n

• Run DNA through agarose gel:
• Separation of DNA molecules by length: the mobility of 

the DNA molecule is directly proportional to its size.
• Extract the DNA sequences with 20n = 140 base pairs, 

representing paths with exactly 7 vertices.
• PCR amplification to improve purity.
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4. Delete Missing-Vertex Paths

• Create single stranded DNA.
• For i = 0 to n

• Add complementary DNA sequence representing vi with 
biotin-avidin bound magnetic beads.

• Hybridization.
• Separate labeled DNA from unlabeled DNA.
• Repeat

• Here, we are left only with paths that include all 
vertices.

• … and we have solved the Hamiltonian Path.
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Pro’s and Con’s

• Massively parallel computing.
• High density (theoretically, 1 molecule = 1 data 

structure).
• Energy efficiency (near thermodynamic optimum).
• Linear in number of vertices (as opposed to 

exponential).

• Demo for a trivial problem size. Ultimately, 
combinatorial explosion is unavoidable.

• Lengthy lab procedure.
• …
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Turing Machine

• Proposed 1936 by English mathematician Alan Turing.
• An extremely simple machine that can perform 

computation.
• Various versions of Turing Machines exist; a typical 

configuration consists of 
• an endless tape, 
• a head that can read and write symbols on the tape,
• a look-up table that decides 

• whether to move the tape left of right, 
• whether to read or what to write on the tape,
• what “state” to transition to.
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Turing Machines

• It has been shown that computations with modern 
computers / programming languages can also be 
performed by Turing Machines.

• It is generally agreed that any computation can be 
performed by a Turing Machine.

• In fact, one way to define what is meant by 
“computation” is a program executed by a Turing 
Machine.
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Wang Tiles

• Introduced by Chinese-American mathematician and 
philosopher Hao Wang in 1961.

• Wang gave an algorithm to decide whether a given tile set 
can cover the plane (adjacent colors must match, and tiles 
cannot be rotated).

• Robert Berger (his student) 
proved in 1966 that this 
algorithm was wrong. 
In fact, no such 
algorithm can exist.

• It has been shown that Wang tiles are equivalent to 
Turing machines. 

• This means that any computational problem can be 
represented with Wang tiles.
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Example: Sierpinski Triangle
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DNA Tiles
• Double cross-over (DX) 

molecules are ideal to 
implement Wang tiles at 
the molecular level.

• DX provide stiffness for 
2D assembly.

• 4 sticky ends connect to 
neighbor tiles.

• ssDNA on sticky ends 
provide a high degree of 
programmability.
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DNA Arithmetic

• Winfree (among others) showed that tiles can 
perform arithmetic. The following 7 tiles create a 
binary counter:
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DNA Arithmetic

• Self-assembly, starting with “S” 
in the lower right corner, 
produces rows of 
increasing binary
numbers.

• This works well only
if the new tiles
assemble prefer-
entially with 2 
already assembled
tiles.
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DNA Computation: Conclusions

• Molecular computation by DNA self-assembly is 
attractive because of 

• massively parallel processing, 
• high data density, 
• abstraction that separates computation from chemistry.

• Adleman (Science 1994): 
• “One can imagine the eventual emergence of a general 

purpose computer consisting of nothing more than a single 
macromolecule conjugated to a ribosome-like collection of 
enzymes that act on it.”

• Currently, DNA computation is not widely expected to 
replace electronic computers for the solution of hard 
computational problems.
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DNA Computation: Conclusions

• Consider an analogy: E = mc2

• Converting energy into mass realizes (sort of) the alchemists’ 
dream of converting one element into another.

• But it is not practical (based on today’s physics and 
engineering knowledge).

• However, the inverse process (generating nuclear energy) is 
possible and – arguably – useful.

• Similarly:
• Using DNA self-assembly for computation may not be 

practical.
• But applying theory of computation to create DNA structures 

via programmable self-assembly is practical.
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