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Multilayer Perceptron

• One of the simplest ways 
to build neural networks.

• Each neuron applies a 
nonlinear function to its 
activation.

• Contains at least a 
hidden layer.

• All its weights can be 
trained with the 
backpropagation 
algorithm.



Multilayer Perceptron

During forward propagation, 
each neuron value is calculated 
as 𝑥𝑥𝑗𝑗

(𝑛𝑛) =
𝑓𝑓 𝑛𝑛 (∑𝑖𝑖

𝑀𝑀𝑛𝑛−1𝑊𝑊𝑖𝑖𝑖𝑖
𝑛𝑛 𝑥𝑥𝑖𝑖

𝑛𝑛−1 + b𝑗𝑗).

During training, the gradient of 
the output error is calculated 
w.r.t. weights, and weights are 
updated accordingly.

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝛼𝛼 
𝜕𝜕𝐸𝐸 𝑋𝑋,𝑤𝑤𝑡𝑡

𝜕𝜕𝜕𝜕



• Volume holograms stored 
by photorefractive 
crystals are trained with 
the dataset optically.

• Nonlinear activation can 
be obtained by 
thresholding ( for instance 
at N2).

Multilayer Perceptron

                

Demetri Psaltis, David Brady, and Kelvin Wagner, "Adaptive optical networks using 
photorefractive crystals," Appl. Opt. 27, 1752-1759 (1988)



• Consists of high-dimensional, 
fixed, non-linear connections 
for transforming data, only 
output weights are optimized.

• The most common definition of 
RC requires reservoir to have 
memory, so that inputs of 
different time steps interact.

Reservoir Computing



• Especially useful for fast operation and low training cost
• Can be realized by high dimensional and nonlinear physical 

systems.

Reservoir Computing



• Photonic reservoir computing 
architectures provide nonlinear 
feedback with delayed response.

• Output signal depends on all 
previous inputs nonlinearly.

• Main advantage of using 
photonic systems is very high 
speed (>10 GHz) and small 
energy consumption

Reservoir Computing

                                

L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, 
and I. Fischer, "Photonic information processing beyond Turing: an optoelectronic 
implementation of reservoir computing," Opt. Express 20, 3241-3249 (2012)



• Can be considered as a hybrid of 
Reservoir Computing and neural 
networks.

• Consists of single or multiple 
neuron layers of fixed weights and a 
single trainable read-out layer.

• Instead of iterative optimization, 
training is single inverse operation:

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑌𝑌

𝑓𝑓(𝑊𝑊1𝑋𝑋 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)

Extreme Learning Machines
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Digital ELM Benchmarks



Physical Extreme Learning Machines



Free-Space Photonic ELM

• The simplest ELM with optics is using 
the weights of the free space 
propagation.

Davide Pierangeli, Giulia Marcucci, and Claudio Conti, "Photonic 
extreme learning machine by free-space optical propagation," 
Photon. Res. 9, 1446-1454 (2021)



Free-Space Photonic ELM



Computing with Spatiotemporal 
Nonlinearities of MMFs

Teğin, U., Yıldırım, M., Oğuz, İ., Moser, C. & Psaltis, D. Scalable optical learning operator. Nat. 
Comput. Sci. 2021 18 1, 542–549 (2021).



• In multimode fibers light 
propagate in discrete 
channels, depending on their 
properties MMFs can 
support up to millions of 
channels: 𝐸𝐸 (x, y,ω) =
∑𝑛𝑛𝑁𝑁 A𝑛𝑛𝐹𝐹𝑛𝑛 (x, y,ω)

• At high intensities modes 
start to couple each other 
due to light-matter 
interactions.

Computing with Spatiotemporal 
Nonlinearities of MMFs



Computing with Spatiotemporal 
Nonlinearities of MMFs
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Computing with Spatiotemporal 
Nonlinearities of MMFs

Ilker Oguz, LO and LAPD, EPFL

W/out fiber: 
77%



Programming Propagation inside MMFs
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Algorithm

Higher 
Performance



Programming Propagation inside MMFs



Programming Propagation inside MMFs
Programming 
Parameters

Mode Shape 
Coefficients

Experimental 
Parameters

Intensity Diffraction 
Angle of 
Blazed Grating

Pattern 
Displacement

Defocus

𝑊𝑊𝑊𝑊(𝑥𝑥,𝑦𝑦) = �
𝑛𝑛=1

𝑁𝑁

𝑎𝑎2𝑛𝑛−1 + 𝑖𝑖 ∗ 𝑎𝑎2𝑛𝑛 ∗ 𝐹𝐹𝑛𝑛(𝑥𝑥, 𝑦𝑦)



Optimization of Programming Parameters

Surrogate Model: Simple 
function(RBFs) to fit to 
experimental results

Experiment: Unknown 
function, costly to evaluate, 

tens of parameters 

New Sampling Points for 
Exploring/ Exploiting a 
Solution

Outputs from Experiment for 
Refining the Surrogate Model

𝑓𝑓 𝑥𝑥,𝑤𝑤 → 𝑦𝑦

𝑓𝑓~ 𝑥𝑥,𝑤𝑤𝑤 → 𝑦𝑦



Programming Propagation for MNIST-Fashion

Ilker Oguz, LO and LAPD, EPFL



Programming Propagation for MNIST-Fashion

Bag Boot

…

Δ𝐴𝐴𝐴𝐴𝐴𝐴 =  +5.0%1200 training and 300 
test samples



Programming Propagation for MNIST-Fashion

Complex Field Control

Convolution with 
Kernel

Ilker Oguz, LO and LAPD, EPFL



Programming Propagation for All-Optical 
Classification



Programming Propagation for All-Optical 
Classification



Programming Propagation for All-Optical 
Classification

Network Structure Total Number 

of Parameters

Operations per 

Sample on Digital 

Computer (FLOP)

Accuracy on 

Melanoma dataset 

(%)

Accuracy on 

COVID- 19 

dataset (%)

LeNet-5 82826 1175640 64.9 74.6

MMF + classification with 

output location (with 

programming)  

55 2029 61.3 77.0



Transferring Programming Parameters 
between Different Tasks
• Current method requires ~300 iterations over the dataset for 

programming to converge.
• For 1500 samples at 50 images per second, full programming 

corresponds to ~3 hours of training.

Full Programming of 
Parameters, ~300 

iterations

Dataset/Task A

Parameters 
determined for
Dataset/Task A

Corrective 
Programming

Dataset/Task B

Nearly optimal 
performance on
Dataset/Task B



Transferring Programming Parameters 
between Different Tasks

Full Programming of 
Parameters, ~300 

iterations
CelebA – Young/ Not 
Young

52 Parameters 
determined

Only training readout 
layer – single 

experimental pass, one 
matrix inversion

CelebA - Gender

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴:  59.0% ⇒ 67.0%
• Training from 

scratch : 76.3%

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴:
69.0% ⇒ 76.0%



Comparison with GPU-based NNs
Network Structure Total 

Number of 

Parameters

Operations per 

Sample on Digital 

Computer (FLOP)

Test Accuracy on 

Age Task

Test Accuracy on 

Gender Task

LeNet-5 ~82k ~1.2M 63.0 75.2

7-layer Convolutional NN  ~410k ~65M 65.3 80.1

MMF + linear output layer 2026 4050 59.0 69.0

Programmed MMF for 

Age Task + linear output 

layer

2078 6075 67.0 76.0

Programmed MMF for 

Gender Task + linear 

output

2078 6075 64.7 76.3
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