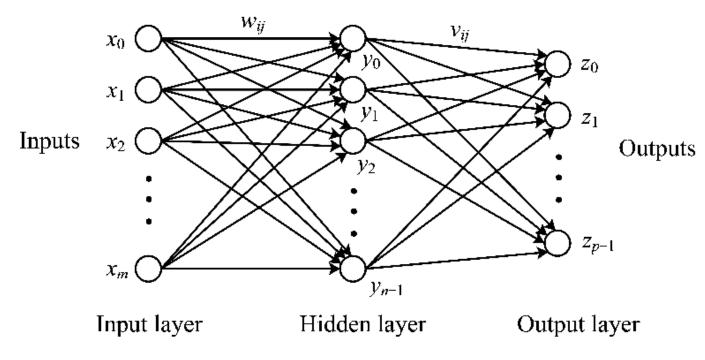
Photonic Extreme Learning Machines

Ilker Oguz

Outline

- 1- Multilayer Perceptron vs ELM vs Reservoir Computing
- 2- Photonic ELMs
- 3- Programming Photonic ELMs

Multilayer Perceptron



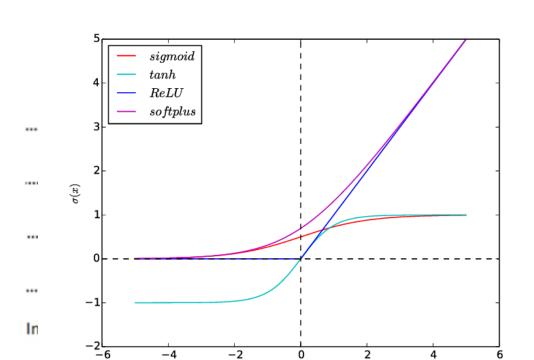
- One of the simplest ways to build neural networks.
- Each neuron applies a nonlinear function to its activation.
- Contains at least a hidden layer.
- All its weights can be trained with the backpropagation algorithm.

Multilayer Perceptron

• During forward propagation, each neuron value is calculated as $x_j^{(n)} =$ $f^{(n)}(\sum_i^{M_{n-1}} W_{ii}^{(n)} x_i^{(n-1)} + b_j).$

 During training, the gradient of the output error is calculated w.r.t. weights, and weights are updated accordingly.

$$w_{t+1} = w_t - \alpha \frac{\partial E(X, w_t)}{\partial w}$$

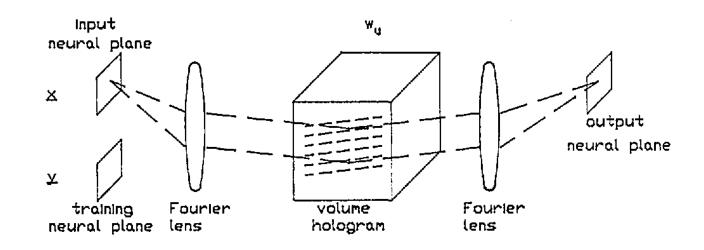


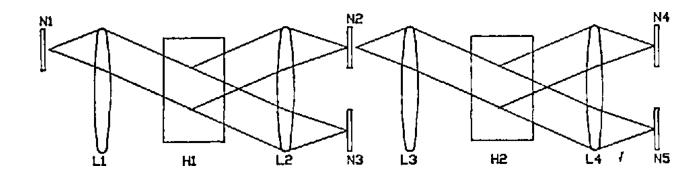
Hidden

Multilayer Perceptron

- Volume holograms stored by photorefractive crystals are trained with the dataset optically.
- Nonlinear activation can be obtained by thresholding (for instance at N2).

$$y_i = f\left(\sum_j w_{ij} x_j\right)$$

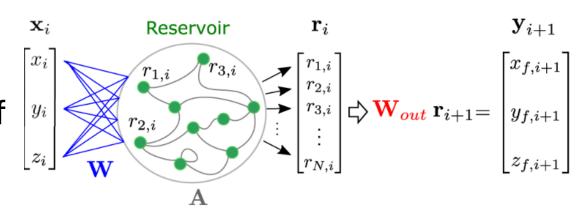




Demetri Psaltis, David Brady, and Kelvin Wagner, "Adaptive optical networks using photorefractive crystals," Appl. Opt. 27, 1752-1759 (1988)

Reservoir Computing

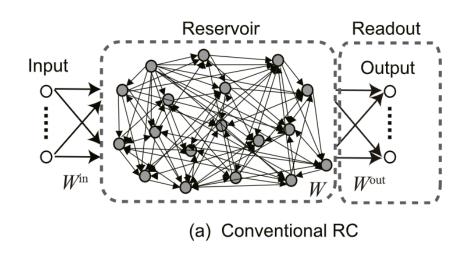
- Consists of high-dimensional, fixed, non-linear connections for transforming data, only output weights are optimized.
- The most common definition of RC requires reservoir to have memory, so that inputs of different time steps interact.



$$\mathbf{r}_{i+1} = (1 - \gamma)\mathbf{r}_i + \gamma f \left(\mathbf{A}\mathbf{r}_i + \mathbf{W}\mathbf{X}_i + \mathbf{b}\right)$$

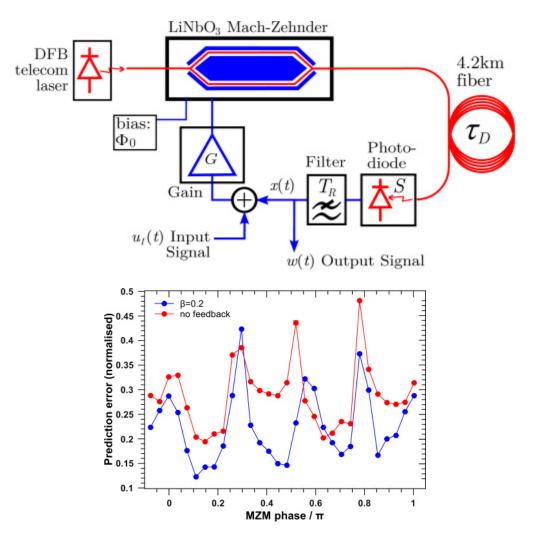
Reservoir Computing

- Especially useful for fast operation and low training cost
- Can be realized by **high dimensional** and **nonlinear** physical systems.



Reservoir Computing

- Photonic reservoir computing architectures provide nonlinear feedback with delayed response.
- Output signal depends on all previous inputs nonlinearly.
- Main advantage of using photonic systems is very high speed (>10 GHz) and small energy consumption

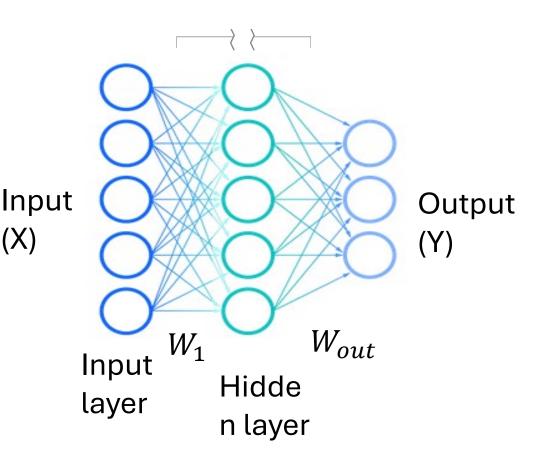


L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, "Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing," Opt. Express 20, 3241-3249 (2012)

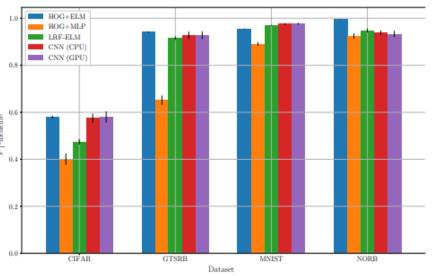
Extreme Learning Machines

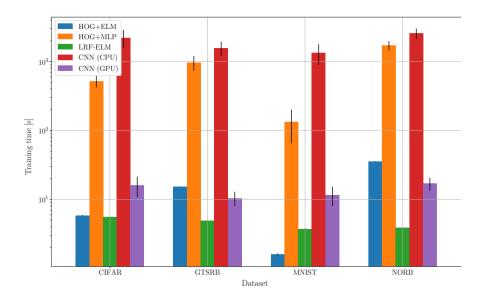
- Can be considered as a hybrid of Reservoir Computing and neural networks.
- Consists of single or multiple
 neuron layers of **fixed** weights and a (X)
 single trainable read-out layer.
- Instead of iterative optimization, training is single inverse operation:

$$W_{out} = \frac{Y}{f(W_1X + Bias)}$$

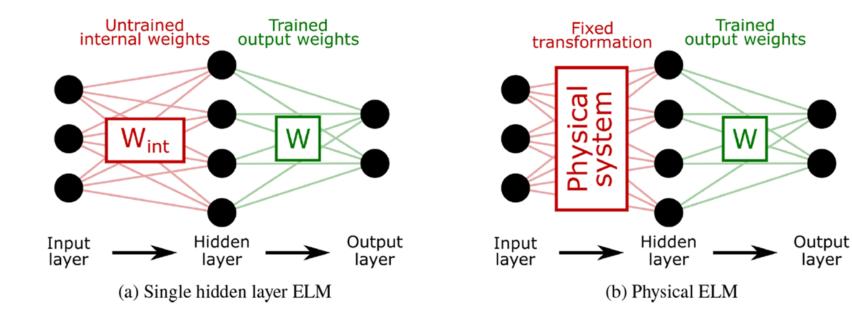


Digital ELM Benchmarks

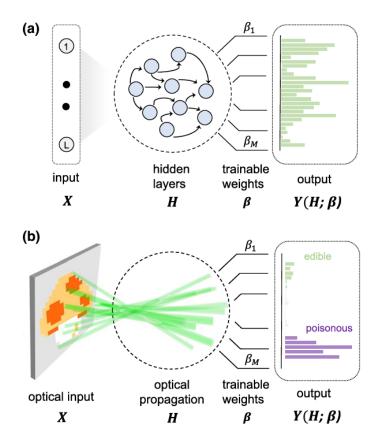




Physical Extreme Learning Machines

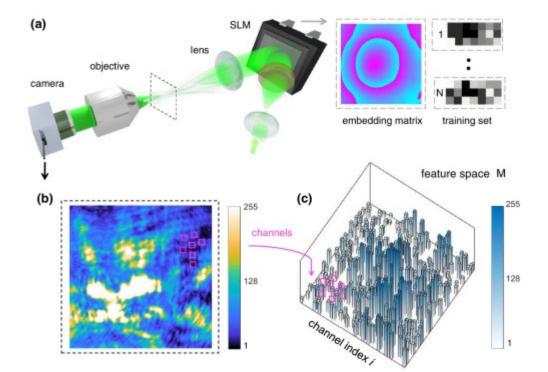


Free-Space Photonic ELM

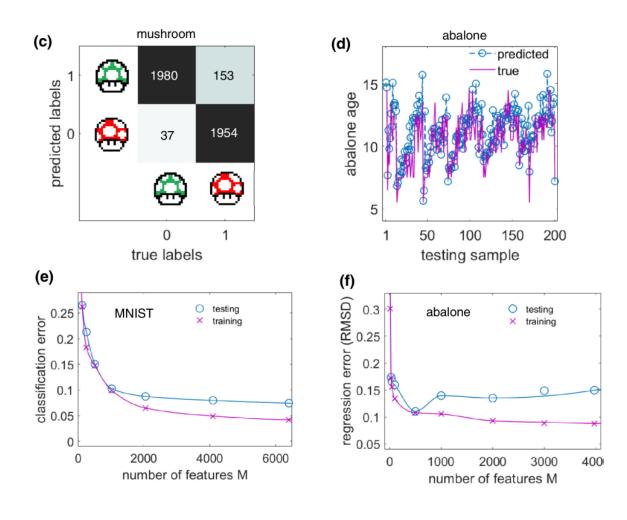


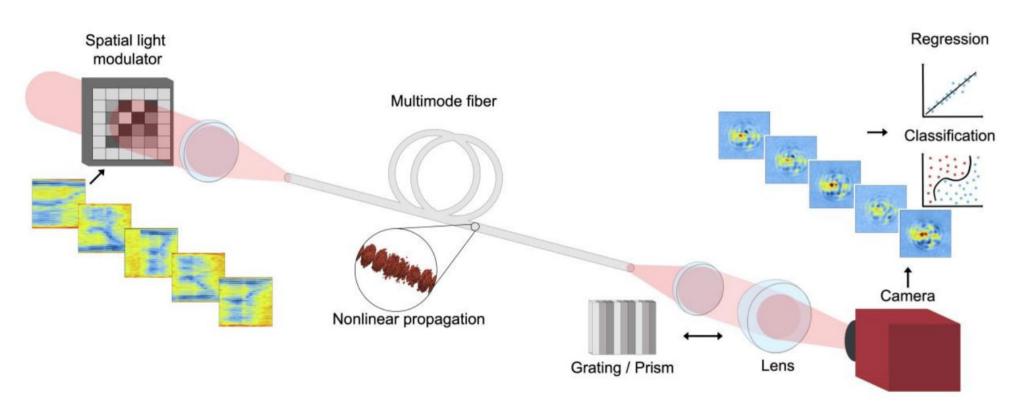
Davide Pierangeli, Giulia Marcucci, and Claudio Conti, "Photonic extreme learning machine by free-space optical propagation," Photon. Res. 9, 1446-1454 (2021)

 The simplest ELM with optics is using the weights of the free space propagation.



Free-Space Photonic ELM

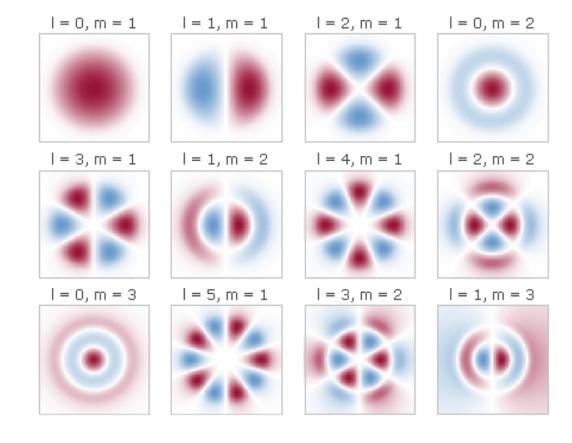


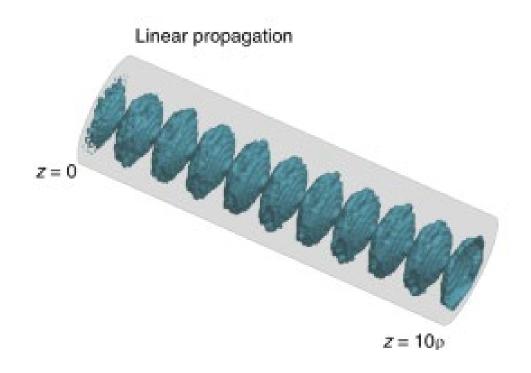


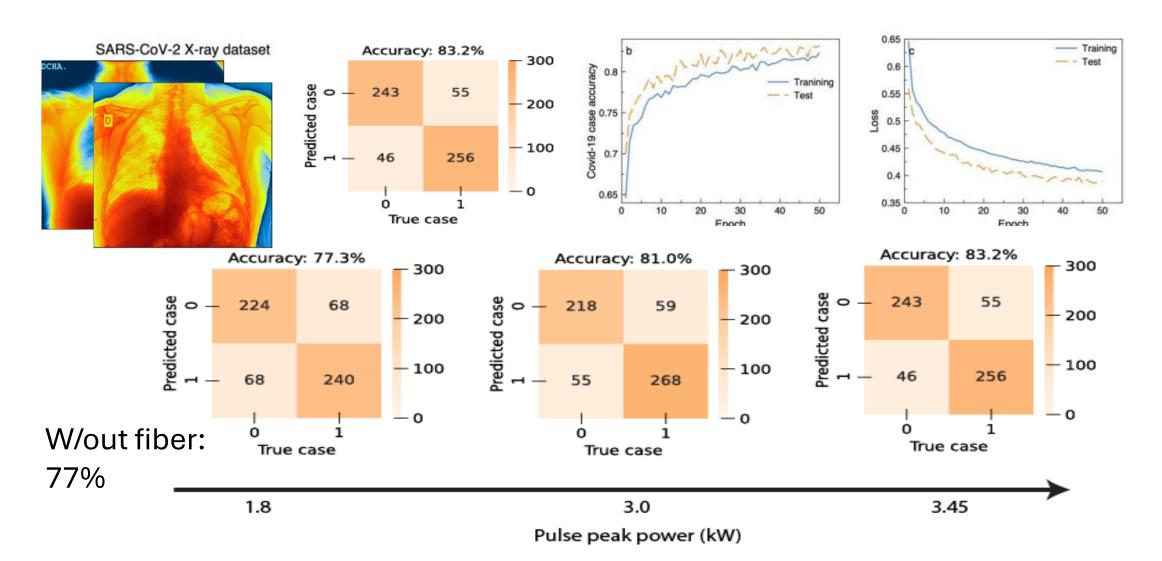
Teğin, U., Yıldırım, M., Oğuz, İ., Moser, C. & Psaltis, D. Scalable optical learning operator. *Nat. Comput. Sci. 2021 18* **1**, 542–549 (2021).

• In multimode fibers light propagate in discrete channels, depending on their properties MMFs can support up to millions of channels: $E(x, y, \omega) = \sum_{n=1}^{N} A_n F_n(x, y, \omega)$

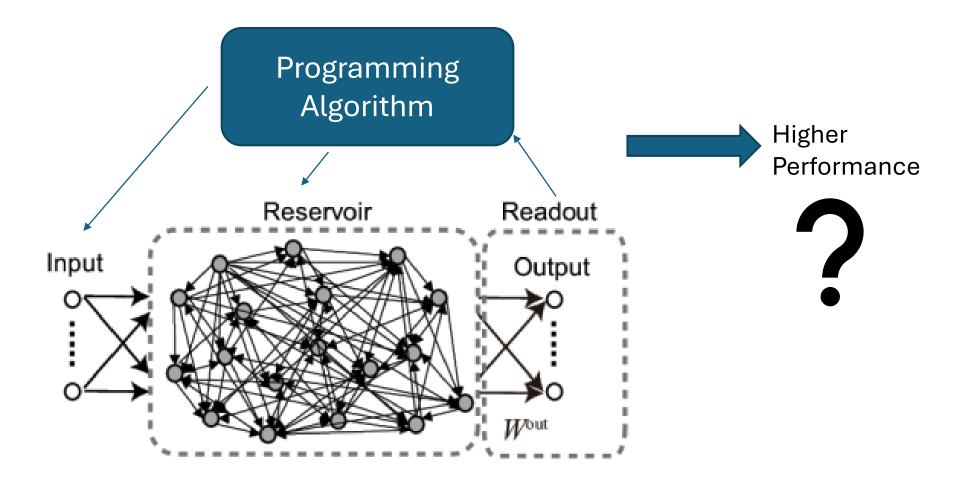
 At high intensities modes start to couple each other due to light-matter interactions.



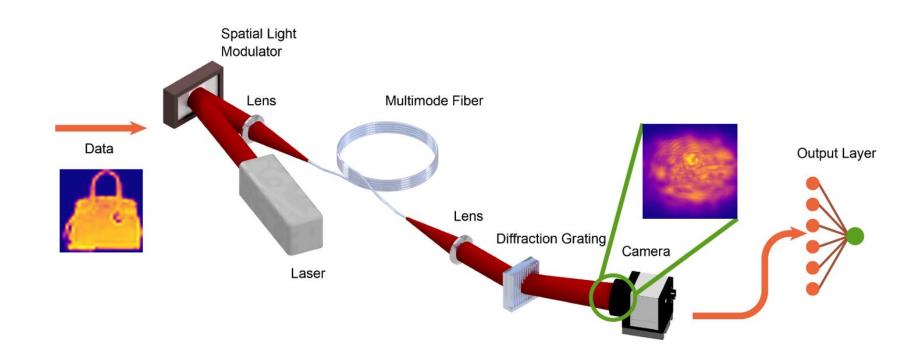




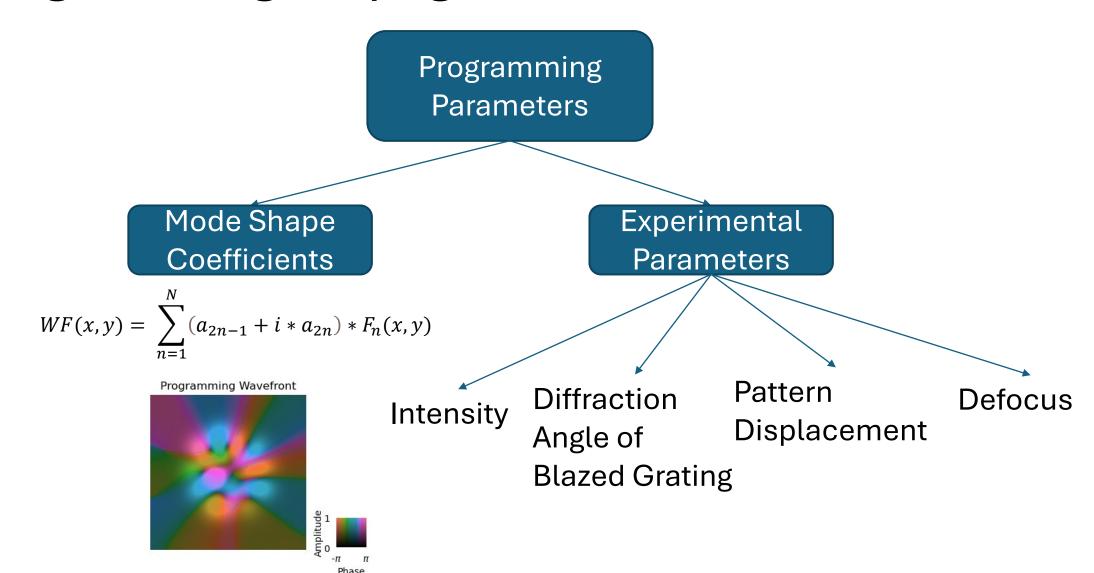
Programming Propagation inside MMFs



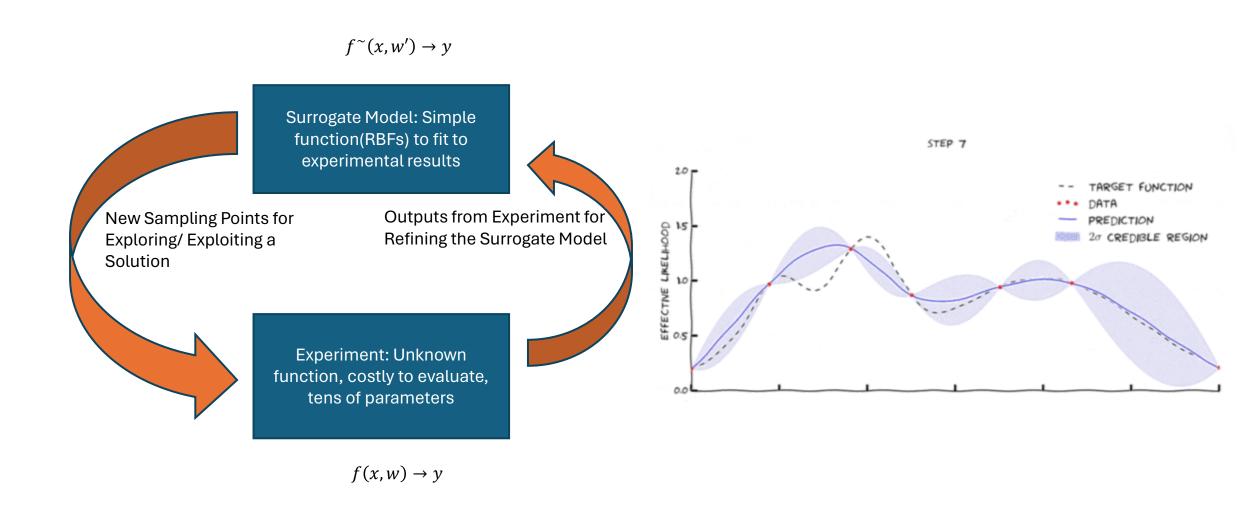
Programming Propagation inside MMFs



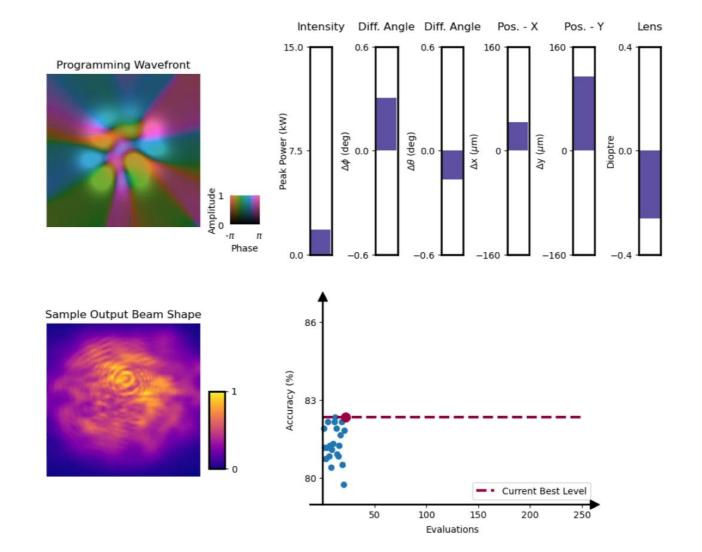
Programming Propagation inside MMFs



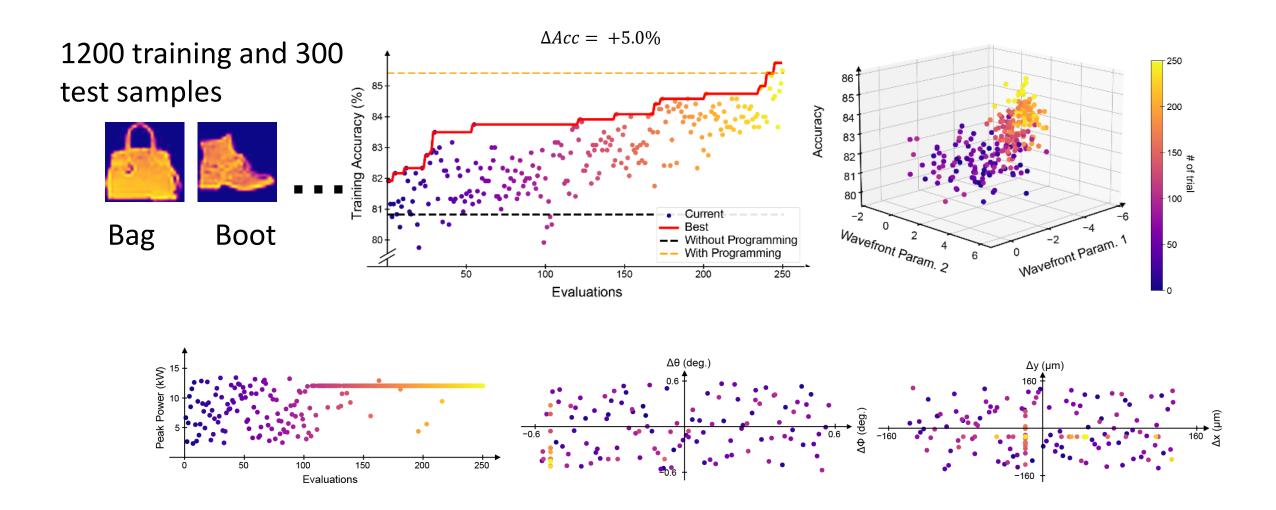
Optimization of Programming Parameters



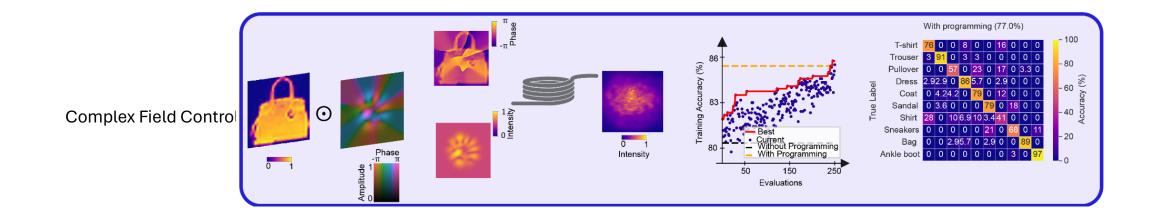
Programming Propagation for MNIST-Fashion



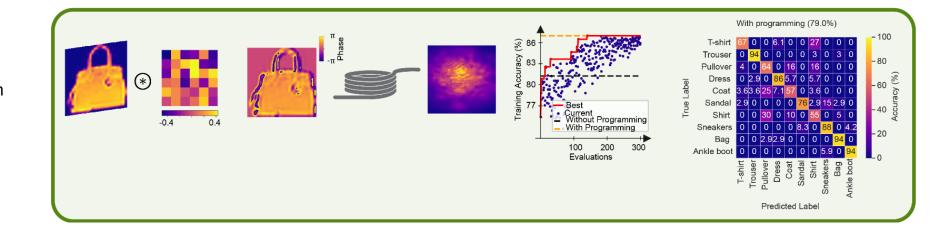
Programming Propagation for MNIST-Fashion



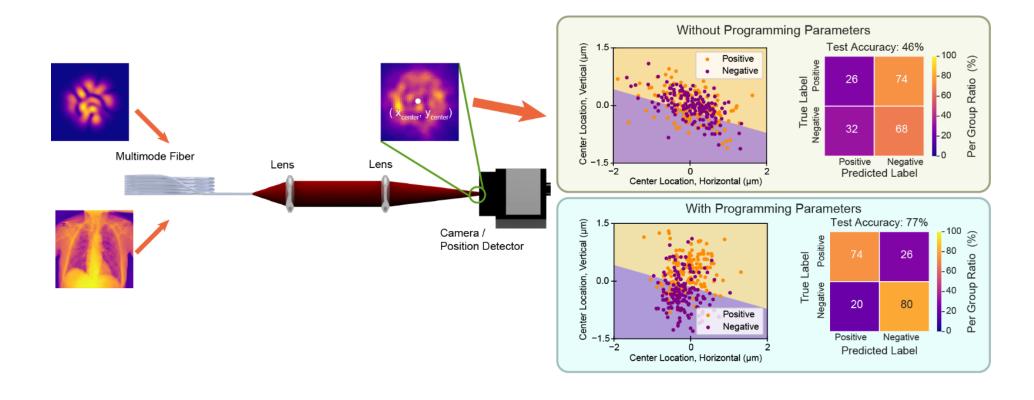
Programming Propagation for MNIST-Fashion



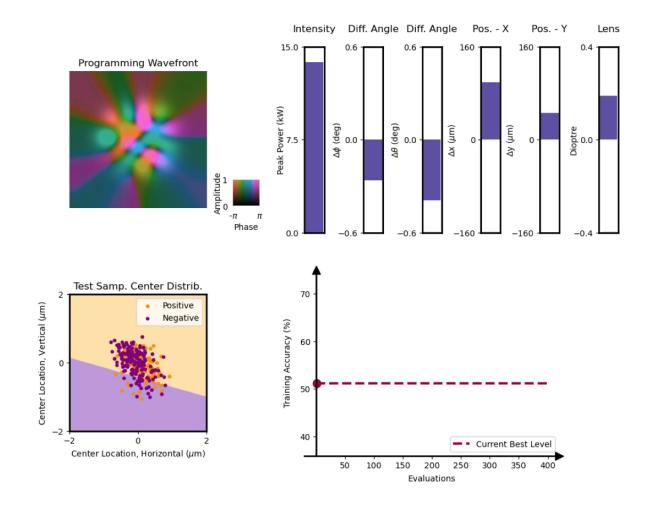
Convolution with Kernel



Programming Propagation for All-Optical Classification



Programming Propagation for All-Optical Classification

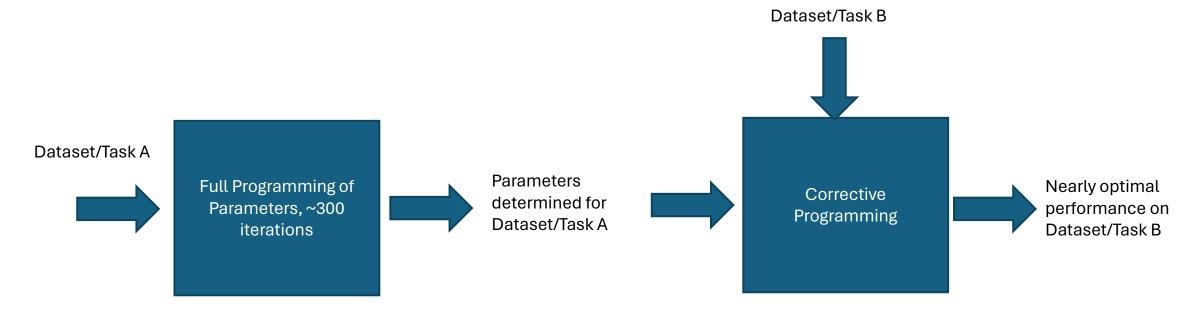


Programming Propagation for All-Optical Classification

Network Structure	Total Number Operations		Accuracy on	Accuracy on
	of Parameters	Sample on Digital	Melanoma dataset	COVID- 19
		Computer (FLOP)	(%)	dataset (%)
LeNet-5	82826	1175640	64.9	74.6
MMF + classification with output location (with programming)	55	2029	61.3	77.0

Transferring Programming Parameters between Different Tasks

- Current method requires ~300 iterations over the dataset for programming to converge.
- For 1500 samples at 50 images per second, full programming corresponds to ~3 hours of training.



Transferring Programming Parameters between Different Tasks

Comparison with GPU-based NNs

	Network Structure	Total	Operations per	Test Accuracy on	Test Accuracy on
		Number of	Sample on Digital	Age Task	Gender Task
_		Parameters	Computer (FLOP)		
ita	LeNet-5	~82k	~1.2M	63.0	75.2
Digita	7-layer Convolutional NN	~410k	~65M	65.3	80.1
	MMF + linear output layer	2026	4050	59.0	69.0
	Programmed MMF for	2078	6075	67.0	76.0
	Age Task + linear output				
	layer				
ptical + igital	Programmed MMF for	2078	6075	64.7	76.3
git	_				
7	output				