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What is a laser? =PrL

* Light Amplification by Stimulated Emission of
Radiation (The first working laser was invented by
Maiman in 1960)

* Three main partsin a laser
* Energy source for ‘pumping’
* Active medium
* Optical resonator
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Active medium cPrL

* Transfers highly Energy
entropic energy to .
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Laser principle

e Realisation of

population inversion

* Coherent light by
stimulated emission of

radiation
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Types of lasers cPrL
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 Solid state lasers
* Nd:YAG laser (A =1064 nm, P =5 kW, pulsed and continuous wave
(CW))
* Gas lasers

 Excimer laser (A =193 nm, 248 nm, 355 nm (UV laser), P =1 kW-
100 MW, pulsed)

* CO, laser (A =10.6 um (IR laser), P =1 kW- 100 MW, pulsed an
CW)

* HeNe laser (AL=632.8 nm,P=1mW-1W, CW)
* Argon-ion laser(A =515, 458 nm, P =1 mW- 100 W, pulsed and CW)

* Semiconductor diode lasers
(A =300 nm - few um, P=1mW-0.1 W, pulsed and CW)
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CO, laser cPrL

* Active medium : ionized mixture of He, N, and CO,

* Wavelength determined by vibrations of CO,
molecule

* Length of active medium ~ 1 m, A =10 um, mirror
~ 1 cm -2 Gaussian laser beams = easy beam
focussing and very high intensities ¥~ MW/cm?

* hv=0.2 eV =2 multiphoton micromachining
process

e Can heat, melt a
on earth
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Fig.3 Scanning electron micrographs of the holes from the laser input surface. (a) Synthetic quartz, (b) Pyrex glass and (c) Soda-lime glass.

Prof. M.A.M. Gijs, Dr. V.K. Parashar, Swiss Federal Institute of Technology Lausanne (EPFL)



Laser - matter interaction =PrL

* Electrons are excited (multi-photon process) and free
electrons absorb laser energy = avalanche ionisation

* Material is heated, melts, then evaporates

e Relevance of thermal properties of the workpiece
(thermal conductivity, specific heat, density,..)

* Heat diffusion (long pulse length > 1 ns)
* takes away energy of spot

* temperature lowering = contamination of globs of molten
material

* diminishes resolution of microfabrication process
e creation of Heat Affected Zone (HAZ) with defects
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Micromachining with long =Pi-L
pulse (ns) laser beams
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CO, laser cutting system
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‘Gas assisted laser cutting’ :

- gas flow removes molten material
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Other laser machining =Pi-L
techniques

* Laser suction « Laser planing
* Melt is sucked away by _ Narrow shallow

a vacuum nozzle
. grooves are formed on
* No expensive gases
the surface

needed
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Laser ablation
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Excimer lasers cPrL
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* Excited artificial noble gas — halogen molecule
‘excimer’

(EPFL)

* Release of excimer binding energy (~ eV) 2> UV
light emission (A = 200 — 300 nm)

* Creation of free electrons = avalanche ionisation

 Short active medium = many laser modes = "top
hat’ intensity profile

* To avoid overheating of gas and electrodes = only
pulsed mode (1 - 10 ns)
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Excimer laser glass machining =Pi-L
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e Conditions
* ArF excimer : A =193 nm [v =1.5510% Hz, hv =6.42 eV]

* F,: A=157nm [v =1.90 10> Hz, hv = 7.89 eV]
Vacuum UV (VUV) laser

* 500 pulses at fluence of 6.5 J/cm?
* 157 nm gives better results than 193 nm
* Band gap of fused silica ~ 8.3 eV
* Higher A = no machining at given fluence

(Lambda Physik, Gottingen, Germany)
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Excimer laser glass machining =Pi-L
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Fig. 5. Fresnel lens fabricated in fused silica by F,
laser ablation.

Fig. 5 Fused silica, processed at 193 nm (upper) and 157 nm
Fig. 4 Blind holes in glass, processed at 193 nm (upper  (Jower)
157 nm (lower)

(Lambda Physik, Gottingen, Germany)
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Solid state lasers =Pr-L
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e X-YAG (Yttrium Aluminium Garnet)
* Pumping with visible light
e L =1 (Nd-YAG), 2 (Er-YAG), 3 (Ho-YAG) um

* Bad heat conduction of the host crystal 2 limited in-
and output power

(EPFL)

* Ti-sapphire
e A =800nm
* Femto-second pulsable
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Femtosecond lasers EPFL
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* Peak power of 5—10 GW, Intensity ~ 101 W/cm?
* Target material reaches plasma state

(EPFL)

* No melt phase and droplet formation

* No negative effects related to the heat affected
zone

* Problems
* Low pulse energy : ¥ mJ
* Low average power = low throughput
« Expensive system (100-107 S)
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Micromachining with short

pulse (fs) laser beams
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Femtosecond laser machining =Pi-L
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Figure 2: Long-pulse machining of a copper alloy aperture. Figure 4: These three 100-micron diameter holes were
This piece clearly shows heat-related effects (HAZ, recast, machined in stainless steel as part of a reproducibility study.

microcracks etc.) This item was not post-processed. Accuracy was found to be of the order of 1 %.
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Internal modification of glass =Pi-L

using fs lasers
e 130 fs, 800 nm Ti:sapphire laser
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 Glass is transparent to this wavelength but can be
melted internally = rise of refractive index

* Voids can be created internally

Halogen 76
SH oB1L lamp
116
Amplified
Ti:sapphire >.’ Silica glass 131
laser oyt -
X ND c-‘. + OB2
"..'.,-"' 11125
CCD (s)
y . camera (a) (b)

Figure 2 Creation of voids by varying exposure time and

Figure 1 Schematic of experimental setup for creation and incident energy; (a) Incident energy is varied form 0.58 u

in situ observation of voids in silica glass by femtosecond ;
5 to 1.36 d
laser pulses; OB1 and OB2 denote objectives. ND and SH . . W uneer fixed exposure time (1/125 s), (®) Ex pc?sure
_ . time is varied form 1/125 s to 4 s under fixed incident
denote a neutral density filter and a shutter, respectively. energy (0.73 wJ)
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Waveguides and photonic

crystals

Fig. 2. Low-loss optical waveguides with

various shapes fabricated within any place of
the glass.
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Fig. 3. (a) Optical microscopic image of photonic
crystal fabricated in fused silica by fs laser
microexplosion, and (b) FTIR transmission spectra
of fabricated structure.
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Waveguides =PrL
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=Pi-L

* |nteraction of a conventional laser beam and another
medium on the material surface

* Example : Laser-Induced Backside-Wet-Etching (LIBWE)
* KrF excimer laser
e Backside of the sample is in contact with pyrene solution
* Laser energy is deposited at the rear surface

Hybrid laser processing

2021

Organic liquid

Mask Pt TTIT
KrF Excimer
Lasgr

Fig. 6. Experimental scheme of LIBWE. Fig. 7. Microstructure fabricated in fused silica by LIBWE.
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Hybrid laser processing (ii)

* Example : Vacuum UltraViolet — UV

laser combination
* F, - KrF excimer laser

* VUV laser has small energy density
(mJ/cm?), simultaneous UV laser has 1

J/cm?)

A
V.L
Patterned UV laser beam
Simultaneous irradiation @ ex~ 0.9eV 1 -~ hV2(5 OCV)
VUV and UV laser beams E
C
B ﬁ —  E*(Defect Level)
~ tens mJ/cm?)
Ablated hole Eg~9.0eV
~<—— hv{(7.9eV)
Substrate
Y E

Fig. 8.  Schematic illustration of concept of
multi-wavelength excitation process.

v

Fig. 10 Band structure of fused silica and excited-
state absorption process.

(b) KrF excimer laser

Fig. 9. AFM images of ablated fused silica.
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) cPrL

 Example : Laser-Induced Plasma-Assisted Ablation (LIPAA)

* Laser beam goes through transparent substrate, where energy
is absorbed by metal target

* Laser-induced plasma generates ablation at the rear surface

Hybrid laser processing (ii
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UV, visible, or IR laser

Laser-induced plasma

Metal targe/ Glass sample
™
/ / Phase mask

V'

Mirror

\\ Mask or Aperture

Projection lens

Fig. 12. AFM image of grating structure
fabricated in fused silica by LIPAA using a KrF

excimer laser and a phase mask.

Fig. 11 Experimental scheme of LIPAA.
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Advantages of laser =PrL
microfabrication

* High precision (tolerance and surface finish)

e small cut widths/welds
* point source, can move in any direction

* Productivity (high speed and low cost)
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(EPFL)

* Non-contact (soft tooling: forceless for fragile parts),
no tool wear

e Automation (CNC, robot, etc.)

 All materials can be processed (hard, abrasive, soft,
sticky materials)

e Quality and reliability
e Synthesis of new materials
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Other applications of lasers =Pi-L
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 Medical: visual correction, tattoo and hair
removal, laser surgery...

(EPFL)

* Space: communication, measurements

e Military: laser guided missile

* Environment: pollution detection

* Consumer: laser printing, recording, laser scanning
(e.g. reading bar codes), finger print detection...
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