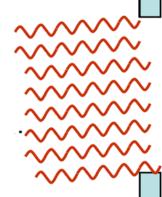
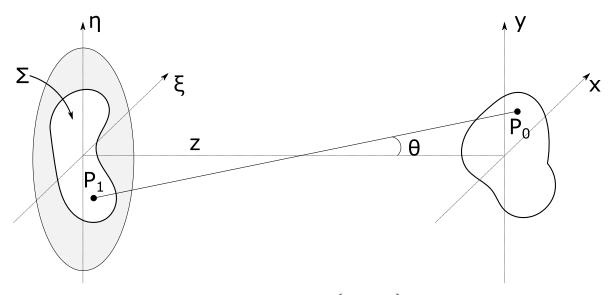
Scalar Diffraction Theory: Basic Approximations

- Maxwell's equations operate on vector quantities
- Scalar wave equation is obeyed if the media is
 - □ Linear
 - □ Isotropic and homogeneous
 - □ Nondispersive and Nonmagnetic
- Boundaries do not normally satisfy these conditions
- > Good approximation in two conditions:
 - □ The aperture must be large compared with a wavelength.
 - ☐ The fields must not be observed too close to the aperture.
- Our treatment is not good for
 - □ Subwavelength gratings
 - □ Photonic crystals
 - □ Waveguides and dispersive media
 - □ Small pits on optical recording media



The Huygens-Fresnel Principle

> Knowing the optical field over any given plane in vacuum or an ideal dielectric medium, the field at any other plane can be expressed as a superposition of "secondary" spherical waves, known as Huygens wavelets, originating from each point in the first plane.



$$U(x,y) = \frac{1}{j\lambda} \int \int_{\Sigma} U(\xi,\eta) \frac{\exp(jkr_{01})}{r_{01}} \cos\theta d\xi d\eta$$
$$r_{01} = \sqrt{z^2 + (x-\xi)^2 + (y-\eta)^2}$$

Fresnel Approximation

 \triangleright If θ is within the paraxial region

$$r_{01} \approx z \left[1 + \frac{1}{2} \left(\frac{x - \xi}{z} \right)^2 + \frac{1}{2} \left(\frac{y - \eta}{z} \right)^2 \right]$$

> Then, the Huygens-Fresnel principle becomes

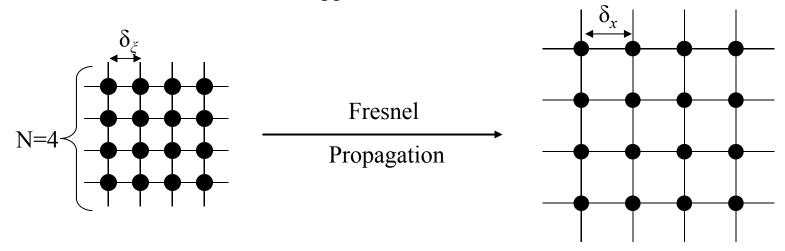
$$U(x,y) = \frac{e^{jkz}}{j\lambda z} \int \int_{-\infty}^{\infty} U(\xi,\eta) \exp\left\{j\frac{k}{2z} \left[(x-\xi)^2 + (y-\eta)^2 \right] \right\} d\xi d\eta$$

> After factorization of the exponent within the integral

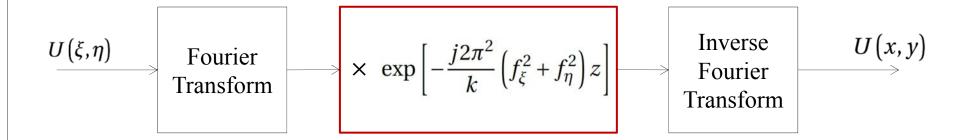
$$U(x,y) = \frac{e^{jkz}}{j\lambda z} e^{j\frac{k}{2z}(x^2+y^2)} \underbrace{\int \int_{-\infty}^{\infty} \left\{ U(\xi,\eta) e^{j\frac{k}{2z}(\xi^2+\eta^2)} \right\} e^{-j\frac{2\pi}{\lambda z}(x\xi+y\eta)} d\xi d\eta}_{FourierTransformation}$$

Optical Modeling with Wave Optics

- Numerical solution of Fresnel integrals
- Procedure (for MATLAB®)
 - □ Form a 1D/2D grid (you can use the *meshgrid* command)
 - □ Form the complex aperture function on the grid
 - □ Propagation algorithm (you can use the 2D *fft* command)
 - □ Scaling of the grid
- > Two propagation methods
 - □ The convolutional approach
 - ☐ The Fourier transformation approach



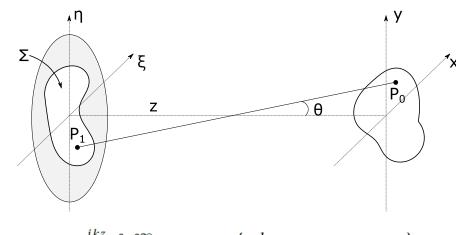
Propagation with Wave Optics: Convolution



- > The Fresnel integral is a convolution
- $f(x) * g(x) = \mathcal{F}^{-1}\{F(u)G(u)\}$
- ► Useful for small z: $z < N \frac{\delta_{\xi}^2}{\lambda}$
- > Can you derive the Fourier transform of the propagation kernel?

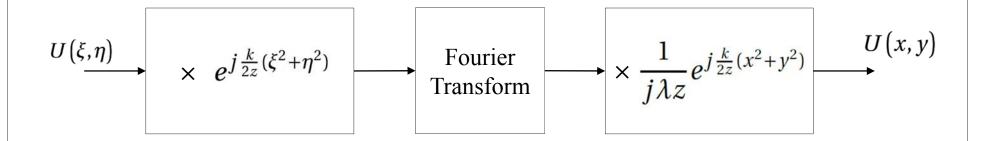
$$\mathcal{F}\left[\frac{1}{j\lambda z}\exp\left(j\frac{k}{2z}\left(\xi^2+\eta^2\right)\right)\right]$$
$$=\exp\left(-\frac{j2\pi^2}{k}\left(f_{\xi}^2+f_{\eta}^2\right)z\right)$$

Fresnel approximation of the diffraction profile



$$U(x,y) = \frac{e^{jkz}}{j\lambda z} \int \int_{-\infty}^{\infty} U(\xi,\eta) \exp\left\{j\frac{k}{2z} \left[(x-\xi)^2 + (y-\eta)^2 \right] \right\} d\xi d\eta$$

Propagation with Wave Optics: Fourier Transform



- Mathematically identical to the previous method
- Works better for large $z: z > N \frac{\delta_{\xi}^2}{\lambda}$
- What happens when $z \gg k(x^2 + y^2) / 2$?

Fresnel approximation of the diffraction profile in Fourier transform representation

$$U(x,y) = \frac{e^{jkz}}{j\lambda z} e^{j\frac{k}{2z}(x^2+y^2)} \underbrace{\int \int_{-\infty}^{\infty} \left\{ U(\xi,\eta) e^{j\frac{k}{2z}(\xi^2+\eta^2)} \right\} e^{-j\frac{2\pi}{\lambda z}(x\xi+y\eta)} d\xi d\eta}_{FourierTransformation}$$