

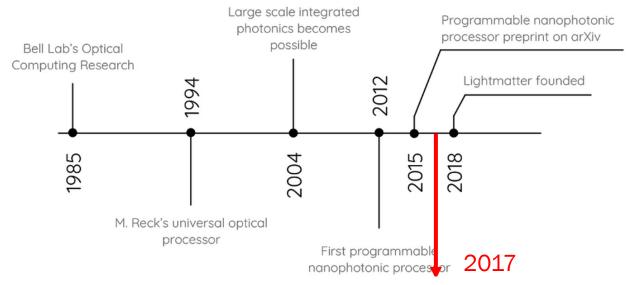
Enterprise of Optical Computing

Lightmatter & Lightelligence

Micro-608 Optical Computing

Yu, Pengbo
EPFL - Embedded Systems Laboratory
Pengbo.yu@epfl.ch
2024.04.15

The History of Lightmatter & Lightelligence



Vichen Shen, second from left, and Nicholas Harris, third from right, were both on the team that won a 2017 MIT pitch competition for their A focused chip technology. Now each is helming his own startup to commercialize the tech.

ARTICLES
PUBLISHED ONLINE: 12 JUNE 2017 | DOI: 10.1038/NPHOTON.2017.93

Deep learning with coherent nanophotonic circuits

Yichen Shen¹*†, Nicholas C. Harris¹*†, Scott Skirlo¹, Mihika Prabhu¹. Tom Baehr-Jones². Michael Hochberg², Xin Sun³, Shijie Zhao⁴, Hugo Larochelle⁵ Dirk Englund¹ and Marin Soljačic¹

Nanalyze

A Race Between Lightmatter and Lightelligence

An article on Medium by the lead investor in Lightmatter, Matrix Partners, talks about how matrix multiplication is actually the bottleneck for...

Co-first authors

Yichen Shen, MIT, Advised by Prof Marin Soljačić. Nicholas Christopher Harris, MIT, Advised by Prof Dirk Robert Englund. Founder of Lightelligence (2017) Founder of Lightmatter (2018)

Prof Marin Soljačić, Prof Dirk Robert Englund, MIT, Physics MIT. EECS

Co-Founder of Lightelligence (2017) Advisor of Lightmatter (2018)

Deep learning with coherent nanophotonic circuits

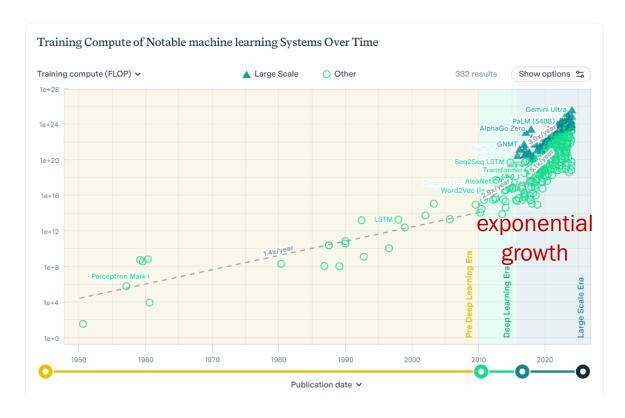
Yichen Shen¹*†, Nicholas C. Harris¹*†, Scott Skirlo¹, Mihika Prabhu¹, Tom Baehr-Jones², Michael Hochberg², Xin Sun³, Shijie Zhao⁴, Hugo Larochelle⁵, Dirk Englund¹ and Marin Soljačić¹

Deep learning with coherent nanophotonic circuits

Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D. and Soljačić, M., 2017. Deep learning with coherent nanophotonic circuits. Nature photonics, 11(7), pp.441-446.

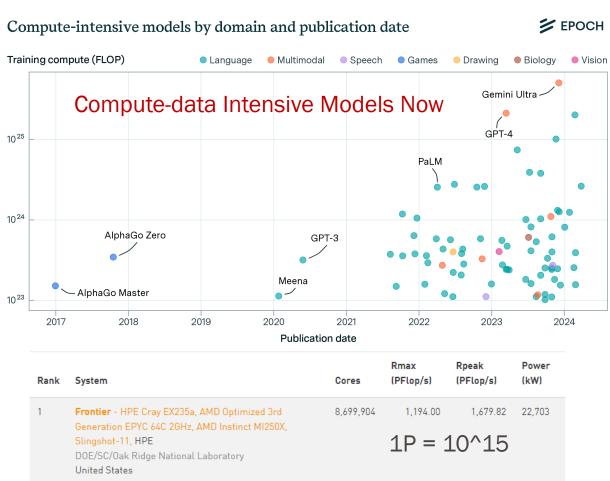
Background: Why Optical Computing is Attractive for AI?

Computation of Artificial Intelligence



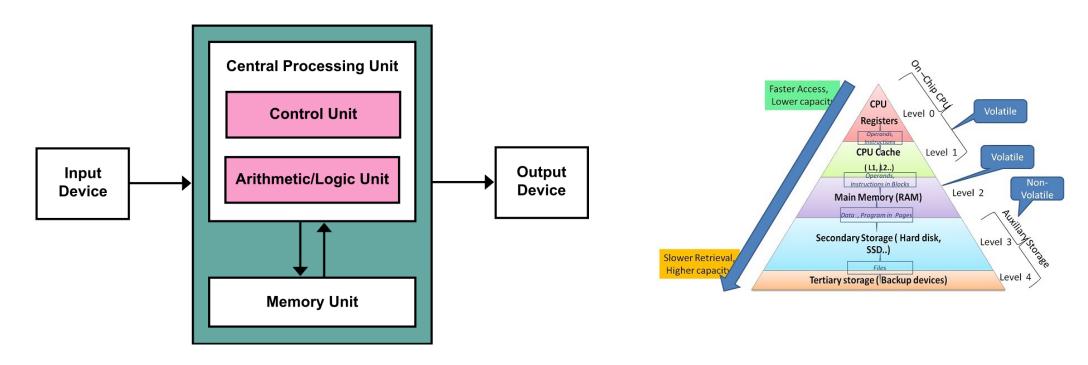
^[2] https://epochai.org/blog/compute-trends

[3] https://www.top500.org/lists/top500/2023/11/



10^23 means 60,000 times of the 1st Supercomputer peak performance

The Traditional Computing Architecture



Von neumann architecture

Memory hierarchy

The Need for High Efficient Computing

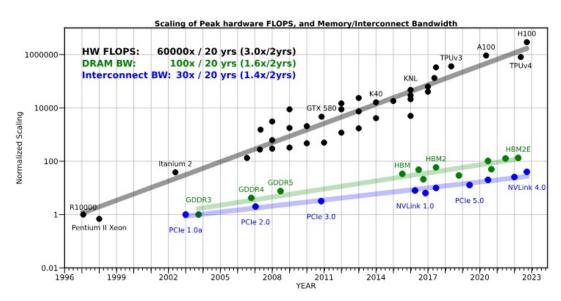
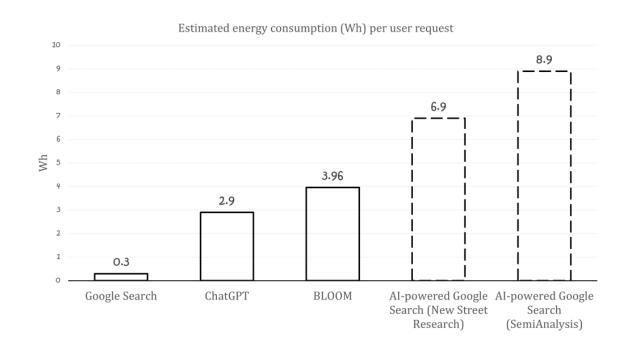


Fig. 1: The scaling of the bandwidth of different generations of interconnections and memory, as well as the Peak FLOPS. As can be seen, the bandwidth is increasing very slowly. We are normalizing hardware peak FLOPS with the R10000 system, as it was used to report the cost of training LeNet-5.



Trainning +billions of inference task

Energy efficient is needed

Memory bandwidth restricts computing nower

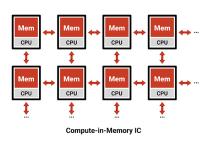
[1] Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M.W. and Keutzer, K., 2024. Ai and memory wall. IEEE Micro.

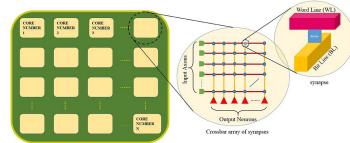
[2] https://www.bellwether.works/ai-is-huge-and-so-is-its-energy-consumption/

Possible solutions

Traditional electronics

- ☐ GPU / NPU / TPU / ASIC / DSIP (Optimal design for Al Hardware)
- ☐ In/Near Memory Computing (SRAM, DRAM, FLASH, RRAM, PCRAM, MRAM)

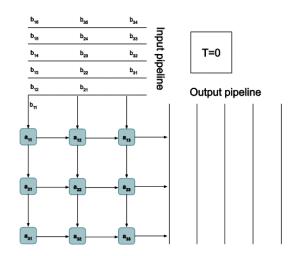


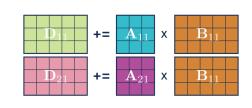


- The majority of Al algorithms can be decomposed to basic Multiply-accumulate (MAC) operations (MAC operation or Matrix Multiplication)
- MAC operations can be accelerated by many ways including Optical Computing

Emerging electronics

- Optical computing
- 1) High bandwidth
- 2 Low power
- 3 Feasible process
- Quantum computing

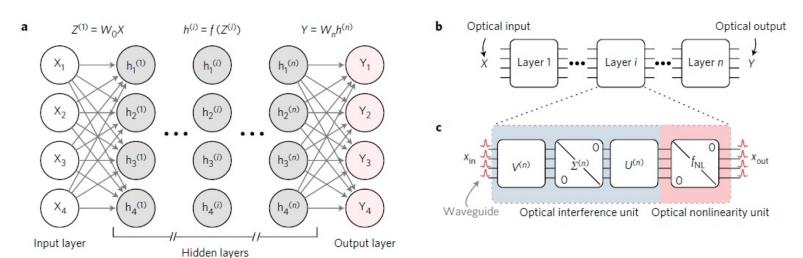


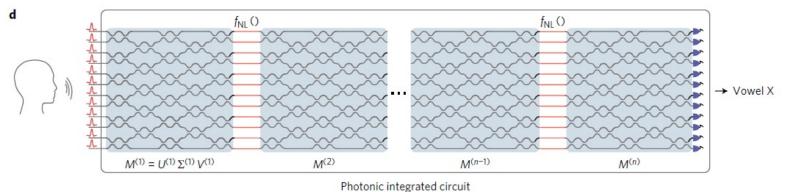


MAC operation

a spatial accumulation systolic array.

Fully Optical Neural Networks (ONNs)





- ① Input data is <u>preprocessed to a</u> high-dimensional vector.
- 2 The preprocessed signals are then encoded in the amplitude of optical pulses propagating in the photonic integrated circuit.
- 3 Each layer of ONN has an <u>optical</u> interference unit (OIU) for <u>optical matrix multiplication</u> and <u>an optical nonlinearity unit</u> (ONU) for the nonlinear activation.
- 4 Cascade for high depth.

Optical Matrix Multiplication

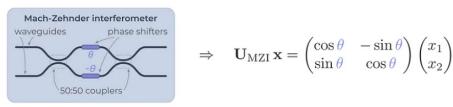
■ singular value decomposition (SVD)

$$M = U \Sigma V^{\dagger}$$

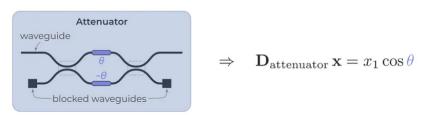
 $M \text{ is } m \times n$,
 $U \text{ is } m \times m \text{ (unitary matrix)}$,
 $\Sigma \text{ is } m \times n \text{ (diagonal matrix)}$,
 $V^{\dagger} \text{ is } n \times n \text{ (unitary matrix)}$,
 $UU^{\dagger}=U^{\dagger}U=VV^{\dagger}=V^{\dagger}V=I \text{ (Identity matrix)}$

■ SVD in Optics

$$M=U\;\Sigma\;V^{\dagger}$$



The elements in unitary matrix U, V[†] means the light phase (hence the interference of light, phase/amplitude).
 U, V[†] can be implemented with optical beamsplitters and phase shifters (2D rotation and phase transformation)

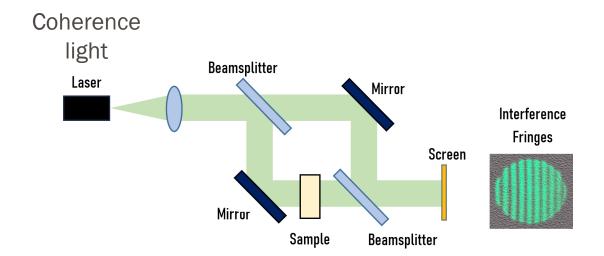


The elements in the diagonal matrix Σ represent the scaling factors of different signal channels (light intensity).
 Σ can be implemented using optical attenuators—optical amplification materials

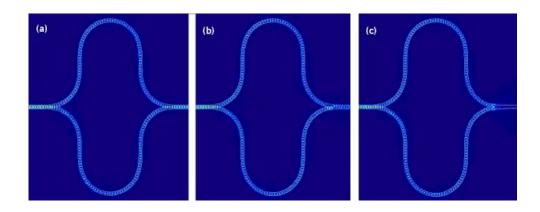
 $f(O) = f(A * W) = f(U \Sigma V^{\dagger})$, f means non-linear operation

- > The matrix multiplication is equal to the adjustment of light phase and light intensity.
- > The non-linear is performed by traditional computer in this paper.
- > Matrix multiplication has no energy cost in theory.

Mach-Zehnder Interferometers

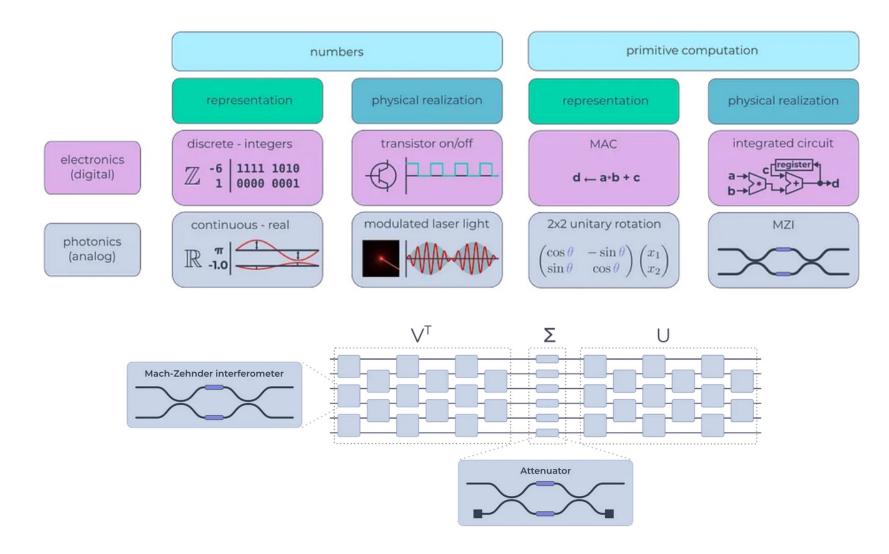


- > 2D rotation and phase transformation
- Cascade for complex behavior

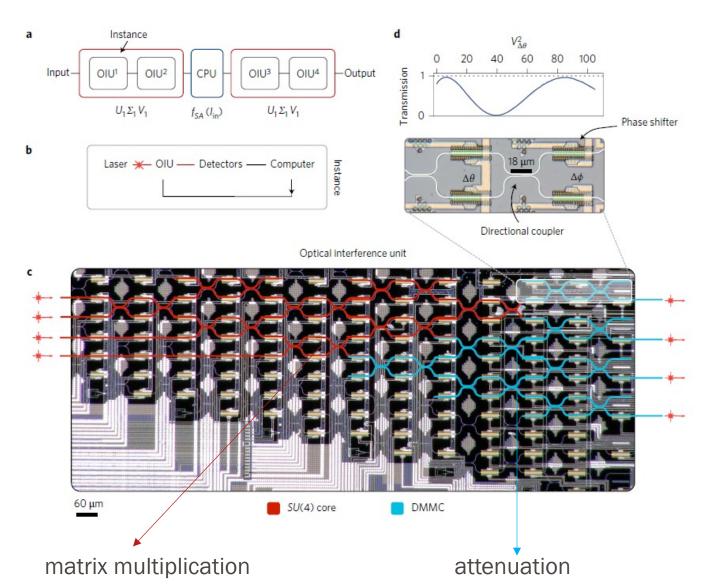


Optical Matrix Multiplication

Fully Optical Neural Networks (ONNs)



ONN Experiment



Benchmark:

360 data points were generated by 90 different people speaking four different vowel phonemes

Hardware:

silicon photonic integrated circuit fabricated in the OPSIS foundry.

- ➤ 56 programmable MZIs,
- \triangleright each has a thermo-optic phase shifter (θ) between two 50% directional couplers, followed by another phase shifter (φ).
- The MZI splitting ratio was controlled with an internal phase shifter and the differential output phase was controlled with the external phase shifter.

ONN Experiment

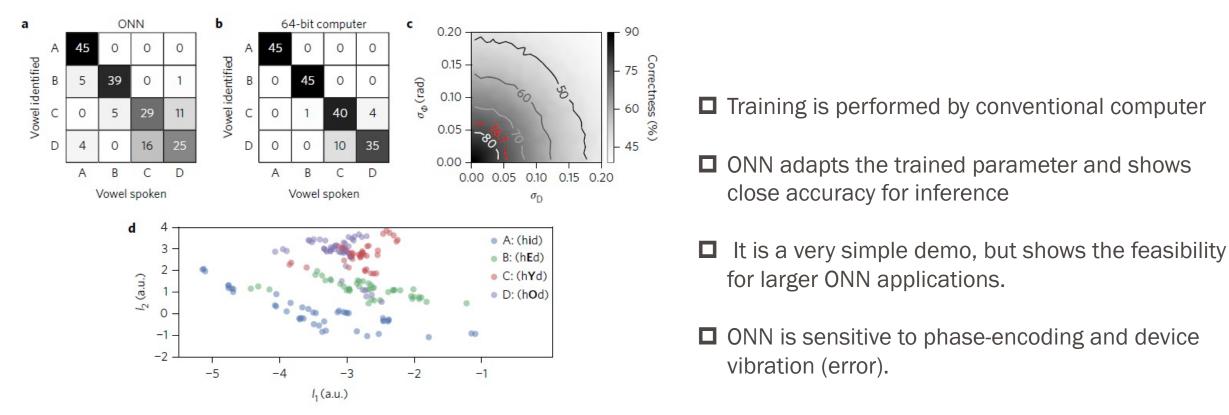


Figure 3 | **Vowel recognition. a,b**, Correlation matrices for the ONN and a 64-bit electronic computer, respectively, implementing two-layer neural networks for vowel recognition. Each row of the correlation matrices is a histogram of the number of times the ONN or 64-bit computer identified vowel X when presented with vowel Y. Perfect performance for the vowel recognition task would result in a diagonal correlation matrix. **c**, Correct identification ratio in percent for the vowel recognition problem with phase-encoding ($σ_Φ$) and photodetection error ($σ_D$). The definitions of these two variables are provided in the Methods. Solid lines are contours for different correctness ratios. In our experiment, $σ_D \simeq 0.1\%$. The contour line shown in red marks an isoline corresponding to the correct identification ratio for our experiment. **d**, Two-dimensional projection (log area ratio coefficient 1 on the *x* axis and 2 on the *y* axis) of the testing data set, which shows the large overlap between spoken vowel C and D. This large overlap leads to lower classification accuracy for both a 64-bit computer and the experimental ONN.

ONN Discussion and Expectation

1. Resolution (Analog Computing)

- > The finite precision of optical phase (16-bit)
- Cascade crosstalk
- Device vibration
- Nosise

2. Computation speed and energy efficiency

- \triangleright Less even zero energy cost (now \sim 10 mW per phase modulator)
- Low latency and larger throughput
- Only limited by hardware optical system

3. On-chip training

Back propagation could be replaced by forward propagation.

Follow-up Progress

An Electro-Photonic System for Accelerating Deep Neural Networks ----- From system level evaluation instead of sing ONN

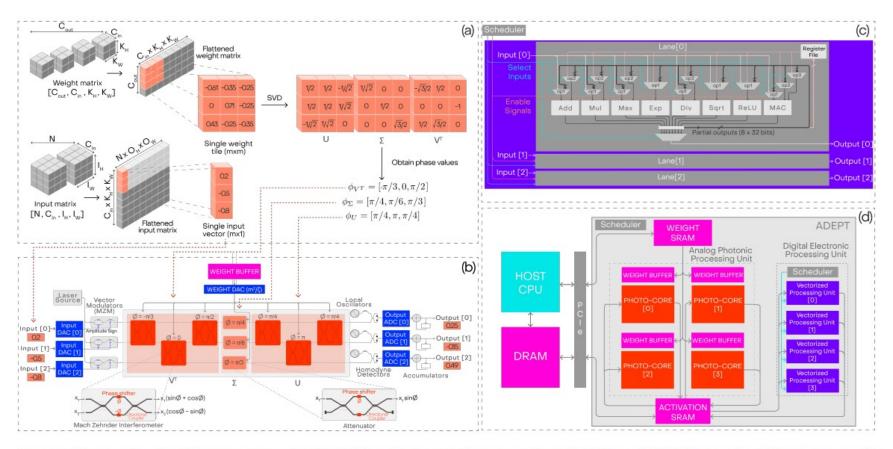


Figure 1: Diagram showing different components of ADEPT and how operations are performed. (a) Example GEMM operation in the photo-core. (b) Programming input and weight matrices into the photo-core. The $m \times m$ (here m = 3 as an example) photo-core consists of $2 \times m(m-1)/2 = 6$ MZIs (for U and V^T) and 3 attenuators (for Σ). (c) Microarchitecture for a single digital electronic vectorized processing unit. The unit comprises m = 3 digital lanes, each consisting of arithmetic units to perform non-GEMM operations. (d) Full system architecture including the host CPU, the DRAM, and ADEPT—interconnected using a PCI-e interface. As an example, we show four photo-cores and four vectorized processing units.

- Host CPU top level schedule and control
- DRAM
 external memory, low speed
 but larger capacity size
- SRAM internal memory, high speed and medium capacity size store photonics value
- Photonics Core MAC operation acceleration
- ASCI input pre[rocessing non-linear operation (ReLU, etc.) ADC, DAC (8-bit)

An Electro-Photonic System for Accelerating Deep Neural Networks ----- From system level evaluation instead of sing ONN

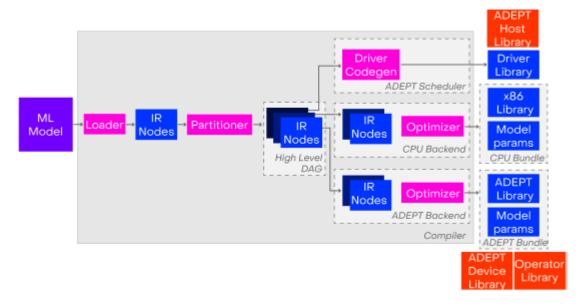
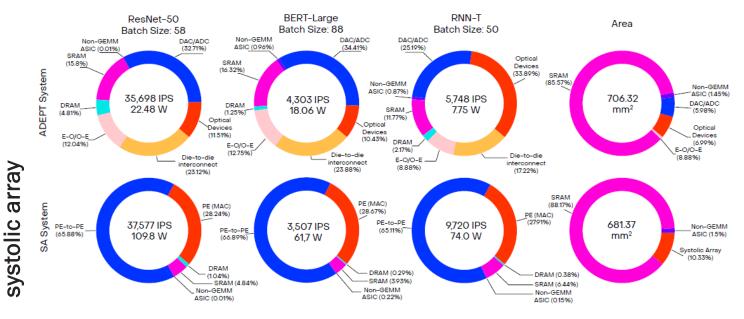


Figure 2: Execution model. Compilation process of an ML model for ADEPT.

Software-Hardware co-optimization for the mapping and scheduling

An Electro-Photonic System for Accelerating Deep Neural Networks ----- From system level evaluation instead of sing ONN



- SRAM takes most area
- The energy cost by DRAM, ADC/DAC, electrical-to-optical (O-E/E-O) and die2die interconnect can not be ignored.
- Still, optical computing has great benefit.

Figure 8: Average total (static and dynamic) power distribution and area distribution of ADEPT (128 \times 128, 10 GHz photo-core) and the SA system (128 \times 128, 10×1 GHz array, OS dataflow).

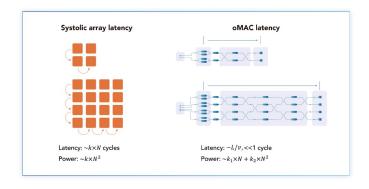
Table 2: Comparison against state-of-the-art electronic and photonic accelerators.

	ADE	PT (This work)	Eyeriss [15]	Eyeriss v2 [18]	UNPU [46]	TPU v3 [42]
Tech Node	90 nm photonics + 22 nm CMOS		65 nm	65 nm	65 nm	16 nm
Clock rate	10 GHz		200 MHz	200 MHz	200 MHz	940 MHz
Benchmark	AlexNet	ResNet-50	AlexNet	AlexNet	AlexNet	ResNet-50
Batch size	192	58	4	1	15	N/A
IPS	217, 201	35,698	35	102	346	32,716
IPS/W	7,476.78	1,587.99	124.80	174.80	1,097.50	18.18
IPS/W/mm ²	10.59	2.25	10.18	N/A	68.59	0.01

➤ The benefit of optical computing is limited by peripheral devices, and it is difficult to go to THz inference as expected in theory.

Lightelligence Whitepaper

Optical Computing



- > The key advantage is low latency
- Relative less energy
- > Relative high bandwidth
- ☐ Precision limit (8bit)
- ☐ Computing noise

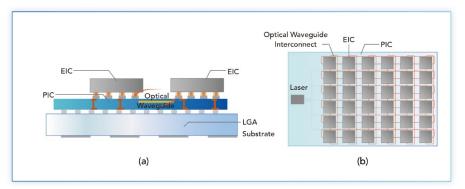


Figure 5 Cross-sectional view (a) and top view (b) of oNOC system where electronic chips are interconnected by optical waveguide based links

- Large scale integration
- Chiplet by packging

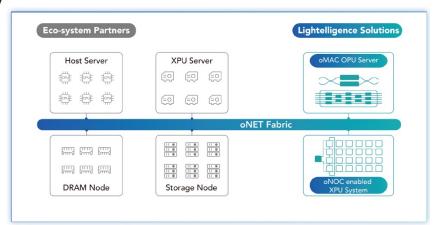


Figure 9 Schematics of a new data center architecture with integrated silicon photonics technology

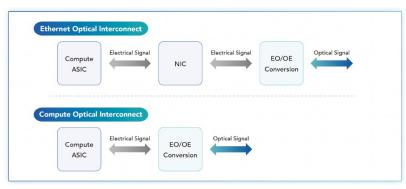


Figure 6 Ethernet optical interconnect and compute optical interconnect

> Optical inter-chip Networking

Heterogeneous computing with traditional electronics platforms and emerging optical computing

Commercial Products

Optical

Computing

Lightmatter & Lightelligence Products

Lightmatter

Photonics enables multiple operations within the same area. COSE COLOR COLOR SET S COLOR

EnviseTM

Through the combination of electronics photonics, and new algorithms, we've

built a next-generation computing platform purpose-built for Al.

features 16 Envise Chips in a server configuration with only 3kW power consumption. It has 3 times higher IPS than the Nvidia DGX-A100 and 8 times the IPS/W on BERT-Base SQuAD (a benchmark).

01101100 000

- ➤ 16xLightmatter® Envise™
- ➤ 2xAMD EPYC 7002 host processors
- > 3TB NVMe SSD
- ➤ 6.4Tbps LM-Fabric for scale-out
- > 2x200G Ethernet Smart NIC
- Gigabit ethernet for IPMI management
- > 3kW TDP
- > 4U form factor

5001/1B PCI-E4.0

Massive on-chip activation and weight storage enabling state-of-the-art neural network execution without leaving the processor.

72X

Standards-based host and interconnect interface. Revolutionary compute, standard communications.

1.7X

256

RISC cores per Envise™ processor. Generic off-load capabilities. Ultra-high performance out-of-order super-scalar processing architecture.

RAS

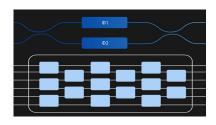
Deployment-grade reliability, availability, and serviceability features. Next generation compute with the reliability of standard electronics.

400Gbps Lightmatter® interconnect fabric per Envise™ chip — enabling large model scale-out. Running the most advanced neural networks on the planet.

Lightelligence

Photonic Arithmetic Computing Engine (PACE)

A fully integrated photonic computing platform. It has a 64x64 optical matrix multiplier in an integrated silicon photonic chip (150ps delay) and a CMOS microelectronic chip. It also contains over 12,000 discrete photonic devices and has a system clock of 1GHz.

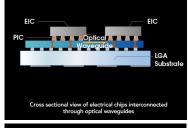


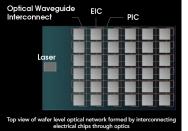
HUMMINGBIR

Hummingbird serves as the communications network for data centers and other high-performance applications.

It has 64 transmitters and 512 receivers.

PCIe bus and Lightelligence Software Development Kit (SDK).





Lightmatter ----- ENVISETM

Lightelligence ----- Optical Multiply Accumulate



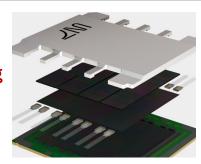
Lightmatter & Lightelligence Products

Lightmatter

Lightelligence

PASSAGETM:

Designed for interconnection among optical computing chips for high bandwidth.



Photonics Interconnect

Fully integrated chiplet, interconnect solution with direct fiber attach all in a single assembly.

Uniform architecture for flexible dicing (e.g. 2×2, 2×4, 2×8).

Wafer-scale processing with heterogeneous tiles of CPUs, GPUs, FPGAs, DRAM, and ASICs.

Transistors and photonics integrated side-by-side. SerDes signals from chiplets directly modulated onto waveguides. Standards-based D2D interfaces supported including UCIe, AIR and others

Any Topology Anytime with 1-Hop-Everywhere Dynamically reconfigure network configurations in

cross-reticle stitching. Every chiplet directly connected to every other at

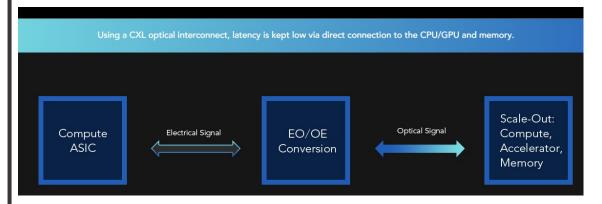
Dramatic interconnect density improvement. 40 waveguides in the space of one optical fiber.

chiplet site for full reticle. And up to 250+ Tbps per chiplet site edge.

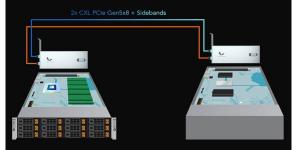
to-chip interconnect solutions.

connectivity between every site.

PhotowaveTM



optical communications hardware that is kind designed for PCle and Compute Express Link (CXL) connectivity. Leveraging the significant latency and energy efficiency benefits of photonics, it enables data center managers to scale resources within or across server racks.



Lightmatter ----- PASSAGETM

Lightelligence ----- Optical Network on Chip

Lightelligence ----- Optical Networking

Lightmatter & Lightelligence Products

ENVISE BLADE 3

ENVISE BLADE 4

Lightmatter Lightelligence IDIOMP® SOFTWARE TOOLS FOR AI Moonstone Single and Multi-wavelength Optical Sources DEP ML FRAMEWORK IDIOM MODEL COMPILE & EXECUTE Simulate the effects of model Map model to hardware: ♠ ONNX parameters on accuracy and Optimize model performance Execute generated code 1 TensorFlow PROFILE O PyTorch Access intermediate state in Find and fix performance and **GRAPH COMPILER** ≥18dBm/ch single wavelength output optical power Others idCompile automates the programming by partitioning ≥14dBm/\lambda/ch multi-wavelength output optical power (large) neural networks for parallel programming within and between Envise blades Automatic conversion from floating-point numbers for mixed-precision inference OUTPUT Automatic generation of optimized execution schedule Supports multiple parallelism strategies: data parallelism, MoonstoneTM is a high power, multi-channel, single or model parallelism, and pipelining VIEW FULL CHART > multi-wavelength DFB laser source. It has a smaller footprint, better operating ENVISE BLADE 1 ENVISE BLADE 2 MULTI-BLADE ENVISE temperature ranges and is field replaceable with PARTITIONING advanced packaging at a much lower price point. Idiom® automatically performs the partitioning between multiple Envise™ blades. Ideal for telecommunications, LIDAR, ethernet Proprietary Lightmatter® fiber optical communication links Envise™ blades, while Idiom® synchronizes the Envise chips together in a single runtime switching, along with a broad range of test and sensor Automatic partitioning chooses the best parallelism model for performance Virtualizes each Envise™ blade automatically and multiple equipment. users can apportion the number of chips used

Venture Capital of Lightmatter & Lightelligence

Lightmatter

Lightelligence

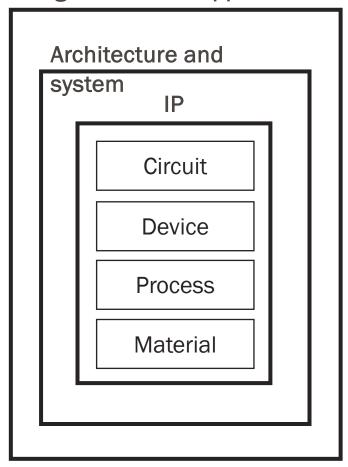
Round C, more than 400 million USD

Financing process 3 《										
serial numb er	Disclosure date	Amount of the transact ion	Financing rounds	Valuation	Proportion	investor	news source			
1	2020-07-06	tens of millions of dolla	A+ round	-	-	Heli Capital Henry Yuan	Photonic AI chip company Xizhi Technology completed tens of mil lions of dollars in Series A+ finan cing			
2	2020-04-08	\$26 million	Series A	-	-	Matrix Partners CICC Capital Zhongke Chuangxing Fengrui Capital Vertex Investment China Fund BV Baidu Venture Capital China Merchants Venture Capital	The world's first photonic chip co mpany completed US\$26 million in financing, with Basalt serving a s financial advisor			
3	2018-02-04	US\$10 million	angel wheel	-	-	BV Baidu Venture Capital ZhenFund Dexun Investment	Baidu invests in optical AI chip st artup Lightelligence			

Round A+, more than 40 million USD

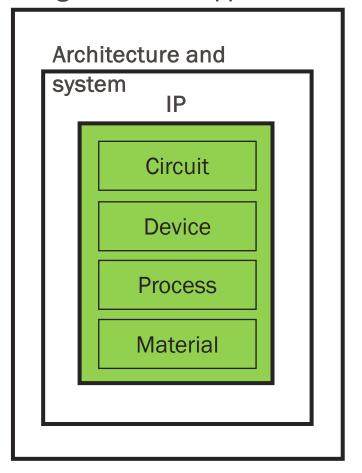
In Summary

Algorithms and application



Tradition electronics computing

Algorithms and application



Optical Computing

