Title: Implanted biomedical sensor, cranial implant

Responsible person: Anja Skrivervik

General description

Implanted sensors are more and more used in medical application, for the monitoring and treatment of chronical diseases for instance. We consider an Implant having a diameter of 10 mm and a height of 3 mm, implanted in the cranium on the top of the head (thus covered by the fat and skin layers)

This project involves:

- Basic description of the system level architecture for the transceiver
- Identification of the frequency to use
- Identification and selection of potential candidates for the antenna
- Power budget estimations.
- Propositions of optimizations and trade-off analysis between the different options
- Highlighting of the major issues

Specifications

Size: has to fit in a cylinder of 10mm in diameter and 3 mm height

Dielectric characteristic of fat:

Dielectric properties of fat (not infiltrated) [1]

Frequency (GHz)	Complex permittivity $\hat{\varepsilon}_{r}$
0.4	5.58 – 1.85i
0.6	5.52 – 1.34i
0.8	5.48 – 1.10i
1.0	5.45 – 0.96i
1.2	5.42 – 0.88i
1.4	5.40 – 0.83i
1.6	5.37 – 0.80i
1.8	5.35 – 0.78i
2.0	5.33 – 0.77i
2.2	5.31 – 0.77i

2.4	5.29 – 0.77i
2.6	5.26 – 0.77i
2.8	5.24 – 0.77i
3.0	5.22 – 0.78i
3.2	5.20 – 0.79i
3.4	5.18 – 0.79i
3.6	5.16 – 0.80i
3.8	5.14 – 0.81i
4.0	5.12 – 0.82i
4.2	5.11 – 0.83i
4.4	5.09 – 0.84i
4.6	5.07 – 0.85i
4.8	5.05 – 0.86i
5.0	5.03 – 0.87i
5.2	5.01 – 0.88i
5.4	4.99 – 0.89i
5.6	4.97 – 0.90i
5.8	4.95 – 0.91i
6.0	4.94 – 0.92i

^[1] S. Gabriel, R.W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," *Phys. Med. Biol.*, vol. 41, 2271, 1996.

Title: Implanted biomedical sensor, muscle implant Responsible person: Anja Skrivervik

General description

Implanted sensors are more and more used in medical application, for the monitoring and treatment of chronical diseases for instance. We consider an Implant having a diameter of 10 mm, implanted in the muscle 2 cm deep in muscle (for simplicity, we neglect the fat and skin layers) . The data transmission from the sensor to the external nodes occurs at 2.45 GHz.

This project involves:

Specifications

- Basic description of the system level architecture for the transceiver
- Identification and selection of potential candidates for the antenna
- Power budget estimations.
- Propositions of optimizations and trade-off analysis between the different options
- Highlighting of the major issues

- Production	
Size: has to fit in a sphere of 10mm in diameter	r

Dielectric characteristic of muscle: 48.99-j13.23