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$ The History of Lightmatter & Lightelligence

Large scale integrated
photonics becomes

Bell Lab’s Optical possible
Computing Research

Programmable nanophotonic
processor preprint on arXiv
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M. Reck’s universal optical

processor - .
Irst programma
nanophotonic proceslar 2017
nare ARTICLES
photomcs PUBLISHED ONLINE: 12 JUNE 2017 | DOI: 10.1038/NPHOTON.2017.93
Deep Iea rn ing With COherent na nophOtonic CirCUits An article on Medium by the lead investor 1;1qun:n‘mtn‘cr;r;;rlx;anncm talks about
I Yichen Shen‘l*i‘, Nich0|as C. Hanis]*-i«’ Icott Skir|01, Mihika P 1 - 2 how matrix mtlmp[lCEﬂth is actually the bottleneck for.
Michael Hochberg?, Xin Sun?, Shijie Zhao*, Hugo Larochelle‘i Dirk Englund' and Marin Soljaci¢ I
Co-first authors Yichen Shen, MIT, Advised by Prof Marin Soljacié. » Founder of Lightelligence (2017)
Nicholas Christopher Harris, MIT, Advised by Prof Dirk Robert Englund. » Founder of Lightmatter (2018)
Prof Marin Soljaci¢, MIT, Physics » Co-Founder of Lightelligence (2017)
Prof Dirk Robert Englund,  MIT, EECS » Advisor of Lightmatter (2018)

[1] https://medium.com/lightmatter/the-story-behind-lightmatters-tech-e9faOfacca30
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nature
phOtOIllCS PUBLISHED ONLINE: 12 JUNE 2017 | DOI: 10.1038/NPHOTON.2017.93

ARTICLES

Deep learning with coherent nanophotonic circuits

Yichen Shen™", Nicholas C. Harris™, Scott Skirlo', Mihika Prabhu!, Tom Baehr-Jones?,
Michael Hochberg?, Xin Sun?, Shijie Zhao* Hugo Larochelle®, Dirk Englund' and Marin Soljaci¢

Deep learning with coherent nanophotonic
circuits

Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X,,
Zhao, S., Larochelle, H., Englund, D. and Soljaci¢, M., 2017. Deep learning with
coherent nanophotonic circuits. Nature photonics, 11(7), pp.441-446.
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Background: Why Optical Computing is Attractive for
Al?
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$ Computation of Artificial Intelligence

Training Compute of Notable machine learning Systems Over Time

Training compute (FLOP) v A Large Scale O Other Show options %5
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FLOP: Floating-point operations per second

[1] https://epochai.org/blog/tracking-compute-intensive-ai-models
[2] https://epochai.org/blog/compute-trends
[3] https://www.top500.org/lists/top500/2023/11/

Compute-intensive models by domain and publication date Z EPOCH
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Rmax Rpeak Power
Rank System Cores (PFlop/s] (PFlop/s) (kW)
1 Frontier : 8,699,904 1,194.00 1,679.82 22,703
S HPE = N
DOE/SC/Oak Ridge National Laboratory 1P 10 15
United States
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10723 means 60,000 times of
the 1st Supercomputer peak performance 4
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e The Traditional Computing Architecture

Central Processing Unit

Control Unit

Input

) Arithmetic/Logic Unit
Device

Memory Unit

Von neumann architecture

Output
Device

Slower Retrieval
Higher capacit;

Faster Access,

01 )2,
tructions in Blocks

Main MeTEry (RAM)
ta in_Pag

Secondary Storage ( Hard disk,

SSR..)
Files

: \ Level 2

Tertiary storage (IBackup devices)

Memory hierarchy
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$ The Need for High Efficient Computing

Normalized Scaling

[1] Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M.W. and Keutzer, K., 2024. Ai and memory wall. IEEE Micro.

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth

H100
°
| HWFLOPS: 60000x /20 yrs (3.0x/2yrs) 4100
1000000 TPUV3
DRAM BW: 100x / 20 yrs (1.6x/2yrs) o ® TPUV4
Interconnect BW: 30x / 20 yrs (1.4x/2yrs)
10000
HBM2E —
100+ Itanium 2 HBM HB.MZ L .o 3
GDDR5 o I P
GDDR4 @ LIS L ] NVLink 4.0
R10 o | NVLink 1.0 PqesH
1 5
. PCle 2.0 PCie 3.0
Pentium Il Xeon PCle 1.0a
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YEAR

Fig. 1: The scaling of the bandwidth of different generations of
interconnections and memory, as well as the Peak FLOPS. As
can be seen, the bandwidth is increasing very slowly. We are
normalizing hardware peak FLOPS with the R10000 system,

as it was used to report the cost of training LeNet-5.

Memory bandwidth restricts computing
power

[2] https://www.bellwether.works/ai-is-huge-and-so-is-its-energy-consumption/
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Estimated energy consumption (Wh) per user request
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Google Search ChatGPT BLOOM Al-powered Google Al-powered Google

Search
(SemiAnalysis)

Search (New Street
Research)

Trainning +billions of inference task
Energy efficient is needed
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e Possible solutions

O GPU / NPU / TPU / ASIC / DSIP

(Optimal design for Al Hardware) (D High bandwidth

O Optical computing | 2) Low power

O In/Near Memory Computing (3) Feasible process

(SRAM, DRAM, FLASH, RRAM, PCRAM, MRAM)

O Quantum computing

S N

Compute-in-Memory IC

T=0

gv
euljedid jndu)

+= A11 X B
basic Multiply-accumulate (MAC) operations () % ey .

Output pipeline
* The majority of Al algorithms can be decomposed to e
(MAC operation or Matrix Multiplication) e e
 MAC operations can be accelerated by many ways c = MAC operation
including Optical Computing e

a spatial accumulation systolic

array.
[1] Gopalakrishnan, R.,et.al. Hfnet: A cnn architecture co-designed for neuromorphic hardware with a crossbar array of synapses.
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$ Fully Optical Neural Networks (ONNs)

o o e
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Photonic integrated circuit

b Optical input Optical output
X ...j Layer iEn.jLayer nE Y.
c I s o it b et g 0 S @
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0 0
Xin g Vim H\Z(n) H ym H\fm oy Xout
. o\ 0 \Et

Waveguide Optical interference unit  Optical nonlinearity unit

— Vowel X

(D Input data is preprocessed to a

high-dimensional vector.

The preprocessed signals are
then encoded in the amplitude
of optical pulses propagating in
the photonic integrated circuit.

Each layer of ONN has an optical
interference unit  (OIU) for
optical matrix _multiplication
and an optical nonlinearity unit
(ONU) for the nonlinear
activation.

@ Cascade for high depth.




=PrL

$ Optical Matrix Multiplication

O singular value decomposition (SVD) O SVD in Optics -~ yummm
waveguides phase shifters
= M=UZXVT -~~~ — __[cosfl —sinf\ [z,
M _ Ux VT | N _[; / P = Umzrx= sinf  cos/® o
M ls m >< n’ \‘SO:SOCOUplerS/“

Uis m X m (unitary matrix),

> 1s m X n (diagonal matrix),

VTis n X n (unitary matrix),

UU™UTU= VVT=VTV = [ (Identity matrix)

The elements in unitary matrix U, VT means the light phase
(hence the interference of light, phase/amplitude).

U, VT can be implemented with optical beamsplitters and
phase shifters (2D rotation and phase transformation)

Attenuator
waveguide

/
A = Dattenuator X = o1 cos 0

" o \a

_blocked waveguides =
The elements in the diagonal matrix X represent the scaling factors
of different signal channels (light intensity).
> can be implemented using optical attenuators—optical
amplification materials

f(O) =f(A * W) = f(U X VT), f means non-linear operation

» Matrix multiplication has no energy cost in theory.

» The matrix multiplication is equal to the adjustment of light phase and light intensity.
» The non-linear is performed by traditional computer in this paper.




cPrL

$ Mach—Zehnder Interferometers

Coherence

ish » 2D rotation and phase transformation
ight

Beamsplitter » Cascade for complex behavior

Laser Mirror
- O Interference

Fringes

Screen

AN

Sample Beamsplitter

10
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$ Optical Matrix Multiplication

LIGHTELLIGENCE

11



=PrL

e Fully Optical Neural Networks (ONNs)

numbers primitive computation
[\ @ discrete - integers transistor on/off 2 integrated circuit
electronics
igiea 7, 8 |au ;g;g @ FLD-D-EL Shore :&%L,
Y b
o 4 \& 4 \ 4
) @ continuous - real ) /modulated laser hght (22 unitary rotation ) “ MZ| b
photonics = " 5
(analog) % COS — Sin &I
\ ) R -1.0 sinf/  cost Ta
& y N J \ Y

Mach-Zehnder interferometer

Attenuator

[1] Martin Forsythe, Machine Learning Scientist @ Lightmatter
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$ ONN Experiment

Instance d

a
- )
0 20 40 60 80 100
Input o H 0lu2 CPU ‘ o3 H Oolu4 Output : 1 = L - = L—

Transmission

U5 v, foa () uLv

Laser s%— OIU — Detectors —— Computer

ERICET

Tl

attenuation

matrix multiplication

Benchmark:
360 data points were generated by 90 different
people speaking four different vowel phonemes

Hardware:
silicon photonic integrated circuit fabricated in the
OPSIS foundry.

» 56 programmable MZls,

» each has a thermo-optic phase shifter (8)
between two 50% directional couplers, followed
by another phase shifter (¢).

» The MZI splitting ratio was controlled with an
internal phase shifter and the differential
output phase was controlled with the external
phase shifter.

13
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$ ONN Experiment

Vowel identified

ONN b 64-bit computer c 0.20
4 0 0 0 4 0 0 0
B 015
5 ‘M 0 | 1 = 0 K o] o =
- g om0
0| 5 M 1 E 0 | 1 KL 4 S
2 0.05
4 0 16 0 0 10
0.00
- SR SR e B £ D 0.00 0.05 010
Vowel spoken Vowel spoken op
d 4
3 . e ® A: (hid)
* ¢ B: (hEd)
5 21 °® P, C: (hyd)
s 14 “ ol i D: (hOd)
-~ @ a
(= Pt . » P
-14 g '
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015 0.20
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O Training is performed by conventional computer

O ONN adapts the trained parameter and shows
close accuracy for inference

O Itis a very simple demo, but shows the feasibility
for larger ONN applications.

O ONN is sensitive to phase-encoding and device
vibration (error).

Figure 3 | Vowel recognition. a,b, Correlation matrices for the ONN and a 64-bit electronic computer, respectively, implementing two-layer neural networks
for vowel recognition. Each row of the correlation matrices is a histogram of the number of times the ONN or 64-bit computer identified vowel X when
presented with vowel Y. Perfect performance for the vowel recognition task would result in a diagonal correlation matrix. ¢, Correct identification ratio in
percent for the vowel recognition problem with phase-encoding (64) and photodetection error (6p). The definitions of these two variables are provided in

the Methods. Solid lines are contours for different correctness ratios. In our experiment, 65 ~0.1%. The contour line shown in red marks an isoline

corresponding to the correct identification ratio for our experiment. d, Two-dimensional projection (log area ratio coefficient 1 on the x axis and 2 on the

y axis) of the testing data set, which shows the large overlap between spoken vowel C and D. This large overlap leads to lower classification accuracy for
both a 64-bit computer and the experimental ONN.

14
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$ ONN Discussion and Expectation

1. Resolution (Analog Computing)

» The finite precision of optical phase (16-bit)
» Cascade crosstalk

» Device vibration

» Nosise

2. Computation speed and energy efficiency

» Less even zero energy cost (now ~10 mW per phase modulator)
» Low latency and larger throughput

» Only limited by hardware optical system

3. On-chip training
» Back propagation could be replaced by forward propagation.

15
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Follow-up Progress

16
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An Electro-Photonic System for Accelerating Deep Neural Networks
---—- From system level evaluation instead of sing ONN
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Figure 1: Diagram showing different components of ADEPT and how operations are performed. (a) Example GEMM operation in the photo-core. (b)
Programming input and weight matrices into the photo-core. The m x m (here m = 3 as an example) photo-core consists of 2 x m(m — 1) /2 = 6 MZIs (for U
and VT) and 3 attenuators (for I). (c) Microarchitecture for a single digital electronic vectorized processing unit. The unit comprises m = 3 digital lanes, each
consisting of arithmetic units to perform non-GEMM operations. (d) Full system architecture including the host CPU, the DRAM, and ADEPT—interconnected
using a PCl-e interface. As an example, we show four photo-cores and four vectorized processing units.

B U L L

xr <y <

m-m--m

HiE

ADEPT

Digital Electronic

Processmg Unlt

|

» Host CPU
top level schedule and control

» DRAM
external memory, low speed
but larger capacity size

» SRAM
internal memory, high speed
and medium capacity size
store photonics value

» Photonics Core
MAC operation acceleration

» ASCI
input pre[rocessing
non-linear operation (RelLU, etc.)

ADC, DAC (8-bit)
17

[1] Demirkiran, et.al. An electro-photonic system for accelerating deep neural networks. ACM Journal on Emerging Technologies in Computing Systems, 19(4), pp.1-31.
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An Electro-Photonic System for Accelerating Deep Neural Networks

------ From system level evaluation instead of sing ONN

ADEPT
Host
Librar

Driver d Driver
‘ Library
------- [
l|br~1r>
odel odes ptimizer Model . . .
| - Software-Hardware co-optimization

ffffffffffffffffffff for the mapping and scheduling

PT Backen Model
: parar‘h
ADEPT
Device OSS:::W
Librar Y

Figure 2: Execution model. Compilation process of an ML model for
ADEPT.

18

[1] Demirkiran, et.al. An electro-photonic system for accelerating deep neural networks. ACM Journal on Emerging Technologies in Computing Systems, 19(4), pp.1-31.



An Electro-Photonic System for Accelerating Deep Neural Networks
---—- From system level evaluation instead of sing ONN

ResNet-50 BERT-Large RNN-T

Batch Size: 58 Batch Size: 88 Batch Size: 50 Area
Non-GEMM DAC/ADC Non-GEMM DAC/ADC DAC/ADC
ASIC (0.01%) (3271%) ASIC (096%) 34.41%) (2519%)
SRAM g Optical
15.8%) SRAFA eeeeee

aE> ( : (1632%) (23 89%) srAM

£ e - e

1) 35,698 IPS 4303 1PS — 5748 IPS 706.32

F oS 2248w o & Tgoew - 775 W mm? _oagace * SRAM takes most area

w Optical

Q \De\ncee \Optlcal’ Optical

< oo - DD s Y ot  The energy cost by DRAM, ADC/DAC,

(1275%] Die-to-die @17%) _/ \ Die-to-die EO0E H H . H
\_____ Die-to-die [S— . - (8.88%)

> e meces  520E earmec electrical-to-optical (O-E/E-O) and die2die
o . .
= interconnect can not be ignored.
© £ PE (MAC) PE (MAC) @)

] (2820%) 28.67%) PE(MAC)
(&S] L, PE-to-PE_ 37577 1PS ~ 3,507 IPS PEto-PE 9720 IPS (2791%) Non-GEMM
- — ) (6588%) 1098 W ?fbg;;%— &7 W (65M1%) 740 W ASIC (1.5%)
= 2 : . : . . ; .
S @ ety » Still, optical computing has great benefit.
w \__ DRAM \
>\ u%ﬁh (4.84%) ¥22:3 ([?92;:) \\; zz::: [(Z :::))
(7)) ASIC (00196 A (@22%) ASIC (015%)

Figure 8: Average total (static and dynamic) power distribution and area distribution of ADEPT (128 x 128, 10 GHz photo-core) and the SA system
(128 x 128, 10x1 GHz array, OS dataflow ).

Table 2: Comparison against state-of-the-art electronic and photonic accelerators.

ADEPT (This work) Eyeriss [15] Eyeriss v2 [18] UNPU [46] TPUv3 [42]
Tech Node 90 nm photonics + 22 nm CMOS 65 nm 65 nm 65 nm 16 nm i i i ic limi
Clock rate b 10 GHz 200 MHz 200 MHz 200 MHz 940 MHz > The benefit of Optlcal ComDUtl ng is limited
Benchmark  AlexNet ResNet-50 AlexNet AlexNet AlexNet  ResNet-50 by peripheral devices, and it is difficult to
Batch size 192 58 4 1 15 N/A . .
IPS 217,201 35.698 35 102 346 32716 go to THz inference as expected in theory.
IPS/W 7.476.78 1,587.99 124.80 174.80 1,097.50 18.18
IPS/W/mm? 10.59 2.25 10.18 N/A 68.59 0.01

19

[1] Demirkiran, et.al. An electro-photonic system for accelerating deep neural networks. ACM Journal on Emerging Technologies in Computing Systems, 19(4), pp.1-31.
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e Lightelligence Whitepaper

Optical Computing
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» The key advantage is low latency
» Relative less energy

» Relative high bandwidth

0 Precision limit (8bit)

O Computing noise

Figure 5 Cross-sectional view (a) and top view (b) of oNOC system where electronic

chips are interconnected by optical waveguide based links

» Large scale integration
» Chiplet by packging

Eco-system Partners Lightelligence Solutions
Host Server XPU Server
E GG 2 €ol o) (ol e ®
& & 8 @ @ EEEsE
o) Uoo0oD
AL L pa = B Q QOoouuo
..S 000a00
i) s ol Bl o i alnlalsls
oNOC enabled
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Figure 9 Schematics of a new data center architecture with integrated

silicon photonics technology

Ethernet Optical Interconnect

= —
Electrical Signal Electrical Signal Optical Signal
Compute Nic EO/OE
AsIC Conversion
S—

Compute Optical Interconnect

~
Electrical Signal v

Compute - EO/OE

AsIC Conversion

>

Optical Signal

Figure 6 Ethernet optical interconnect and compute optical interconnect

» Optical inter-chip Networking

Heterogeneous computing with
traditional electronics platforms
and emerging optical computing

20
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Commercial Products

21



=PrL

$ Lightmatter & Lightelligence Products

Lightmatter

Lightelligence

Optical
Computing

01101100 eeemmeen

Envise™

features 16 Envise Chips in a
server configuration with only
3kW power consumption. It has
3 times higher IPS than the
Nvidia DGX-A100 and 8 times

the IPS/W on

BERT-Base

SQuUAD (a benchmark).

» 16xLightmatter® Envise™

> 2xAMD EPYC 7002 host processors

» 3TB NVMe SSD

» 6.4Tbps LM-Fabric for scale-out
» 2x200G Ethernet Smart NIC
» Gigabit ethernet for IPMI management

» 3kW TDP

» 4U form factor

SOOMIB PCI-£4.0

Massive on-chip activation and
weight storage enabling state-of-
the-art neural network execution
without leaving the processor.

256

RISC cores per Envise™ processor.
Generic off-load capabilities.

RAS

Deployment-grade reliability,
availability, and serviceability
features. Next generation compute
with the reliability of standard
electronics.

Standards-based host and
interconnect interface. Revolutionary
compute, standard communications.

Ultra-high performance out-of-order
super-scalar processing
architecture.

= 0—/0
=17
400Gbps Lightmatter® interconnect
fabric per Envise™ chip — enabling
large model scale-out. Running the

most advanced neural networks on
the planet.

Photonic Arithmetic Computing Engine (PACE)

A fully integrated photonic
computing platform. It has a
64x64 optical matrix multiplier
in an integrated silicon photonic
chip (150ps delay) and a CMOS
microelectronic chip. It also
contains over 12,000 discrete
photonic devices and has a
system clock of 1GHz.

HUMMINGBIR . .
" e P PP
Pummingbird serves as  the o

BN Substrate

communications network for data
centers and other high-performance
applications.

It has 64 transmitters and 512
receivers.

PCle bus and Lightelligence Software
Development Kit (SDK).

Optical Waveguide
Interconnect

L]

[g]
h]
(]

Top view of wafer level optical network formed by interconne: cting
eles s through optics
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$ Lightmatter ENVISE™
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$ Lightelligence
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$ Lightmatter & Lightelligence Products

Lightmatter

Lightelligence

Photonics
Interconnect

PASSAGE™;

Designed for interconnection among
optical computing chips for high

bandwidth.

Os

Fully integrated chiplet, interconnect
solution with direct fiber attach all in
a single assembly.

Wafer-scale processing with
heterogeneous tiles of CPUs, GPUs,
FPGAs, DRAM, and ASICs.

[u] o—0
-
o1,
Any Topology Anytime with 1-Hop-
Everywhere. Dynamically reconfigure

network configurations in
microseconds

-
ooioo
0000
g
Uniform architecture for flexible
dicing (e.g. 2x2, 2x4, 2x8)

Vs
I LA
Transistors and photonics integrated
side-by-side. SerDes signals from
chiplets directly modulated onto
waveguides. Standards-based D2D

interfaces supported including UCle,
AlIB, and others.

=]

Thousands of waveguides with
cross-reticle stitching. Every chiplet
directly connected to every other at
multi-terabit speed and near-zero
latency.

40X

Dramatic interconnect density
improvement. 40 waveguides in the
space of one optical fiber.

100X

More bandwidth than existing chip-
to-chip interconnect solutions.

800+

Input/output bandwidth from each
chiplet site for full reticle. And up to
250+ Tbps per chiplet site edge.

<ZNIS

Chiplet to chiplet latency, single hop
connectivity between every site.

Photowave™

2pt low via direct connection to the CPU/GPU and memory.

Scale-Out:

Optical Signal Compute

—

Electrical Signal
NN

EO/OE
Conversion
Memory

optical communications hardware that is kind designed for PCle
and Compute Express Link (CXL) connectivity. Leveraging the
significant latency and energy efficiency benefits of photonics, it
enables data center managers to scale resources within or across
server racks.

Sidebands

- e

y -~ -\

Accelerator,

25
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$ Lightmatter PASSAGE™
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$ Lightelligence Optical Network on Chip
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$ Lightelligence Optical Networking
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$ Lightmatter & Lightelligence Products

Lightmatter

Lightelligence

Others

IDIOMP® SOFTWARE TOOLS FOR Al
DEP e

IDIOM
MODEL COMPILE & EXECUTE
Simulate the eff  model M del to hardware;
€ ONNX parameters o n acouracy and. olimize model performance:
performance | | Execute generate d code
>
1P TensorFlow
. h DEBUG PROFILE
O PyTorc| Access intermediate state in Find and fix perform d
the model under execution | | resource bottlenecks
GRAPH COMPILER NPUT
idCompile automates the programming by partitioning
(large) neural networks for parallel programming within and
between Envise blades
= Automatic conversion from floating-point numbers for
. ision inf
mixed-precision inference OUTPUT
= Automatic generation of optimized execution schedule

= Supports multiple parallelism strategies: data parallelism,

model parallelism, and pipelining

MULTI-BLADE ENVISE
PARTITIONING

Idiom® automatically performs the partitioning between
multiple Envise™ blades.

= Proprietary Lightmattere fiber optical communication
links Envise™ blades, while Idiom® synchronizes the
Envise chips together in a single runtime

= Automatic partitioning chooses the best parallelism
model for performance

= Virtualizes each Envise™ blade automatically and multiple

users can apportion the number of chips used

VIEW FULL CHART >

ENVISE BLADE 1 ENVISE BLADE 2

ENVISE BLADE 3 ENVISE BLADE 4

Moonstone
Single and Multi-wavelength Optical Sources

>18dBm/ch single wavelength output optical power
>14dBm/A/ch multi-wavelength output optical power

» Moonstone™ js a high power, multi-channel, single or
multi-wavelength DFB laser source.

» It has a smaller footprint, better operating
temperature ranges and is field replaceable with
advanced packaging at a much lower price point.

» |deal for telecommunications, LIDAR, ethernet
switching, along with a broad range of test and sensor
equipment.

29
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Venture Capital of Lightmatter & Lightelligence

Lightmatter

Lightelligence

Financing process 6

serial number date
1 2024-01-09
2 2023-12-18
3 2023-05-30
4 2021-05-05
5 2019-02-25
6 2018-02-06

Financing rounds Valuation amount Financing Amount

C+ round

C+ round

C round

Round B

A+ round

Series A

US$1.2 billion

US$1.2 billion

not disclosed

not disclosed

not disclosed

not disclosed

not disclosed

$155 million

$154 million

US$80 million

$22 million

$11 million

B Export TPBEE

Investment agency

SIP Global Partners

Viking Global Investors, Google Ventures

Fidelity Management Research , Viking Global Investors , Google Ven
tures , SIP Global Partners , HPE Pathfinder

Viking Global Investors, Lockheed Martin Ventures, Spark Capital,
>, SIP Global

Google Ventures, Hewlett Packard Enterprise,
Partners

Spark Capital , Google Ventures , Matrix Partners

Spark Capital , Matrix Partners

Round C, more than 400 million USD

News link

News source

news source

news source

news source

Financing process 3

serial
numb

er

Amount of the transact

Disclosure date

ion

tens of millions of dolla

2020-07-06

rs
2020-04-08 $26 million
2018-02-04 US$10 million

Financing rounds Valuation

A+ round -

Series A -

angel wheel -

investor

Heli Capital
Henry Yuan

Matrix Partners

CICC Capital

Zhongke Chuangxing

Fengrui Capital

Vertex Investment China Fund
BV Baidu Venture Capital

China Merchants Venture Capital

BV Baidu Venture Capital
ZhenFund
Dexun Investment

Round A+, more than 40 million USD

CRIRE

nNews source

Photonic Al chip company Xizhi
Technology completed tens of mil
lions of dollars in Series A+ finan
cing

The world's first photonic chip co
mpany completed US$26 million
in financing, with Basalt serving a
s financial advisor

Baidu invests in optical Al chip st
artup Lightelligence

30



=PrL

$ In Summary

Algorithms and application

Architecture and
system

IP

Circuit

Device

Process

Material

Algorithms and application

Tradition electronics computing

Architecture and
system

IP

Circuit

Device

Process

Material

Optical Computing

31



L.
L

&Q

’

i
e
o
S
@
AL
3
o
3
2
7p)
O
<)
©
2
O
o)
&
ol
1

-
F
0.

C

“Pengbo.yu@epfl.ch

=

4




