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Lab Exercise: MCU Energy Modes 
Author: jeremy.constantin@epfl.ch 

This lab exercise illustrates the effects and importance of different energy modes for power efficient 

application design, using an EFM32 starter kit board (STK-3600), which hosts an ARM Cortex-M3 MCU. The 

board supports real-time energy profiling, allowing us to analyze the energy consumption of applications, while 

using different energy modes and MCU clock frequencies. 

Preparation 
1. Boot the machines in ELG022 and log-in with your EPFL account. 

2. Open the zip file containing the project files on the Moodle, following the link “Exercise (EFM32 

Project Files)”.  

3. Open Simplicity Studio.  

4. Connect the starter-kit board via USB over the J-Link interface to the workstation, and wait for the 

drivers to automatically be installed. Make sure the switch on the board is set to “DBG”. The “EFM 32 

Leopard Gecko Starter Kit Board” (EFM32LG990F256 MCU) should be automatically detected now. It 

should appear under “Debug Adapters” 

5. Select the EFM 32 Board on the “Debug Adaptors” panel.  

6. The reference manual of the EFM32LG MCU family (in the following, this document will be referred 

to as RM) can be accessed in Simplicity Studio on the Documentations tab. You also find the MCU 

data sheet of the EFM32LG990 device there, with electric specifications and a system summary. 

7. The EFM32LG emlib API documentation (MCU & peripheral configuration) can be accessed over the 

“Documentation” tab in Simplicity Studio after selecting the connected boards in the “Debug 

Adapters” tab. On the website, select your device (Leopard Gecko) and find the EMLIB (peripheral 

library) 

8. Start Eclipse through the “Simplicity IDE” button on the “Compatible Tools” tab. You may receive a 

“Workspace Unavailable” error; Choose the EAWS_Gecko_Workspace” directory on your desktop or 

create a Workspace directory in the Documents folder of your users profile.  

9. Check for your workspace directory, by choosing File -> Switch Workspace -> Other… . Do not change 

the workspace location, just remember it 

10. Copy the “workload” directory from the zip file to the workspace directory from the previous point. 

11. Import the project by selecting Project -> Import -> MCU Project…; Browse under “Select a project to 

import” to find and select the workload directory. For project name, use “workload” even if another 

name is suggested. Then proceed. The workload project will be automatically selected for import). 

Now open the workload.c source file in the src/ directory of the imported project on the left-hand 

side. The file contains all the C code you will work on for this exercise. 

Task 1: Energy Modes 
The exercise is based on an example application that is provided to you, which executes a workload (matrix 

multiplications) in periodic time intervals on the MCU. The periodic time interval is realized with the help of a 

real-time counter (RTC) peripheral, which is configured to generate an interrupt every second. The main() 

function of the application initially sets up the MCU and peripherals, and then runs an infinite loop. The loop 

waits for a ready-flag to be set by the interrupt, and after that proceeds to perform the workload operations. 
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After finishing the workload the application returns into the waiting state. In the following, we will analyze 

three different possibilities for the implementation of the waiting period: 

1. The MCU remains in active mode (EM0), and the core actively checks for the ready flag to be set (busy 

waiting / spin lock). 

2. The MCU enters the sleep mode (EM1), disabling the clock of the core (clock gating), which means that 

no instructions are executed on the MCU until it is woken up by an interrupt. The wakeup of the MCU 

happens instantaneous. 

3. The MCU enters the deep-sleep mode (EM2), turning off all high frequency clocks in the MCU 

(including the core clock). The MCU is woken up by an interrupt with a wakeup time of about 3 us. 

Please refer to RM page 8 and 109 for a complete overview of the different energy modes (EM0-EM4) and their 

associated active clocks and modules. 

To enter the sleep / energy modes, call the following C functions: (cf. APIDOC: Modules / EM_Library / EMU) 

▪ for EM1: EMU_EnterEM1(); 

▪ for EM2: EMU_EnterEM2(true); 

In addition to investigating the different energy modes, we want to examine the impact of different core clock 

frequencies on the energy efficiency of our application. We will use three different frequencies, by setting the 

core clock divider to either 1 [= 48 Mhz] (base frequency), 2 [= 24 MHz], or 4 [= 12 Mhz]. This setting can be 

adjusted by changing the CORE_CLKDIV define at the top of the C source file. 

The provided version of the source code will perform waiting in active mode (EM0) with a core clock of 48 MHz. 

Your task is now to modify the application and profile its energy consumption for all 9 combinations of the 3 

waiting strategies and the 3 clock frequencies. Fill the following table using the profiling tool introduced below. 

 
 

MCU frequency: 48 MHz 24 MHz 12 MHz 

workload-
period: 1s 

processing time [ms]    

processing current [mA]    

EM0 
(active) 

idle current [mA]    

total avg. power [mW]    

EM1 
(sleep) 

idle current [mA]    

total avg. power [mW]    

EM2 
(deepsleep) 

idle current [mA]    

total avg. power [mW]    

 

Energy Profiling 
The application can be compiled, programmed to the board, ran and profiled, simply by choosing Run -> Profile 

in the Eclipse IDE. This will start the Energy Profiler, which displays a real-time trace of the current consumption 



  

LAB EXERCISE: MCU ENERGY MODES 3 

 

of the MCU. Toggle running button (  ) to stop the trace. As can be seen in the following screenshot, the 

profiler allows for displaying the current consumption of single measurement points by clicking on the 

waveform (blue line). Ranges can be analyzed by clicking and dragging in the waveform window (green area). 

The example screenshot shows the current trace for our application, when using active waiting and a clock 

speed of 48 Mhz. The selected point indicates that the MCU consumes 15.49 mA during its processing phase 

(performing the workload). The selected range tells us that the time span between interrupts is indeed 1.00 

seconds, and that the total average power is 44.12mW, which corresponds to a consumed energy for one 

workload period of 12.26µWh. Furthermore, we can observe that even when performing active waiting, the 

current consumption during the idle phase is lower, since the executed instructions for the busy waiting loop 

cost less energy than the multiplications and additions and memory accesses of the workload code. 

 

 

Simplicity Studio Energy Profiler 

Questions 
1. When comparing the 3 clock frequency configurations, which is the most energy efficient, when 

performing active waiting (EM0)? By which factor do they differ? Explain why. 

2. Which is the most energy efficient clock frequency configuration, when using deep-sleep (EM2)? 

Explain why the picture changes; what is different to operation in EM0? 

3. Now compare your results with the simple sleep mode (EM1); which frequency is most energy 

efficient here? Contrast the results with EM2, and explain the behavior of the idle current (refer to 

RM page 109). 
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Extension to Task 1: Stop Mode (EM3) 
Perform the same analysis for a fourth configuration, where during idle the MCU goes into the stop mode 

(EM3). The main difference between deep-sleep (EM2) and stop mode (EM3) is that in addition to all high 

frequency clocks, almost all peripheral clocks are also turned off (including the standard RTC peripheral clock). 

Change the source code to use EM3: 

1. Refer to chapter 10.3 and 21.3.5 in the RM for a description of EM3 and how to use the RTC correctly 

when using EM3. 

2. The API call to enter EM3 can be found in the APIDOC: Modules/EMU 

3. The clock selection for the RTC peripheral is performed by the CMU_ClockSelectSet() call; 

details can be found in the APIDOC: Modules/CMU 

4. Adjust the parameters of the RTC clock configuration (divider, compare value, etc.), to match the 

properties of the new selected clock, ensuring that an interrupt is still generated about once per 

second. 

How does the overall energy consumption further change compared to EM2 deep-sleep? 

What is the tradeoff regarding timing accuracy of the workload period interval? Check your measurements 

and explain the cause. (cf. RM 21.3.5) 

Task 2: Energy Profiling of Arithmetic Instructions & Memory Accesses 
In this second task we illustrate the impact of addition and multiplication instructions, as well as memory 

accesses, on the energy consumption of the MCU. To this end, the workload.c source already contains a section 

that implements two simple workload processing loops, which simply perform repeated additions. The 

difference between the two versions is that the intermediate result is either being held in a register, or the 

result is written back to memory (on the stack) after every addition, creating memory accesses. 

Run and profile the two addition workloads of task 2 by uncommenting the task2() call in the main() function. 

This will only execute the part of the application required for this task, since the call will never return to the 

main() function. Observe the difference in current and energy consumption for the two implementations, 

showcasing the impact of memory accesses, and note the results in the table below. Make sure the core clock 

divider is set to 1 [= 48 MHz], to be able to see more pronounced differences. 

 
 

Workload: Addition Multiplication 

temp. result 
in registers 

processing time [ms]   

processing current [mA]   

total energy [mJ]   

temp. result 
in memory 

processing time [ms]   

processing current [mA]   

total energy [mJ]   
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Now extend task 2 by two additional workload loops, which perform multiplications during their operation, 

either using registers or using memory for storage of the temporary results (analogous to the addition 

workloads). 

How do the current consumptions (surprisingly) compare to the addition workloads? To get the full picture, 

compare the total energy costs for the different workloads. 


