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Bonding of glass

(EPFL)

* Introduction

* Field-assisted bonding with Si
* Fusion bonding

* HF-assisted bonding

* Pressure-assisted low-temperature fusion
bonding

* Application : capillary electrophoresis
microchip
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Field-assisted thermal bonding with Si cPrL
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* Or : anodic bonding, electro-
static bonding

 To join glass (for example
Corning #7740 = Pyrex) to Si Gathode W 3

* Low process temperature @
(180-400 °C)

* Applied voltages : 200-1000 V Anode

FIGURE 8.12 Principle sketch of anodic glass-to-Si bonding. Con-

® CO nta Cti N g SU rfa ces nee d to trol parameters are temperature (300-400°C), bias voltage (700-1200
V), time (~2’), and materials (glasses, Si, Si0,).
be flat (roughness<1 um) and
dust-free
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Thermal expansion
coefficient of
bonded materials
need to be in the
same range.
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FIGURE 8.13 Thermal expansion coefficients of Si and Corning 7740
Pyrex. Tr = room temperature; Ts = seal temperature. The temperature
Ts is a variable. (From Peeters, E., Process Development for 3D Silicon
Microstructures with Application to Mechanical Sensor Design, Ph.D.
thesis, Catholic University of Louvain, Belgium, 1994. With permission.)
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Mechanism of anodic bonding

* At high T, glass is conductive solid electrolyte

* Bonding results from the migration of Na* (3-5 %
concentration in Pyrex) toward the cathode

 This leaves negative space charge (bound negative
charges) in the region of the glass-Si interface.

2021

* All voltage is dropped over this region, pulling glass
and Si in intimate contact

 Covalent bonds are formed between the surface atoms
of the glass and the Si.

* Disadvantages:
* High electrical field
* One-wafer process
* Mismatch in thermal expansion
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‘Improved’” anodic bonding

* Ti-mesh electrode is deposited over the glass wafer to
give uniform high voltage over the interface. Bonding
parameters: 400 °C, 600V, 5 min.

* Deposition of intermediate layers of SiO, and Al to
screen underlying Si from high electrical %lelds Glass is
bonded to the Al layer.

* Other possibility: SiO, poly-Si bilayer

* Bonding of two Si wafers with an intermediate
sputtered or evaporated borosilicate glass (4-7 um).
But: glass sputtering rate is very slow.

* Bonding of 2 Si wafers, each with 1 um SiO, is
possible. Parameters: 900 °C, 30 V, 45 min
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Thermal fusion bonding

* Based on chemical reaction between OH-groups
present at the surface of the native or grown oxides
covering the wafers

* Bond quality depends on temperature and surface
roughness (< 4 nm).

* High bonding temperature (800 °C) prevents the
incorporation of active electronics before the bonding.

e Same technique can be applied for bonding of :
e Oxidised Si — oxidised Si
* Bare Si— bare Si
* Oxidised Si — bare Si
* Si—glass
* Quartz — quartz

2021
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Fusion bonding procedure
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* Oxidised surface must undergo hydratation:
soaking wafers in H,0,-H,5S0, mixture, diluted
H,SO, or boiling HNO,. This forms hydrophilic top
layer of O-H bonds.

* Additional treatment in oxygen plasma enhances
number of OH groups at surface.

e \Wafers are rinsed in DI water and dried

 When brought into contact, direct bonding of the
2 wafers

* High temperature anneal increases bond strength

(EPFL)
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Mechanism of fusion bonding
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* Main reaction:  Si—-OH+OH -Si—> H,0+Si—0O-Si

. At.anneal T<300 .°C, s.ilanol ~— [
(Si-OH) groups give rise to

hydrogen bonding. %Q,Z% —> ’//////%
* At 300 °C, OH-groups form -

water molecules, which can
form water vapour voids
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Intermediate thin-layer thermal glass bonoﬁEFL
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* LPCVD phosphosilicate glass (PSG) (1-2 um) can be
used for Si to Si wafer bonding. Anneal at 1100 °C
for 30 minutes necessary.

(EPFL)

* Low temperature sealing glasses ‘frits’ exist.
* Sealing temperatures: 415-650 °C.
e Glass can be spinned, sprayed, screen-printed.
* Preglazing to get rid of organic residues

* Spin-on-glass (SOG) (Si(OH), with 2<x<4)
* 50 nm thick film is baked at 250 °C for 1 hr.
* Annealing for 1 hr at 1150 °C to sinter
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HF-assisted bonding cPrL
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* Room temperature bonding process

* HF (C > 0.1 %) is applied in between 2 glass or SiO,
wafers.

* Pressure is applied (~1 MPa)

* Mechanism: formation of intermediate bonding
layer.

e Advantages:
* no temperature induced stress
* no degradation of metal leads (Au-Cr, Al,..) and IC’s.
* bonding strengths of 5-10 MPa

(EPFL)

(Nakanishi et al., Proc. MEMS 97, p. 299 (1997))
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HF-assisted bonding

[ Cleaning of substrates J

1

1% DHF is dropped into a gap
between substrates

' top substrate 4]%

‘ bottom substrate .

Pressure { 0.04 ~ 1.3 MPa ) is applied
at room temperature

[*i*i

Roof
top substrate

bottom ‘substr ate '_
Stage

A4 K&

r Rinse : DIW with ultrasonic --> Drying

Fig.1 Procedure of HF-bonding

e Substrate cleaning:
acetone, methanol,
H,50,+H,0,

* 1% HF etching to remove
surface layer (5 nm)

* 1% diluted HF (DHF)
dropped in gap

* 18 hours of pressurised
bonding
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HF assisted bonding

(a) Schematic of test-chip
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(b) Schematic of the tensile test equipment

Fig.2 Set-up for evaluation of bond strength

Bond quality is
evaluated by
bond strength
measurements
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HF assisted bonding cPrL
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HF assisted bonding cPrL
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Pressure-assisted low-temperature fusion

oonding

Low temperature bonding process (100-200 °C)
Cleaning of the substrates (no HF)

Pressure is applied (~10 MPa)

Mechanism:

Adwha@E +OH -Si — Si—-0-Si+H,0
— no temperature induced stress
— no degradation of metal leads (Au-Cr, Al,..) and IC °s.

— bonding strengths of 5-10 MPa
— no HF

1~ .. L - 1 c - _ _ 0O A _» AN ISAANN\)
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Pressure-assisted low-temperature fusion
oonding
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Measurement of bonding strength
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Capillary electrophoresis chip
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Channel cross section. Electro-osmotic flow
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Separation principle

* Electrophoresis : different transport velocity of
molecules in a liquid in an electric field, based on
the different charge/mass ratio of the various
biomolecules.

* This principle can be translated to the capillary /
microchip format:

 Capillary : hollow quartz tube (inner @ 25-100 um,
length 0.1-1 m)

* Microchip : microchannel realised in glass or quartz
wafers by microstructuring and bonding techniques

=Pi-L
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Electro-osmotic flow (EOF) (i)

* Capillary is made of fused silica (SiO,)

2021

nne (EPFL)

XX X I XXX X2
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L

* Filling the channel with buffer solution disociates
hydroxyl groups, leaving negative charge on inside

b )
(o ol
(-
N
)
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Electro-osmotic flow (EOF) (ii)
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 Applying a voltage across the capillary causes
hydrogen ion flow, resulting in EOF or bulk flow

/(} (—y (=) (=) (=) (=) (=)} (—y (=) (=) (=)
H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H

>

H+ H+ H+ H+ H+ H+ H+ H+ H+

H+ H+
\‘(—} (=) (=) (=) (=) (=) (=) (=) (=) (=) (=)

* Turning off the voltage stops the EOF

* EOF mobility adds to electrophoretic mobilities of
anions (-) and cations (+)

Prof. M.A.M. Gijs, Dr. V.K. Parashar, Swiss Federal Institute of Technology Lausanne (EPFL)
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Effective mobilities

(EPFL) 2021

of Technology Lausanne

e Straight, not parabolic, pumping profile.

Prof. M.A.M. Gijs, Dr. V.K. Parashar, Swiss Federal Institute
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Electrophoresis and electrochromatograp
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* Separation using EOF- pumping
* in a hollow quartz capillary : Capillary electrophoresis (CE)
* in a microchannel on a glass or quartz chip : Microchip
electrophoresis
* Separation can be based on the different diffusion of biomoleculesin a
stationary phase within a capillary or microchannel =

* High Performance Liquid Chromatography (HPLC), when liquid
transported by mechanical pumping

* Capillary electro-chromatography (CEC), when liquid transported
by EOF

* microchip CEC (LCEC), when having CEC in channel on microchip

Prof. M.A.M. Gijs, Dr. V.K. Parashar, Swiss Federal Institute of Technology Lausanne (EPFL)
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Connectors to the chip (i)

 PDMS (Polydimethylsiloxane) reservoirs on top of the
chip
 PDMS : moulded elastomer (silicone)

e Contains hase and curing asent (containine Pt-haced catalyst)

2021

siloxane oligomers siloxane cross-linkers
1 2
CHy CHy CHs R CHy
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|
Chs Hs n ChHs CH = éH3 R is usually CH 5,
sometimes H
n =-~g0 n=-10

" S

£ O CH A

& H—SI—Ch Ea ““:/5( "CH,-S{—CH,
— ““}Siifg“% o H,o' G e
HaC H H.C—sSi—cH, Ptbased HyC—Si—CH,
cataly st
+ -
o H,C—Si—CH, HaC—Si—CH,
‘72%/ “msr/ﬁ\ \O o o,

chf S H—Sf—CI—g Hﬁ/ Su\f “CH - Si—CHs

o Hae” CH

3

Prof. M.A.M. Gijs, Dr. V.K. Parashar, Swiss Federal Institute of Technology Lausanne (EPFL)

23



Connectors to the chip (ii)

 PDMS (Polydimethylsiloxane) reservoirs on top of
the chip

* Three-dimensional cross-linked structure upon mixing

(10:1) L EEEE Metal mould
Casted PDMS
i FrIr

structure
* Adhesion promotor

=Pi-L
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Connectors to the chip (iii)

Chip side connectors using powder blasting/gluing
* Low dead-volume connector

* Allows chip integration in commercial capillary detection
system

Prof. M.A.M. Gijs, Dr. V.K. Parashar, Swiss Federal Institute of Technology Lausanne (EPFL) 2021
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Connectors to the chip (iv)

Chip/capillary side connectors using powder
blasting/gluing
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Chip detection platform

2021

Fluorescent detection using an inverted microscope

H excitation: BP 450 - 490
Fllter Set 09 beamsplitter:  FT 510
%] 488009 - 0000 emission: LP 520
100 (typical curves)
eyepiece i f\
yep E ] y/ -\\
80 : /\‘1
3 second barrier filter: cuts out [
unwanted fluorescent signals, 60
passing the specific green
fluorescein emission between
LGHT 520 and 560 nm
40
SOURCE
2 beam-splitting mirror: reflects
light below 510 nm but 20
transmits light above 510 nm
1 first barrier filter: lets through J i
only blue light with a wavelength et 0 i . :
between 450 and 490 nm objective lens
300 350 400 450 500 550 600 650 700 750
object — eXxcCitation beamsplitter ——— emission A [nm]
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Chip detection platform (ii) cPrL

Injection of fluorescent plug
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Fluorescein — GF
electropherogra

°? separation
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u-chip electropherogram : separation fluorescein + GFP
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Towards a universal detection scheme

* Only fluorescently labeled molecules can be

visualised by fluorescence

* All proteins absorb in UV — universal means for

detection
* Also glass absorbs in UV

* Solution : use quartzformicrochip fabri

cation —»

develop quartz technology:.

Transmission
o
(o]

o
N
1

Borosilicate glass
0.2F

0.0 1 1 1 1 1 1
015 020 025 030 035 040 045 050

A (um)
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u-chip chromatography using sol-gel
stationa ryiOBha§es

* [nject a’liquid solution in the channel

* Let it polymerise to a stationary
phai\lse, which covers the channel
walls

* Inject a liquid mobile phase
containing the molecules to be
separate

* Bio-molecules will selectively
adsorb/desorb on the formed

stationary phase — chromatography EESEUIENAESMELEE
application with fluorescent molecules

* Driving force for the flow is electro-
osmosis — u-chip Capillary Electro
Chromatography
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