

EPFL Doctoral School - MICRO-605 - November 2023

Optical MEMS and Micro-Optics

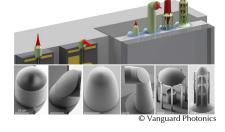
Asst. Prof. Çağlar Ataman

Microsystems for Biomedical Imaging Group

Department of Microsystems Engineering - IMTEK

University of Freiburg, Germany

Micro-optics I - Introduction


Course agenda

Day	Time	Instructor	Торіс
Tuesday 14.11.2023 Room MC B1 303	13:00 – 16:30	Çağlar Ataman	Micro-optics: Theory Micro-optics: Devices and applications
Wednesday 15.11.2023 Room MC B1 283	13:00 – 16:30	Çağlar Ataman	Micro-optics: Devices and applications (contd.) Micro-optics: Fabrication
Thursday 16.11.2023 Room MC B1 283	13:00 – 16:30	Çağlar Ataman	Optical MEMS: Actuation and dynamic modeling Optical MEMS: Devices
Friday 17.11.2023 Room MC B1 283	13:00 – 16:30	Çağlar Ataman	Optical MEMS: Applications Optical MEMS: Emerging topics

Course content

- Part I: Micro-optics
 - Introduction
 - Theory
 - Devices and application
 - Fabrication
 - From micro to nano

Part II: Optical MEMS

- Introduction
- From static to dynamic
- Devices
- Applications
- Emerging topics

Micro-optics I – Introduction

Micro-605: Optical MEMS and Micro-Optics

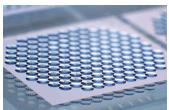
Where do I come from?

- University of Freiburg founded in 1457
- Department of Microsystems Engineering
 - Founded in 1995
 - Germany's largest MEMS institute
 - 25 Laboratories
 - Over 370 research, teaching, and technical staff
 - 550 microsystems engineering students

• Microsystems for Biomedical Imaging Group

 Multi-modal endomicroscopy, adaptive optics, rapid prototyping and in-situ manufacturing of freeform optics, 3D nano-printing of optical MEMS

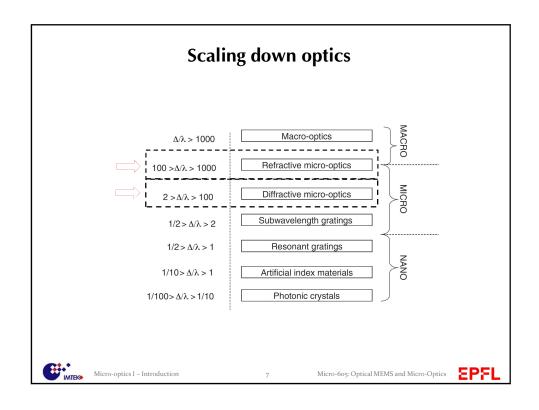
Micro-optics I – Introduction

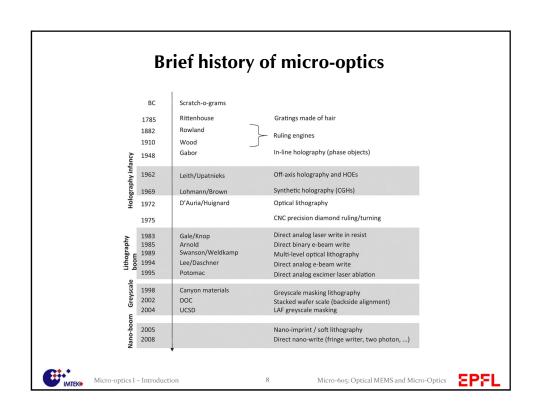

What is micro-optics?

- Optical components and systems with sub-mm and sub- μ m features
- Unlike traditional optics, micro-optics are
 - Comparable to wavelength of light in size;
 - Can be free-space or on-chip/integrated
 - Not manufactured through grinding and polishing;
 - Compatible with wafer-scale manufacturing (mostly);

Conventional optics

Wafer-level micro-optics

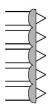



© SÜSS MicroOptics

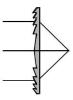
Micro-optics I – Introduction

Micro-optics: pros and cons

- Why are they great?
 - Manufacturing of large arrays;
 - Much larger design freedom;
 - Low-cost, high-volume manufacturing.
- Why are they, sometimes, not so great?
 - Small apertures limit resolution
 - Complex manufacturing techniques
 - Considerable upfront investment



Micro-605: Optical MEMS and Micro-Optics



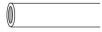
Micro-optical components

Free-space

microlens array

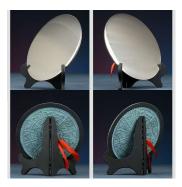
diffractive optical

optimized grating


Integrated

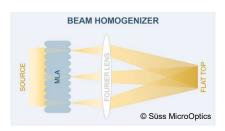
grating coupler

integrated optics

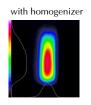

fiber optics

Micro-optics I – Introduction

Ancient micro-optics: Chinese's magic mirror

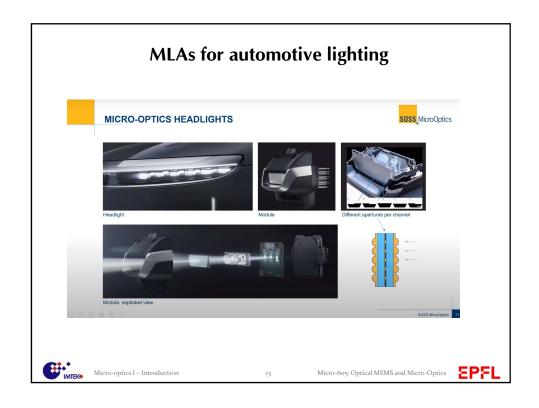

Micro-optics I - Introduction

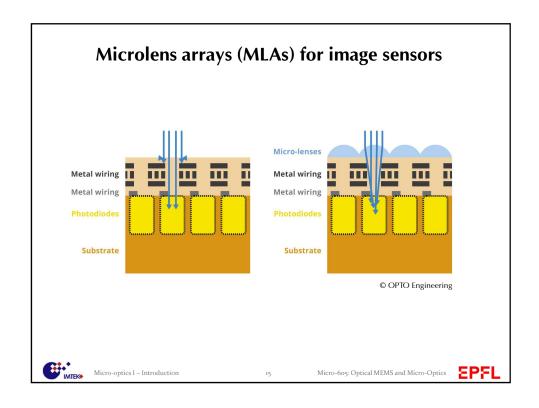
Micro-605: Optical MEMS and Micro-Optics

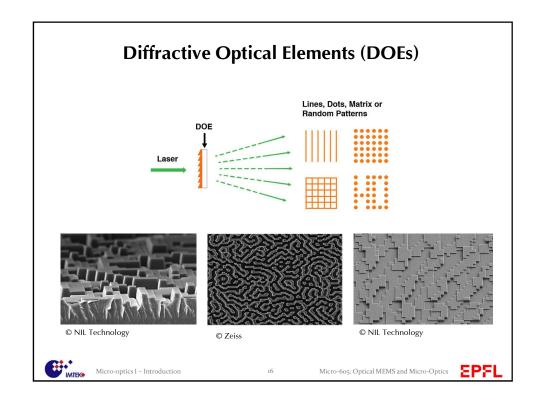


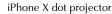
MLAs for beam homogenizing in DUV lithography

- Method developed in Neuchвtel
 - H.P. Herzig and his team
- Homogeneous illumination from inhomogeneous light sources

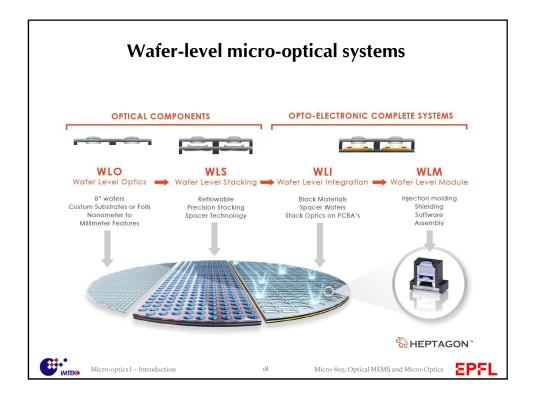


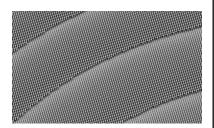


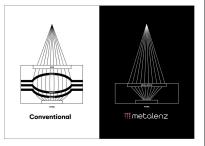

Micro-optics I – Introduction


Micro-optics for consumer electronics Micro-optics for consumer electronics On PROJECTOR MICROPHONI SPEAKER ELOOD ILLUMINATOR PROXIMITY SENSOR PROXIMITY SE

DOEs for 3D imaging




Micro-optics I – Introduction



Metalenses: A new way?

- First developed by the F. Capasso group at Harvard
- Subwavelength dielectric structures
 - Effective index modulation
- Discrete phase shaping!
 - Can still be considered as diffractive
- Why not just use diffractive optics?
 - Single patterned layer
 - Simple mold manufacturing

Micro-optics I – Introduction

19

Micro-605: Optical MEMS and Micro-Optics

Resources

- H. P. Herzig, ed., Micro-Optics: Elements, Systems, and Applications (Taylor & Francis, London, 1997).
- J. Turunen, F. Wyrowski, eds., **Diffractive Optics for Industrial and Commercial Applications** (Akademie Verlag, Berlin, 1997).
- S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, 1999/2005).
- H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010).
- S. Kawata, M. Ohtsu, M. Irie, eds., Nano-Optics (Springer, Berlin, 2002).
- S. V. Gaponenko, Introduction to Nanophotonics (Cambridge U. Press, New York, 2010).
- L. Novotny, Principles of Nano-Optics (Cambridge, 2012)

Micro-605: Optical MEMS and Micro-Optics

BASIC OPTICAL CONCEPTS

Coming up next....

- The wave equation and its solutions
 - Plane and spherical waves
 - Gaussian waves
- Interference
 - Interferometer & interferogram
 - Spectral width and coherence
- Scalar diffraction theory
 - Fresnel and Fraunhofer approximations
- · Quantification of optical performance
 - Point spread function and resolution
 - Modulation transfer function

Micro-optics II – Theory

THE WAVE EQUATION AND ITS SOLUTIONS

Micro-optics II - Theory

EPFL

Wave Equation

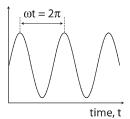
- Equation defining the time and spatial variation of either the ${\bf E}$ or ${\bf H}$ fields
- Using Maxwell's Equations, one might derive that

$$\nabla^2 \mathbf{E} = \frac{1}{v^2} \frac{\partial^2 \mathbf{E}}{\delta t^2}$$

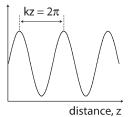
• The general solution is in the form

$$\mathbf{E}(\mathbf{r},t) = E_0 e^{\pm j\mathbf{k}\cdot\mathbf{r}} e^{\pm j\omega t} \qquad \mathbf{k} = \frac{2\pi}{\lambda} \mathbf{u_r}$$

- \mathbf{k} is the wavevector for propagation in the \mathbf{r} direction
- Solutions of the wave equation define a propagating wave
- · Solutions to the Wave Equation in homogeneous media
 - Plane waves
 - Spherical waves
 - Gaussian waves (approximate solution in the paraxial regime)


Micro-optics II - Theory

2.1


EDEI

Meaning of k and ω

- $(\pm kz \pm \omega t) = \phi$
 - − φ is a phase
 - Spatial constant $k = 2\pi/\lambda = \omega/v$
 - Time constant $\omega = 2\pi f$

Snapshot in space

Snapshot in time

Micro-optics II - Theory

Micro-605: Optical MEMS and Micro-Opt

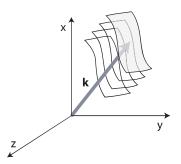
General 3-dimensional waves

• In one dimension (z)

$$E = E_0 \cdot e^{j\omega t} e^{-jkz}$$

In general

$$r^2 = x^2 + y^2 + z^2$$

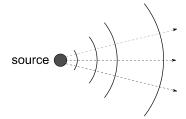

- 3D wave equation

$$\frac{\partial^2 \textbf{E}}{\partial x^2} + \frac{\partial^2 \textbf{E}}{\partial y^2} + \frac{\partial^2 \textbf{E}}{\partial z^2} = \boldsymbol{\nabla}^2 \textbf{E} = \frac{1}{\boldsymbol{v}^2} \frac{\partial^2 \textbf{E}}{\partial t^2}$$

- 3D wave

$$E = E_0 e^{j\omega t} e^{-j(k_x x + k_y y + k_z z)} = E_0 e^{j\omega t} e^{-j\mathbf{k}\cdot\mathbf{r}}$$

- **k** and **r** are vectors where $|\mathbf{k}| = 2\pi/\lambda$
- The wavefront is the surface of constant phase



Spherical waves

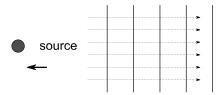
- A point source uniformly emitting in all directions
- With r as the radial distance from the source

$$E(r) = \frac{E_0}{r}e^{-jkr}$$

• Surfaces of constant phase form concentric spheres

Micro-optics II - Theory

Micro-605: Optical MEMS and Micro-Optic


EPFL

Plane waves

- The source is at infinity
- All wave vectors are parallel
- With propagation the z-axis

$$E(z) = E_0 e^{-jkz}$$

· This is an idealized case, as no wave is of infinite extent

Miono ontico II. Theorem

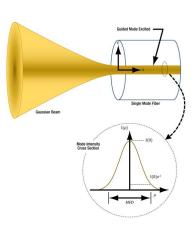
Gaussian beams: Paraxial solution of the wave equation

Micro-optics II - Theory

Paraxial Helmholtz equation

- Special case: paraxial waves, z direction
 - Normals to wavefront are paraxial

$$E(r) = \psi(r) e^{-jkz}$$


– Envelope $\psi(r)$ varies slowly with z, so

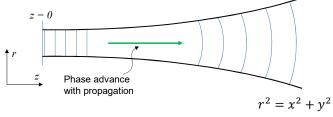
$$\frac{\partial^2 \psi}{\partial z^2} << 2k \frac{\partial \psi}{\partial z} \approx 0$$

- Yielding the paraxial wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - j2k \frac{\partial \psi}{\partial z} = 0$$

Solution is a Gaussian wave:

Gaussian Beams (TEM₀₀)


- Approximate solution to the wave equation in the paraxial regime
- Accurate description of laser beam propagation and focusing

Radial phase factor

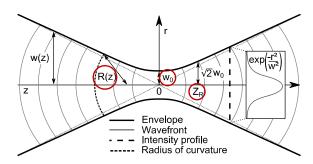
$$E(r) = E_0 \frac{w_0}{w(z)} e^{-\frac{x^2 + y^2}{w^2(z)}} \left| e^{\frac{jk(x^2 + y^2)}{2R(z)}} \right| e^{-j\left(kz - \arctan\left(\frac{z}{z_R}\right)\right)}$$

Amplitude factor

Longitudinal phase factor

Micro-optics II – Theory

31

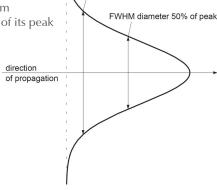

EPFL

Gaussian Beam Characteristics

- Observations
 - Flat wavefront at the beam waist
 - Tight focusing \rightarrow Short depth of focus
 - Weak focusing \rightarrow Long depth of focus

Gaussian beam intensity profile

$$I(r) = |E(r)|^2 = I_0 e^{-2r^2/w^2}$$

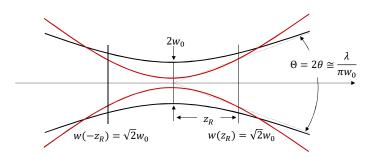

 $\mathbf{w_0}$ = Beam waist | $\mathbf{z_r}$ = Rayleigh range | $\mathbf{R}(\mathbf{z})$ = Radius of curvature

Micro-optics II - Theory

Gaussian Beam Width

- Two common definitions
 - **FWE2:** The diameter at which the beam irradiance (intensity) has fallen to $1/e^2(13.5\%)$ of its peak
 - FWHM: The diameter at which the beam irradiance (intensity) has fallen to 50% of its peak
- w_0 = Beam waist defined in FWE2
- We will frequently refer to this in
 - Imaging systems
 - Display systems
 - Spectrometers
 - Optical interconnects

 $1/e^2$ diameter 13.5% of peak



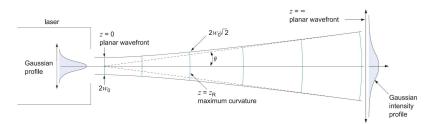
Micro-optics II - Theory

3

EPFL

Rayleigh Range / Depth-of-Focus (DoF)

- Rayleigh range (z_R)
 - Distance over which the beam radius spreads by a factor of $\sqrt{2}$
- Also called **Depth of Focus**
- Trade of between DoF vs. resolution


$$z_R = \frac{kw_0^2}{2} = \frac{\pi w_0^2}{\lambda}$$

Micro-optics II - Theory

2.1

Gaussian Beam Propagation

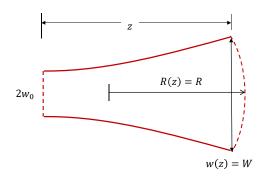
- Good approximation for
 - Laser propagation
 - Propagation after single-mode fibers
- Beam waist expands with propagation
- Radius of curvature
 - $\infty @ z = 0$
 - max @ $z = z_R$ (where RoC = $2z_R$)
 - $-\infty @ z = \infty$

Beam half-width

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}$$

Radius of curvature

$$R(z) = z \left[1 + \left(\frac{z_R}{z} \right)^2 \right]$$


Micro-optics II - Theory

35

Gaussian Beam Propagation

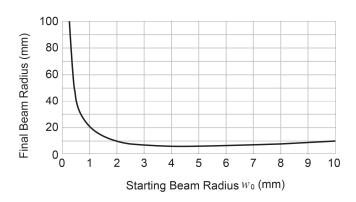
- Two parameters are enough to define the beam
 - Beam width at a certain location
 - Radius of curvature at that location
- We will use this result to see what happens to a Gaussian beam after a lens

Beam waist

$$w_0 = \frac{W}{\sqrt{1 + \left(\frac{\pi W^2}{\lambda R}\right)^2}}$$

Location of beam waist

$$z = \frac{R}{1 + \left(\frac{\lambda R}{\pi W^2}\right)^2}$$



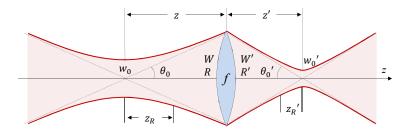
Micro-optics II - Theory

26

EDEI

Beam Waist vs. Far-field Beam Width

Beam radius at 100 m as a function of starting beam radius for a HeNe laser at 632.8 nm



Micro-optics II - Theory

37

Imaging of Gaussian Beams by a Lens

- Lens phase: $A(r) = e^{-j\frac{r^2}{2f}}$
- Phase after the lens: $kz + k\frac{r^2}{2R(z)} k\frac{r^2}{2f} = kz + k\frac{r^2}{2R'} \Rightarrow \frac{1}{R'} = \frac{1}{R} \frac{1}{f}$
- Beam width after the lens: W = W'

IMTEK

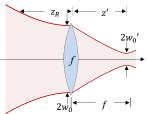
Micro-optics II - Theory

-8

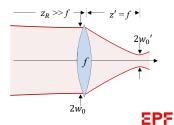
Gaussian Beam Focusing

• For a lens at the waist of a Gaussian beam:

$$w_0' = \frac{w_0}{\sqrt{1 + \left(\frac{Z_R}{f}\right)^2}}$$


$$z' = \frac{f}{1 + \left(f/_{Z_R}\right)^2}$$

• Special case: $z_R >> f$


$$w_0' \approx \frac{\lambda}{\pi w_0} f$$

$$z' \approx f$$

Lens at the beam waist

Focusing a collimated beam

Micro-optics II - Theory

39

Gaussian Beams - Recap

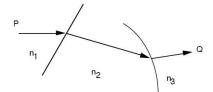
- · Accurately models beam propagation
 - Laser beam propagation
 - Beams emanating from single mode fibers
- Trade-off between "spot size" and "depth-of-focus"
 - Tight focusing leads to large beam divergence
 - Depth of focus increases alongside the beam waist
- A lens:
 - Modifies the radius of curvature

Micro-optics II - Theory

- Leaves beam width intact (assuming no clipping)

40

SDSI

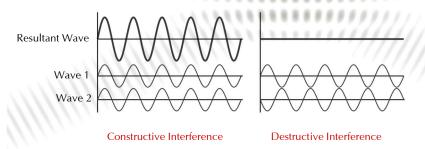


Micro-optics II - Theory

Optical path difference (OPD)

 Product of the geometric length of the optical path followed by light and the refractive index of the medium

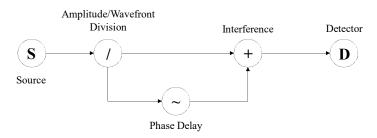
$$OPD = \sum_{i} n_i L_i$$


$$\Delta \Phi = \frac{2\pi}{\lambda} \sum n_i L_i$$

Miono ontico II Theore

Interference

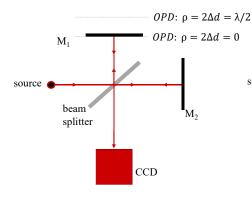
- > Arises from the wave nature of light
- > Superposition of two or more waves with a well defined phase relation
 - Constructive Interference
 - Destructive Interference
- > Observed in all types of waves
- > Interferogram: interference intensity profile as a function of path difference

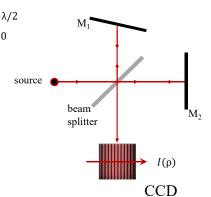


Micro-optics II - Theory

43

The Interferometer




- > Amplitude division interferometers
 - > Michelson, Mach-Zehnder, Twyman-Green, etc.
- > Wavefront division interferometers
 - > Young's double slit interferometer
- > Multiple beam interferometers
 - Diffraction gratings
 - > Fabry-Perot interferometers

Micro-optics II - Theory

Amplitude Division Interferometers

- Applications
 - > Surface characterization / 3D Profiling
 - > Spectroscopy
 - > Laser Doppler vibrometry

Micro-optics II – Theory

45

EPFL

Interference Theory

> When multiple waves are superposed, the complex amplitude is given by

$$\mathbf{E}(x, y, z, t) = \sum_{i} \mathbf{E}_{i}(x, y, z, t)$$

> With two waves, the time-averaged interference intensity is

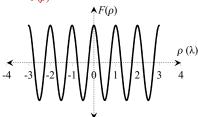
$$I(x, y, z, t) = \left\langle \left| \sum_{i} \mathbf{E}_{i}(x, y, z, t) \right|^{2} \right\rangle = \underbrace{\left\langle |\mathbf{E}_{1}|^{2} \right\rangle}_{I_{1}} + \underbrace{\left\langle |\mathbf{E}_{1}|^{2} \right\rangle}_{I_{2}} + \left\langle \mathbf{E}_{1} \cdot \mathbf{E}_{2}^{*} \right\rangle + \left\langle \mathbf{E}_{1}^{*} \cdot \mathbf{E}_{2} \right\rangle$$

> Now assume we have two linearly polarized monochromatic waves:

$$\mathbf{E}_i(x,y,z,t) = \mathbf{A}_i(x,y,z,t) e^{j(\omega_i t - \phi_i(x,y,z))}$$

> The interference intensity now becomes:

$$I(x, y, z, t) = I_1 + I_2 + 2(\mathbf{A}_1 \cdot \mathbf{A}_2) \cos \left((\omega_1 - \omega_2) t - \Delta \phi(x, y, z,) \right)$$
Dot product! Beat frequency


Micro-optics II – Theory

.6

Interference and Interferogram

- \rightarrow If E_1 and E_2 are
 - \Box Of the same wavelength λ and wavenumber $\sigma = 1/\lambda$
 - \Box Of the same optical frequency $\rightarrow \omega_1 = \omega_2 = \omega$
 - □ Linearly polarized and parallel \rightarrow $\mathbf{A_1} \cdot \mathbf{A_2} = \sqrt{I_1 I_2}$
 - \Box Of optical path difference (OPD) of $\rho \to \Delta \varphi = 2\pi \rho/\lambda = 2\pi \rho \sigma$
- > The interference intensity becomes

$$I(\rho) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(2\pi\sigma\rho) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\frac{2\pi\rho}{\lambda})$$
 $F(\rho)$

EPFI

Interferogram and Spectrum

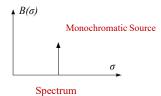
- If $\boldsymbol{\mathit{E}}_{1}$ and $\boldsymbol{\mathit{E}}_{2}$ are
 - \succ from the same non-monochromatic source with power spectral density $B(\sigma)$
 - > of the same amplitude

$$\begin{split} I\left(\rho\right) &= \int_{0}^{\infty} B\left(\sigma\right) \left(1 + \cos\left(2\pi\sigma\rho\right)\right) d\sigma \\ &= \int_{0}^{\infty} B\left(\sigma\right) + \int_{0}^{\infty} B\left(\sigma\right) \cos\left(2\pi\sigma\rho\right) d\sigma \\ &= \bar{I} + \underbrace{\int_{0}^{\infty} B\left(\sigma\right) \cos\left(2\pi\sigma\rho\right) d\sigma}_{F\left(\rho\right)} \end{split}$$

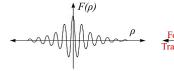
- \succ $F(\rho)$ is the interferogram.
- > $B(\sigma)$ and $F(\rho)$ are therefore Fourier pairs:

$$\begin{split} F\left(\rho\right) &= \int_{-\infty}^{\infty} B\left(\sigma\right) \cos\left(2\pi\sigma\rho\right) d\sigma \ \left(W\right) \\ B\left(\sigma\right) &= \int_{-\infty}^{\infty} F\left(\rho\right) \cos\left(2\pi\sigma\rho\right) d\rho \ \left(W/cm^{-1}\right) \end{split}$$

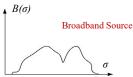



Micro-optics II – Theory

Interferogram and Spectrum


$$F(\rho) = \int_{-\infty}^{\infty} B(\sigma) \cos(2\pi\sigma\rho) d\sigma (W)$$

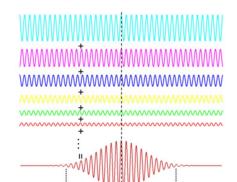
$$B(\sigma) = \int_{-\infty}^{\infty} F(\rho) \cos(2\pi\sigma\rho) d\rho \, (W/_{cm^{-1}})$$



Interferogram

EPF

Temporal Coherence and Coherence Length


- > Temporal coherence tells us how monochromatic a source is
 - □ Laser → High coherence
 - White Light → Low coherence
- Coherence Time:

 $\Delta \tau \Delta \omega \ge 1$

Coherence Length:

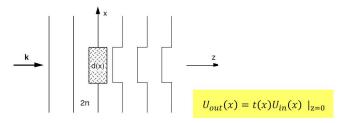
 $\Delta l = c \Delta \tau \approx c / \Delta \omega$

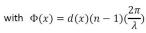
Measured with an interferometer

Micro-optics II - Theory

Scalar Diffraction Theory: Basic Approximations

- > Maxwell's equations operate on vector quantities
- > Scalar wave equation is obeyed if the media is
 - □ Linear
 - □ Isotropic and homogeneous
 - Nondispersive and Nonmagnetic
- > Boundaries do not normally satisfy these conditions
- > Good approximation in two conditions:
 - ☐ The aperture must be large compared with a wavelength.
 - $lue{}$ The fields must not be observed too close to the aperture.
- > Our treatment will **not** be useful for
 - Subwavelength gratings
 - Photonic crystals
 - □ Waveguides and dispersive media
- No polarization nor edge effects

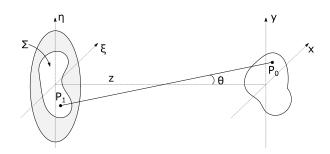

Micro-optics II – Theory


EPF

Complex amplitude transmittance

- Thin element approximation
 - Model elements as a spatial amplitude and phase function
 - No edge effects

transmittance:
$$t(x) = e^{-i\Phi(x)}$$



Micro-optics II - Theory

Micro-605: Optical MEMS and Micro-Optic

EPFL

The Huygens-Fresnel Principle

$$U(x,y) = \frac{1}{j\lambda} \int \int_{\Sigma} U(\xi,\eta) \frac{\exp(jkr_{01})}{r_{01}} \cos\theta \, d\xi \, d\eta$$
$$r_{01} = \sqrt{z^2 + (x-\xi)^2 + (y-\eta)^2}$$

Micro-optics II - Theory

5P5

Fresnel Approximation

 \succ If θ is within the paraxial region

$$r_{01} \approx z \left[1 + \frac{1}{2} \left(\frac{x - \xi}{z} \right)^2 + \frac{1}{2} \left(\frac{y - \eta}{z} \right)^2 \right]$$

> Then, the Huygens-Fresnel principle becomes

$$U(x,y) = \frac{e^{jkz}}{j\lambda z} \int \int_{-\infty}^{\infty} U(\xi,\eta) \exp\left\{j\frac{k}{2z} \left[(x-\xi)^2 + (y-\eta)^2\right]\right\} d\xi d\eta$$

> After factorization of the exponent within the integral

$$U(x,y) = \frac{e^{jkz}}{j\lambda z} e^{j\frac{k}{2z}(x^2+y^2)} \underbrace{\int \int_{-\infty}^{\infty} \left\{ U(\xi,\eta) \, e^{j\frac{k}{2z}(\xi^2+\eta^2)} \right\} e^{-j\frac{2\pi}{\lambda z}(x\xi+y\eta)} d\xi d\eta}_{FourierTransformation}$$

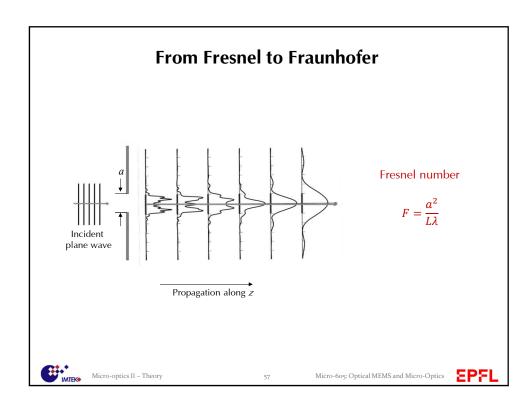
Micro-optics II - Theory

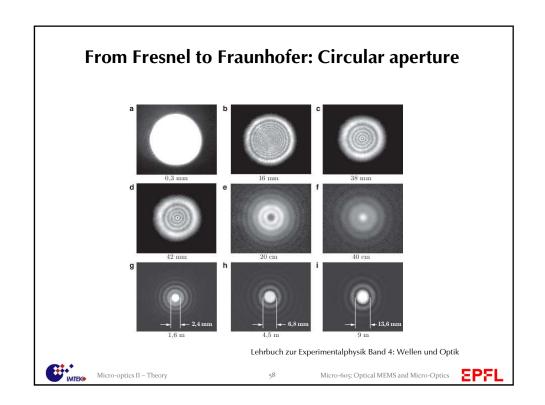
55

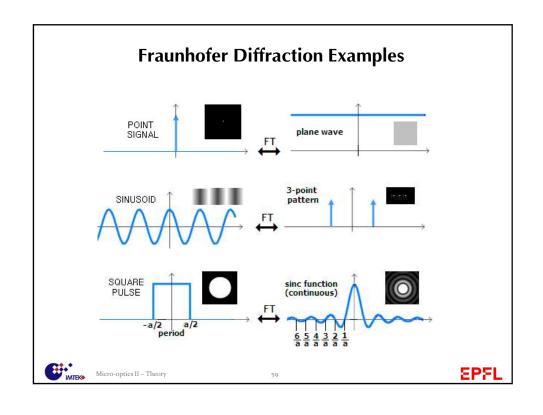
Fraunhofer Approximation

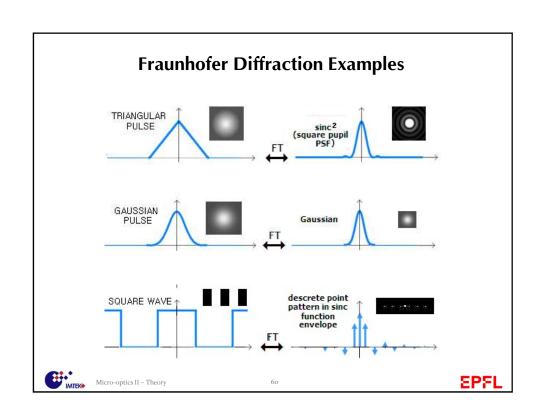
> If the following stronger (Fraunhofer) approximation holds

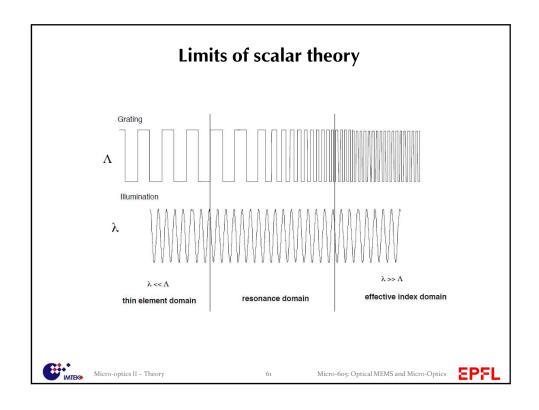
$$z \gg \frac{k(\xi^2 + \eta^2)_{max}}{2}$$

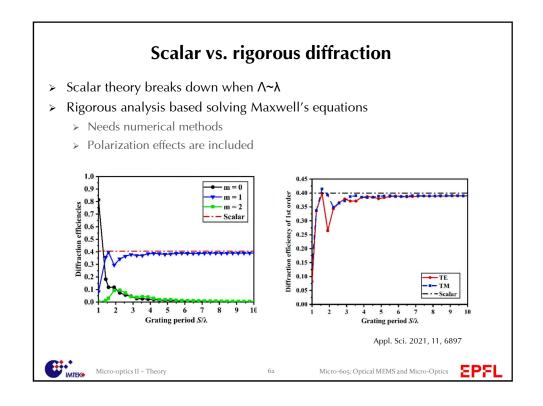

The Fresnel approximation becomes


$$U(x,y) = \frac{e^{jkz}e^{j\frac{k}{2z}(x^2+y^2)}}{j\lambda z} \int \int_{-\infty}^{\infty} U(\xi,\eta) e^{-j\frac{2\pi}{\lambda z}(x\xi+y\eta)} d\xi d\eta$$

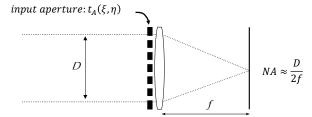

> Which is the Fourier transform of the input aperture function evaluated at


$$f_X = x/\lambda z$$
, $f_Y = y/\lambda z$


► In practice, this approximation holds if $Z \ge \frac{2D^2}{\lambda}$ (*D*: aperture size)



QUANTIFICATION OF IMAGING PERFORMANCE



Micro-optics II - Theory

EPFL

A Thin Lens as a Fourier Transformer

- > Let's see what happens after a lens
 - > Aperture illuminated by a plane wave
 - \succ Aperture placed right before a lens of focal length f and diameter D
 - > We are interested in the profile at the focal plane!

> The lens adds a phase function

$$t_{A}'(\xi,\eta) = t_{A}(\xi,\eta)e^{-j\frac{k}{2f}\xi^{2}+\eta^{2}}$$

Micro-optics II - Theory

6.

A Thin Lens as a Fourier Transformer

> Rewrite the Fresnel integral after the lens

$$U_f(x,y) = \frac{e^{jkz}e^{j\frac{k}{2z}(x^2+y^2)}}{j\lambda z} \int \int_{-\infty}^{\infty} t_A(\xi,\eta)e^{-j\frac{k}{2j}(\xi^2+\eta^2)} e^{j\frac{k}{2z}(\xi^2+\eta^2)}e^{-j\frac{2\pi}{\lambda z}(x\xi+y\eta)}d\xi d\eta$$
Aperture after lens

> To find the profile at the focal plane, evaluate at z = f!

$$=\frac{e^{jkf}e^{j\frac{k}{2f}(x^2+y^2)}}{j\lambda f}\int_{-\infty}^{\infty}At_A(\xi,\eta)e^{-j\frac{2\pi}{\lambda f}(x\xi+y\eta)}d\xi d\eta$$

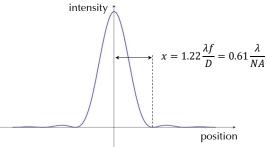
Quadratic Phase Function Fourier Transform of the Aperture Function

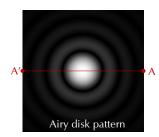
> Thus, a lens is a Fourier transformer!

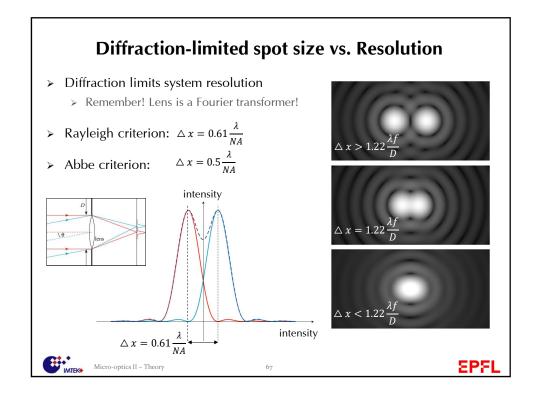
Micro-optics II - Theory

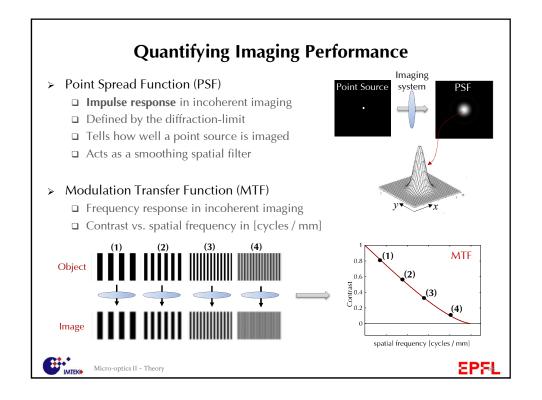
65

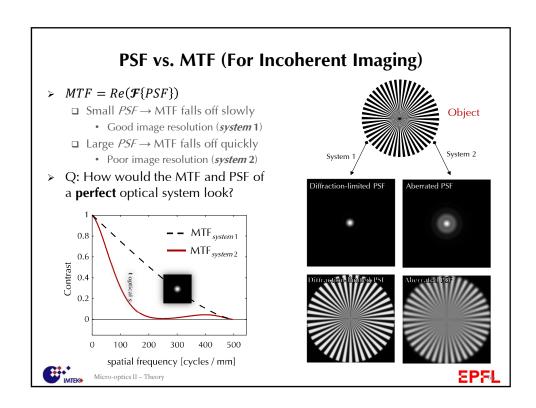
Diffraction-Limited Spot-Size / Airy Disk

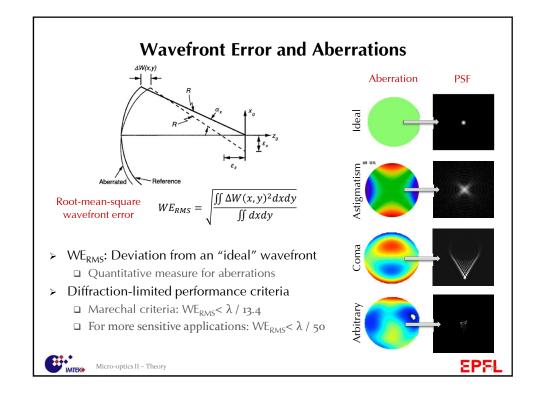

- > Theoretical limit on imaging system performance
 - > Aberration-free performance
- Sets smallest possible spot size
 - > Assumes plane wave illumination
 - Beam size is limited by lens aperture
 - Notice the size bands!


George Biddell Airy 1081- 1892

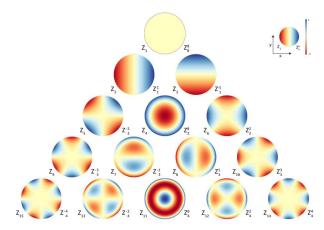

Ernst Abbe




Micro-optics II – Theory



CDCI



Modelling aberrations: The Zernike Modes

- > Orthonormal set of basis functions defined on a unit circle
- > Any arbitrary wavefront can be represented as a linear combination
- Coincides with fundamental aberrations

Micro-optics II - Theory

Theory- Take home messages!

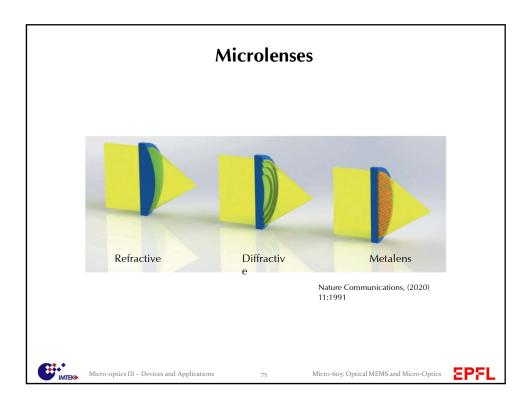
- > Gaussian Optics
 - A paraxial approximation
 - □ Depth of focus and spot-size are correlated
- > Interference and Interferogram
 - □ Interference is the superposition of multiple beams
 - □ Coherence length of a source is related to its spectrum
 - □ Interferogram and spectrum are Fourier pairs
- > Diffraction Fourier Optics
 - ☐ An aperture profile and its far field diffraction pattern form a Fourier pair
 - □ A lens is essentially a Fourier transformer
 - □ Diffraction puts a limit on the resolution of an optical system
- **□** Quantifying Image Performance
 - □ Point spread function (PSF) and modulation transfer function (MTF)
 - □ PSF and MTF are Fourier pairs

Micro-optics II - Theory

DEVICES AND APPLICATIONS

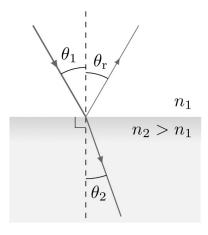
Micro-optics III - Devices and Applications

Micro-605: Optical MEMS and Micro-Optic


Devices and applications

- Refractive microlenses
 - Fresnel lens
 - GRIN lenses
 - Microlens arrays
- Diffractive microlenses
 - The diffractive "Fresnel" lens
- Diffraction gratings
 - Case study: How to solve a diffraction problem?
- Diffractive optical elements

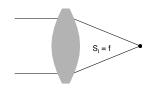
Micro-optics III - Devices and Applications

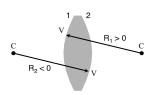


REFRACTIVE MICROLENSES

Refraction

 $n_1(\lambda) \sin \theta_1 = n_2(\lambda) \sin \theta_2$


Micro-optics III - Devices and Applications


Micro-605: Optical MEMS and Micro-Opti

Refractive lenses

- Smooth curved surfaces
- Volume (and weight) grows rapidly with aperture size

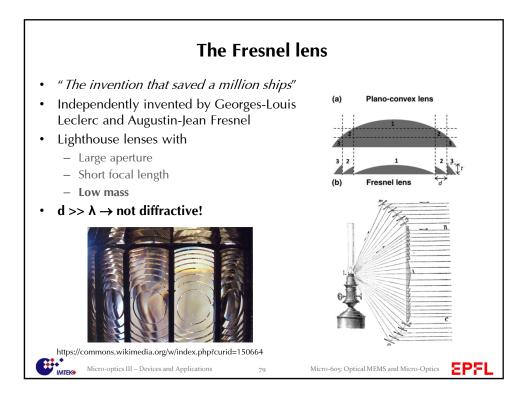
Focal Length

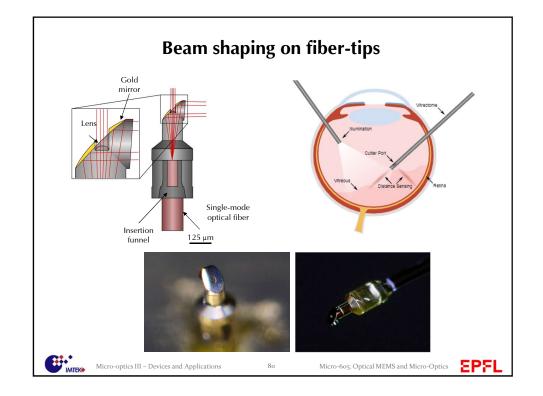
$$\frac{1}{f} = \left(\frac{n_L}{n_0}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

• Refractive power

$$C = \frac{1}{f}$$

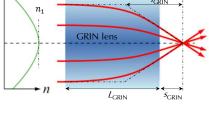
• Lensmaker's formua


$$\frac{1}{f} = \frac{1}{S_i} + \frac{1}{S_o}$$


 S_o : Object distance S_i : Image distance

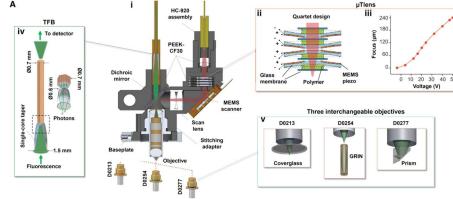
Micro-optics III - Devices and Applications

Gradient-index (GRIN) optics


- Affects the optical path by varying the index of refraction within the lens
- · Fabricated by ion diffusion
- Ultra-compact lenses with flat surfaces
 - No grinding & simple surface polishing
 - Control of aber $(at\sqrt{A})^2$ through the

- Photocopiers & scanners
- Optical communication networks
- Endoscopic imaging
- Neuroscience & optogenetics

Micro-optics III - Devices and Applications

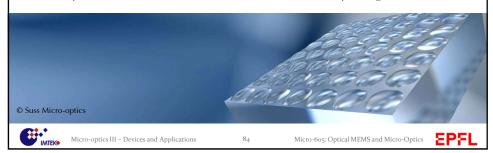


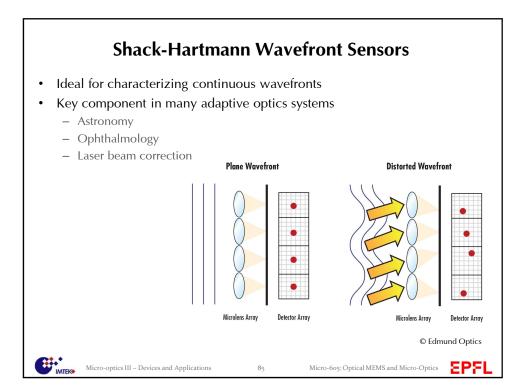
Micro-605: Optical MEMS and Micro-Optics

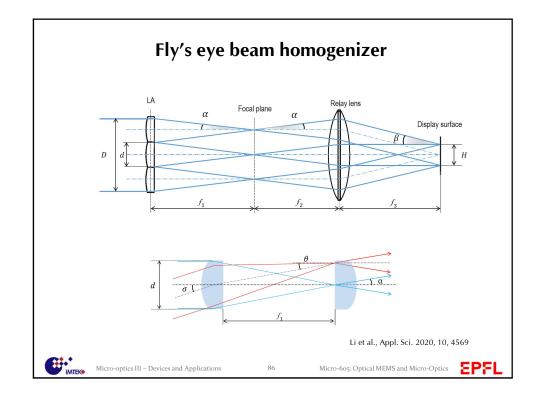
GRIN optics for neuroscience

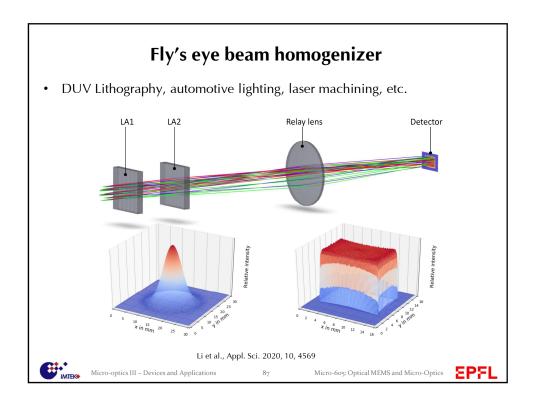
Cell 185, 1240–1256, March 31, 2022

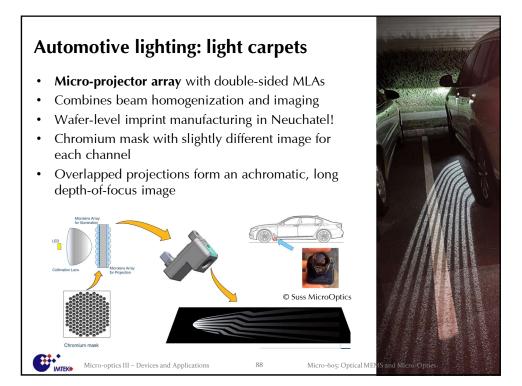
Micro-optics III - Devices and Applications

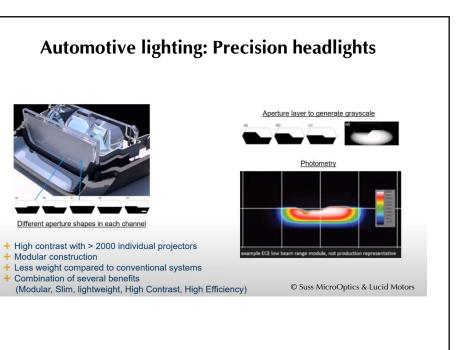


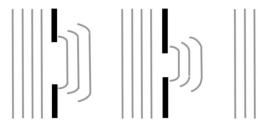



Microlens arrays (MLAs)


- Applications
 - Digital photography and IR imaging
 - Retinal scanning displays
 - 3D and integral imaging
 - Source-to-fiber light coupling
 - Automotive lighting
 - Laser beam shaping
 - Illumination optics
 - Optical switches and cross-connects


- Fabrication methods
 - Reflow
 - Grayscale lithography
 - Nanoimprint lithography
 - Injection molding
 - Wafer-level imprinting
 - Ion diffusion
 - Femtosecond laser ablation
 - 3D nano-printing




DIFFRACTIVE MICROLENSES

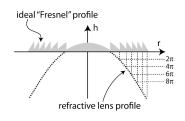
Micro-optics III - Devices and Applications

CDCI

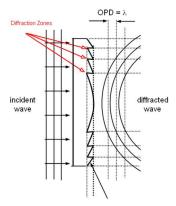
Refraction → **Diffraction**

Refractiondominated system

Diffraction-dominated system



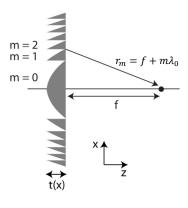
Micro-optics III - Devices and Applications


Micro-605: Optical MEMS and Micro-Optics

The diffractive "Fresnel" lens

 n_L = index of lens n_0 = index of ambient $k_0 = 2\pi/\lambda_0$

$$\Phi(r) = k_0 n_L \left(f - \sqrt{r^2 + f^2} \right)$$



Micro-optics III - Devices and Applications

The diffractive "Fresnel" lens: Profile

- Constructive interference of each zone on the optical axis
- Focal length defined by the geometry of the zones and λ_0 !

• With r_m the radius at the beginning of zone m; we have

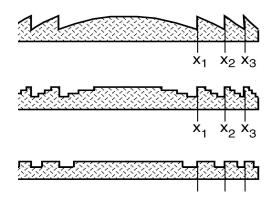
$$r_m^2 + f^2 = (f + m\lambda_0)^2$$

• Focal length in the paraxial regime

$$f = \frac{r_m^2}{2m\lambda_0}$$

• Radii of consecutive zones

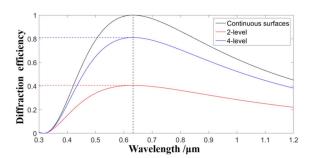
$$r_m = \sqrt{2m\lambda_0 f}$$



Micro-optics III - Devices and Applications

Micro-605: Optical MEMS and Micro-Optic

The diffractive "Fresnel" lens: Implementation



Micro-optics III - Devices and Applications

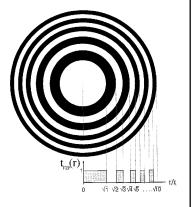
Diffraction efficiency vs. wavelength

$$\eta = \frac{1}{L^2} \cdot \sin c^2 \left(\frac{i}{L}\right) \cdot \frac{\sin^2[\pi(\alpha - i)]}{\sin^2\left[\frac{\pi(\alpha - i)}{L}\right]}$$

 \dot{x} : diffraction order L: number of levels α : $\lambda \sqrt{\lambda}$

Micro-optics III - Devices and Applications

Micro-605: Optical MEMS and Micro-Optics

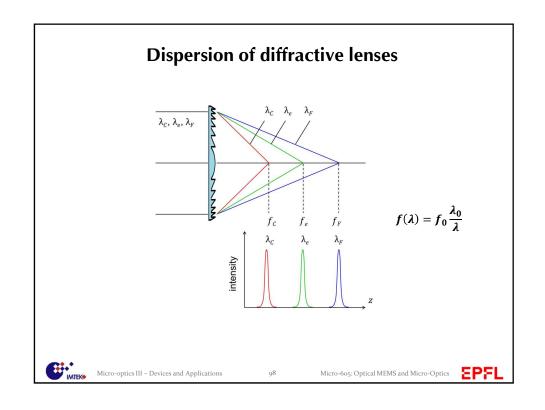


The zone plate

- The simplest form of diffractive lens
- Consecutive opaque and transparent zones
- Constructive interference of the transmitted light on the axis
- · Applications
 - X-ray optics

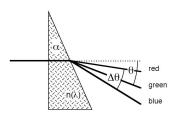
Ion Beam Milled Fresnel Zone Plate

Micro-605: Optical MEMS and Micro-Optics



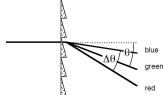
Micro-optics III - Devices and Applications

96



Multi-order lens (MOD) Combines refractive and diffractive characteristics Multiple waves of phase shift at each zone -> multi-order High efficiency at multiple wavelength (a) Conventional Diffractive Lens (b) Multi-Order (b) Diffractive (MOD) Lens © Apollo Optical Systems

Abbe numbers of diffractive and refractive lenses



$$v_r = \frac{\theta}{\Delta \theta} = \frac{n_d - 1}{n_F - n_C}$$

 $\begin{array}{l} \lambda_d = 587.6 \ nm \\ \lambda_F = 486.1 \ nm \\ \lambda_C = 656.3 \ nm \end{array}$

Diffraction

$$v_r = \frac{\theta}{\Delta \theta} = \frac{\lambda_d}{\lambda_E - \lambda_C}$$

IMTEK

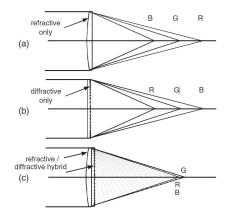
Micro-optics III - Devices and Applications

Micro-605: Optical MEMS and Micro-Opti

EPEL

Refractive vs. diffractive dispersion

	Refractive	Diffractive
Abbe number:	$v_{r} = \frac{n(\lambda_{1}) - 1}{n(\lambda_{2}) - n(\lambda_{3})}$	$v_{d} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{3}}$
$\lambda_1 = 587.6 \text{ nm}$ $\lambda_2 = 486.1 \text{ nm}$ $\lambda_3 = 656.3 \text{ nm}$	$v_{\rm r}=80~{\rm to}~20$	$v_{\rm d} = -3.45$



Hybrid achromats

Refractive and diffractive dispersion cancel each other out

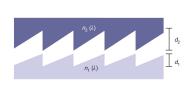
$$\frac{C_{ref}}{v_{ref}} + \frac{C_{diff}}{v_{diff}} = 0$$

Refractive powers add up

$$C_{hybrid} = C_{ref} + C_{diff}$$

Effective focal length

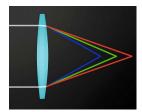
$$\frac{1}{f_{hybrid}} = \frac{1}{f_{ref}} + \frac{1}{f_{diff}}$$

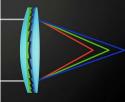


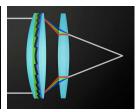
Micro-605: Optical MEMS and Micro-Optics

Multilayer diffractive lens

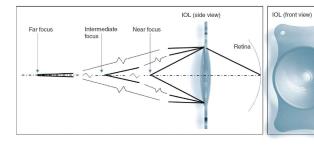
- Developed by Canon to achromatize efficiency
- Two equal-period diffractive lens with
 - Different step height
 - Different material
- Commercialized around 2013


Advanced Optical Technologies 2.5-6 (2013): 351-359.


 $\eta_{\text{double}}(\lambda) = \sin c^2 (\alpha - 1)$ Efficiency 6.0 6.0 0.2 500 550 600 650 Wavelength (nm)



© Canon


Micro-optics III - Devices and Applications

Micro-605: Optical MEMS and Micro-Optics

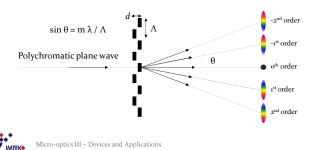
Diffractive intra-ocular lens

- Multifocal intraocular lenses
 - Multiple diffractive lenses each optimized for a different focus
 - Single diffractive lenses operating at multiple diffraction orders
- · Compensates for the lack of accommodation

Advanced Optical Technologies 2.5-6 (2013): 351-359.

Micro-optics III - Devices and Applications

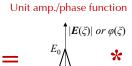
104

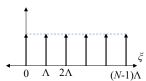


Micro-optics III - Devices and Applications

Diffraction Gratings

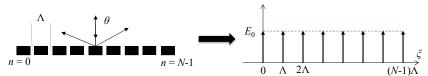
- · Optical component with a periodic structure
 - Period in the order of the wavelength
 - Transmission amplitude/phase gratings
 - Reflection binary/blazed gratings
- Splits light into multiple diffraction orders
- Orders separated by the diffraction angle
 - Defined by the period and the wavelength
- 2nd most common MOEMS component


CASE STUDY: ANALYSIS OF DIFFRACTION GRATINGS USING FOURIER OPTICS



How to Solve a Grating Problem

Grating Function $|E(\xi)|$ or $\varphi(\xi)$


Impulse train

- · Can be represented as the convolution of
 - A unit amplitude/phase function
 - An impulse train
- Our analysis will follow
 - Diffraction analysis of an impulse train
 - · Array of point emitters
 - A binary phase grating
 - What does "tuning" a grating do?

Micro-optics III - Devices and Applications

Diffraction for a Point Emitter Array

- · For a 1D point emitter array, the E-field at the grating plane is $E_g(\xi) = E_0 \sum_{n=0}^{N-1} \delta(\xi - n\Lambda)$
- The E-field the image plane is the Fourier transform of $E_g(\xi)$

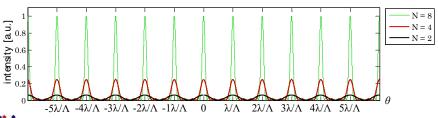
$$E_i(x) = E_0' \sum_{n=0}^{N-1} e^{-jnk\Lambda \frac{x}{z_i}}$$
 $k = 2\pi / \lambda; z_i$: propagation distance

• Substituting $x/z_i = \sin \theta$ yields $E_g(x)$ as a function of angle

$$E_i(\theta) = E_0' \sum_{n=0}^{N-1} e^{-jnk\Lambda \sin \theta}$$
 For oblique incidence $\sin \theta \to \sin \theta + \sin \theta_i$

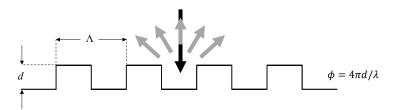
EPF

Diffraction for a Point Emitter Array- Continued

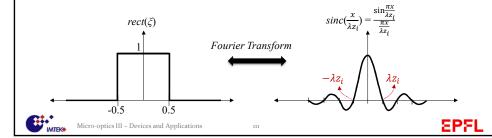

· With simple trigonometry we get

$$E_i(\theta) = E_0' \frac{e^{-jNk\Lambda\sin\theta} - 1}{e^{-jk\Lambda\sin\theta} - 1} = \frac{\sin\left(\frac{1}{2}Nk\Lambda\sin\theta\right)}{\sin\left(\frac{1}{2}k\Lambda\sin\theta\right)} e^{-\frac{1}{2} - j(N-1)k\Lambda\sin\theta}$$

The intensity profile is thus given by:


 $I_i(\theta) = \frac{I_0}{N^2} \frac{\sin^2(\frac{1}{2}Nk\Lambda\sin\theta)}{\sin^2(\frac{1}{2}k\Lambda\sin\theta)}$

Diffraction profile has maxima at $\frac{1}{2}k\Lambda\sin\theta = \pm n\pi \Rightarrow \sin\theta = \pm n\lambda/\Lambda$ $\theta \approx \pm n\lambda/\Lambda$


Micro-optics III - Devices and Applications

Reflective Binary Diffraction Grating

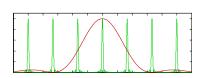
• The reflected/transmitted field:

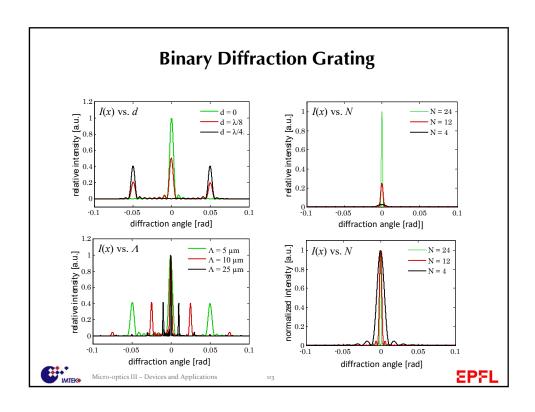
$$E_g^b(\xi) = \left(e^{-j\phi/2}rect(2\xi/\Lambda - \Lambda/4) + e^{j\phi/2}rect(2\xi/\Lambda + \Lambda/4)\right) * E_g(\xi)$$

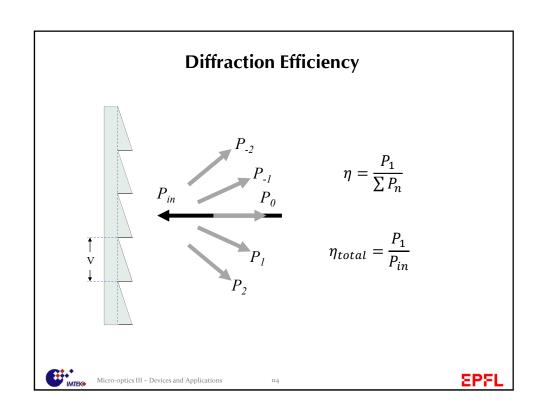
Binary Diffraction Grating

· Beyond Fraunhofer distance, the diffracted field is given by

$$E_i^b(x) = \left(e^{-j\phi/2 - 2\pi\Lambda x/(4\lambda z_i)}sinc\left(\frac{\Lambda x}{2\lambda z_i}\right) + e^{j\phi/2 + 2\pi\Lambda x/(4\lambda z_i)}sinc\left(\frac{\Lambda x}{2\lambda z_i}\right)\right) \cdot E_i(x)$$

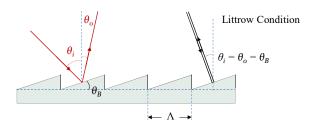

• If the diffracted light is focused with a thin lens of focal length z_f


$$E_i^b(x) = sinc\left(\frac{\Lambda x}{2\lambda z_i}\right) \cdot \sin\left(\frac{\phi}{2} - \frac{2\pi\Lambda x}{4\lambda z_i}\right) \cdot E_i(x)$$


• Therefore, the intensity profile is

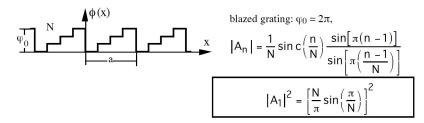
$$I_{i}^{b}(x) = sinc^{2}\left(\frac{\Lambda \sin \theta}{2\lambda}\right) \cdot \sin^{2}\left(\frac{\phi}{2} - \frac{2\pi\Lambda \sin \theta}{4\lambda}\right) \cdot I_{i}(\sin \theta)$$
envelope

Intensity periodicity modulation



Blazed Diffraction Gratings

- High efficiency in a given diffraction order (up to 90%)
- Grooves with a "blaze angle" θ_B
- Diffraction angle: $\sin \theta_o + \sin \theta_i = \pm n\lambda/\Lambda$
- Littrow condition: $\theta_i = \theta_o = \theta_B$
 - The input and output rays, propagate along the same axis.
 - Blaze wavelength: $\theta_B = a \sin \frac{\pm n \lambda_B}{2\Lambda}$.



Micro-optics III - Devices and Applications

115

Multi-level blazed grating

N: number of phase levels n: diffraction order

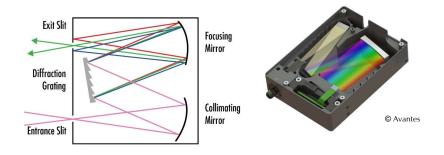

N =	2	4	8	16
$ A_1 ^2 =$	40.5%	81,1%	95,0%	98,7%

Resolving Power of a Grating

• Ability to separate two adjacent wavelengths λ and $\lambda + \delta\lambda$

$$\mathcal{R} \stackrel{\text{\tiny def}}{=} \frac{\lambda}{\delta \lambda} = mN$$

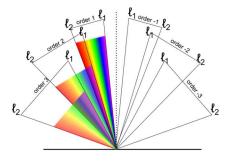
- Very important for grating based spectrometers
- Can you derive the resolving power expression?
 - Hint: The minima for λ *and* the maxima for $\lambda + \delta \lambda$ overlap at the order n



Micro-optics III - Devices and Applications

117

Grating spectrometer



Micro-optics III - Devices and Applications

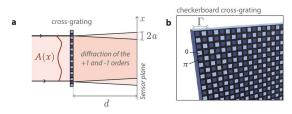
Grating spectrometer: Free spectral range

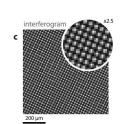
- Assume the range without overlap at order m covers $\lambda \rightarrow \lambda + \Delta \lambda$.
- Then, the condition for no overlap at is given by

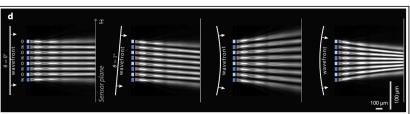
$$(m+1)\lambda = m(\lambda + \Delta\lambda)$$

• Solving for Δλ yields

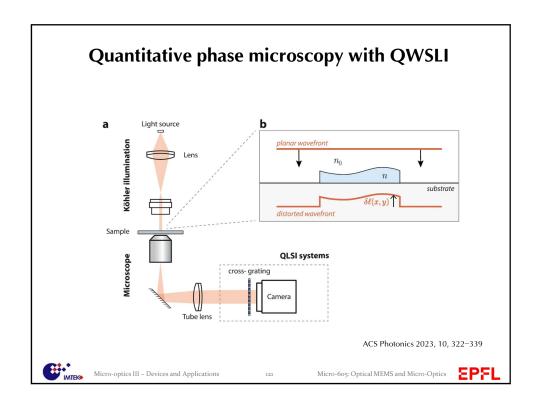
$$\Delta \lambda = \frac{\lambda}{m}$$

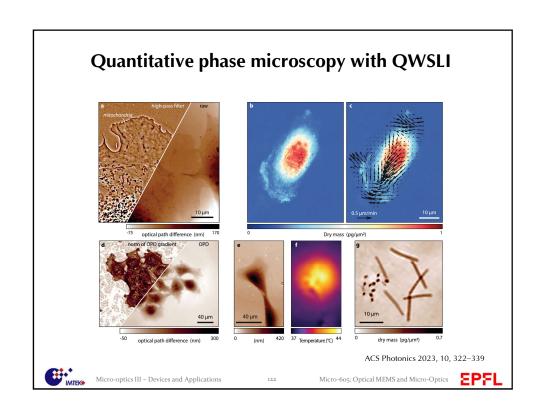



Micro-optics III - Devices and Applications


Micro-605: Optical MEMS and Micro-Optics

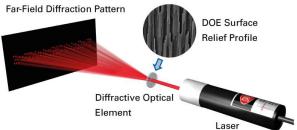
Quadriwave Lateral Shearing Interferometry (QWSLI)




ACS Photonics 2023, 10, 322-339

Micro-optics III – Devices and Applications

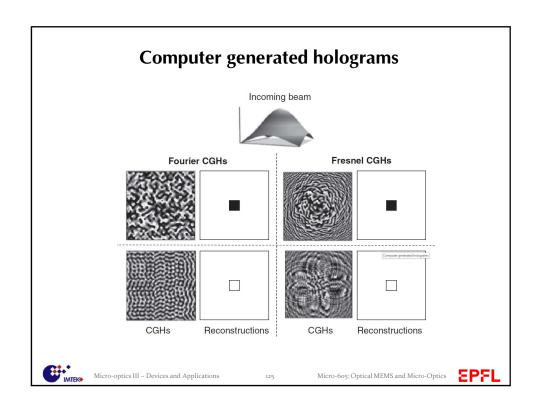
DIFFRACTIVE OPTICAL ELEMENTS (DOES)

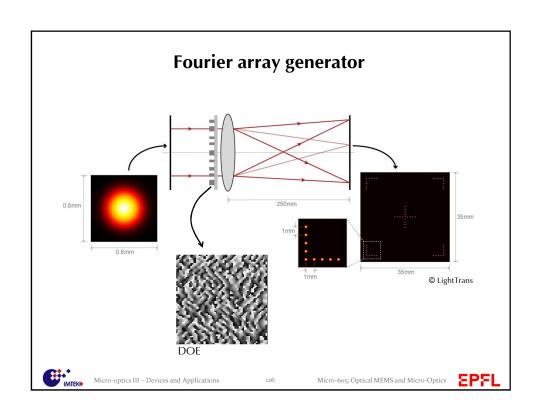


Micro-optics III - Devices and Applications

Diffractive optical elements

- General name diffraction-based optical components
 - Sometimes called DOEs, CGHs, phase plates, kinoforms, ...
 - Highly λ-dependent
 - Includes a wide variety of optical structures
- Optical functionality
 - Arbitrary wavefront sculpting to form complex far-field patterns


© Holoeye



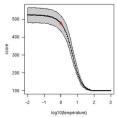
Micro-optics III - Devices and Applications

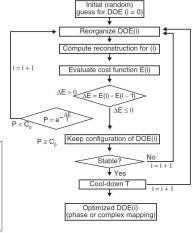
124

Iterative Fourier transform algorithm (IFTA)

Ripoll, Olivier, Ville Kettunen, and Hans Peter Herzig. "Review of iterative Fourier-transform algorithms for beam shaping applications." *Optical Engineering* 43.11 (2004): 2549-2556.

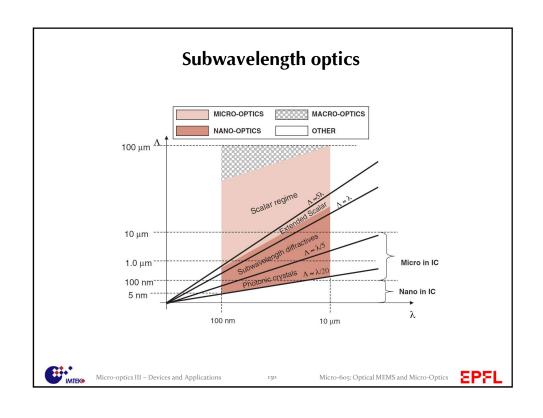
Micro-optics III - Devices and Applications


Micro-605: Optical MEMS and Micro-Optics



Simulated annealing algorithm

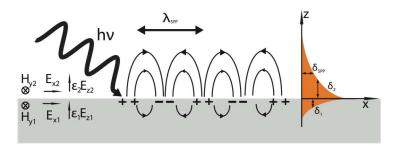
- A stochastic global search optimization algorithm
- Can prevent the cost function from being trapped in local minima
- Should be used alongside IFTA for fine tuning of the design



Micro-optics III - Devices and Applications

Subwavelength optics

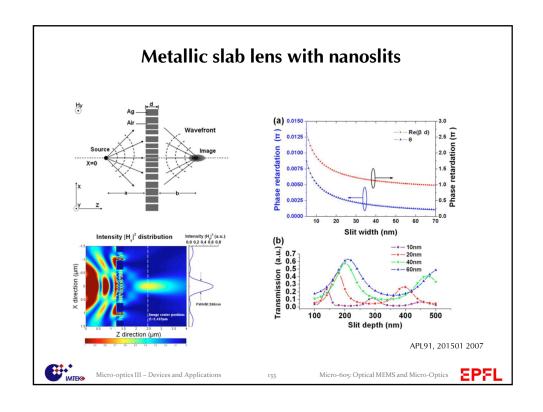
- Plasmonic lenses
- Metasurface optics
- Photonic crystals

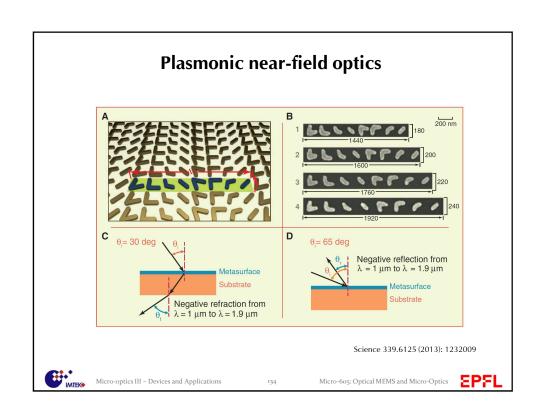

Micro-optics III - Devices and Applications

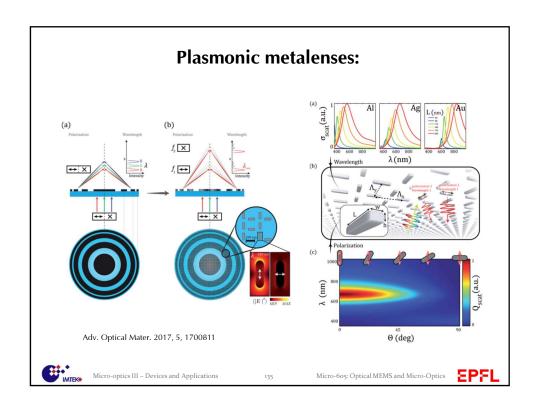
131

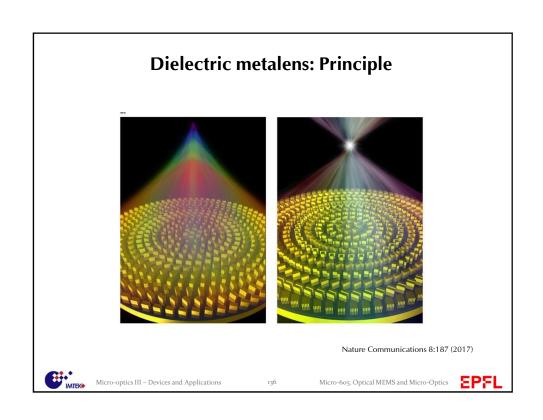
Micro-605: Optical MEMS and Micro-Optic

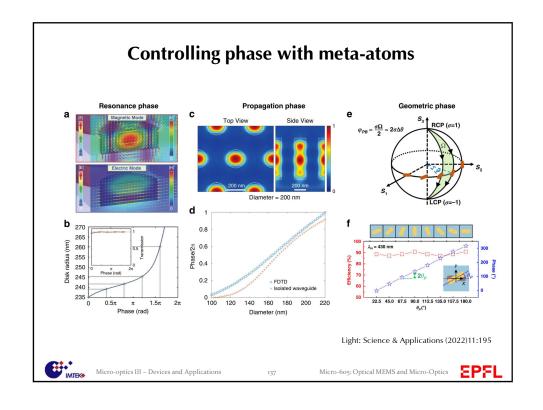
Surface plasmons

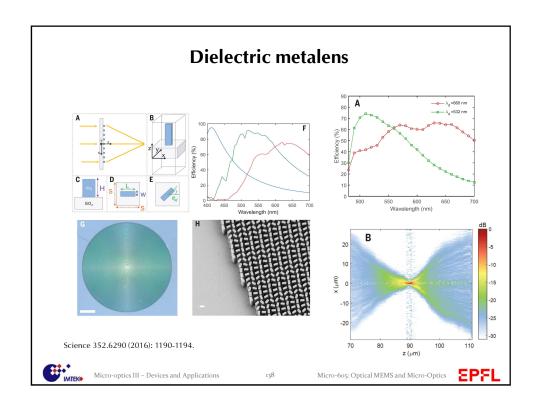


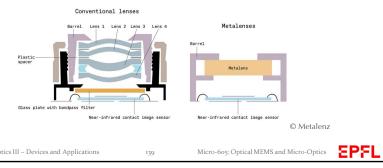

Wikipedia

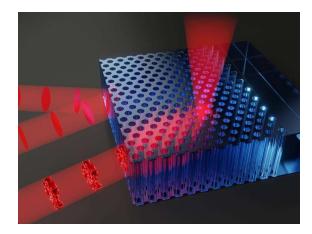



Micro-optics III - Devices and Application



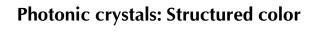






Metalenses with dielectric nanostructures

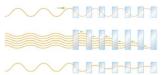
- Potential advantages compared to diffractive optics
 - Reduced thickness
 - Binary structure
 - CMOS compatibility
 - High numerical-aperture capability
 - Chromatic correction
 - Tunability
 - Polarization sensitivity



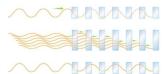
Photonic crystals

Courtesy: R Uppu (via Physics World)

optoelectronics.eecs.berkeley.edu

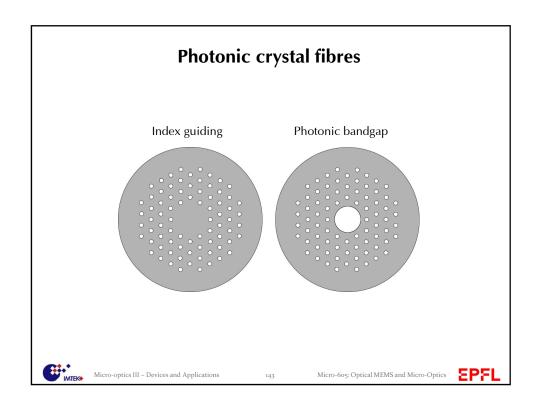


Micro-605: Optical MEMS and Micro-Optics



Photonic crystals. Operation principle

Resonant


Non-resonant

Micro-optics III - Devices and Applications

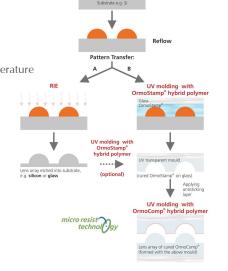
MICRO-OPTICS MANUFACTURING

Micro-optics IV - Fabrication

Micro-605: Optic

Micro-optics manufacturing

- Resist & Plasma Etching (RIE)
- Greyscale Lithography
- Imprint Technology
- Laser Ablation
- Injection Molding
- Ion Diffusion (GRIN)
- Direct Laser Writing
- Holography
- Diamond Turning
- Embossing or Mold Pressing


Micro-optics IV - Fabrication

145

Reflow microlenses

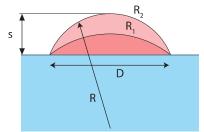
- Thermal reflow
 - Melt PR cylinders
 - Hotplate / oven
- Lens shape depends on:
 - Surface tension
 - Temperature ramps & Maximum temperature
 - Photoresist viscosity
- · Photoresist lenses
 - Only for $\lambda > 600 \text{ nm}$
 - Limited robustness
- Or: transfer into substrate
 - Dry etch
 - Silicon
 - Glass
- · Or: use as mold
 - For replication in polymers
 - PC, PMMA, SU8...

M' T

Micro-optics IV – Fabrication

Geometry of reflow microlenses

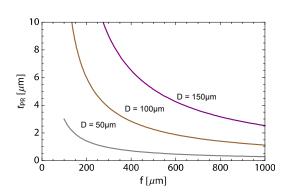
· Focal length


$$f=\pi\frac{R}{n_L-1}$$

- Radius of curvature R
- Refractive index n_L
- · Sag height

$$s = R - \sqrt{R^2 - \frac{D^2}{4}}$$

• PR thickness required


$$t_{PR} = \frac{s}{6} \left(3 + 4 \left(\frac{s}{D} \right)^2 \right)$$

Typical reflow lens characteristics

- Required f:
- Limits
 - t_{PR} > 10 µm difficult
- Typical ranges
 - D ≤ 500 μ m
 - $-0.15 \le NA \le 0.45$
 - f/1 f/3
 - Aberrations
 - ≤ λ/4 typical

Micro-optics IV - Fabrication

Micro-605: Optical MEMS and Micro-Optics

lithography

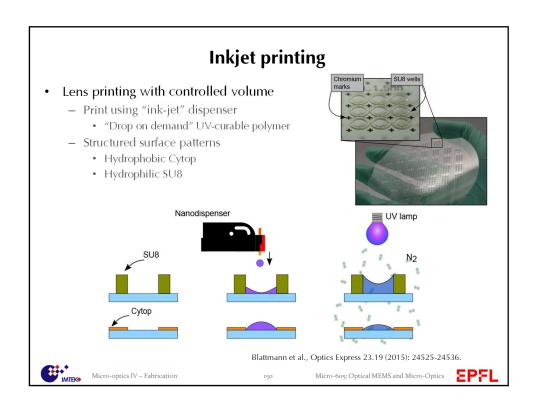
coating

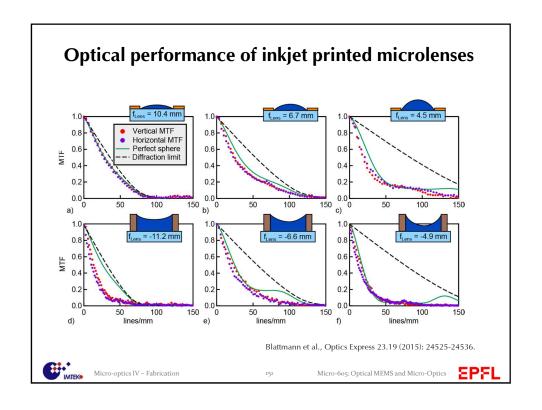
stamping

monomer deposition

elastomer mold

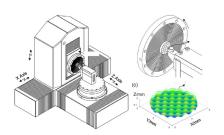
Micro-contact printing

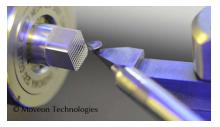

- Also called "soft lithography"
- · Process steps
 - Make a master relief structure
 - · Typically Si
 - Replicate in elastomer
 - Typically PDMS
 - "Ink" with wetting agent
 - Print patterns
 - Self-assembly in hydrophilic regions
 - Thermal or UV curing
- Typical features
 - Formation of large arrays
 - Excellent surface quality
 - Presence of radially symmetric aberrations (e.g. Spherical aberration)
 - Low non-radially symmetric aberrations (e.g. coma, astigmatism)



Micro-optics IV - Fabrication

19





Diamond turning/ruling

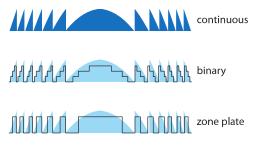
- Used for prototyping or tooling for large-dimension and/or deep gratings, especially reflection gratings
- Well-suited to produce circularly symmetric grooves
 - Fresnel lenses
 - Circular grating
 - Microlenses
- Four/five-axes machines for freeform optics manufacturing
- The geometry of the diamond tool's tip must be carefully chosen to for each part.

Micro-optics IV – Fabrication

152

Micro-605: Optical MEMS and Micro-Optics

LITHOGRAPHIC METHODS



Micro-optics IV - Fabrication

EPFL

Binary-mask lithography

- Approximate the continuous lens profile by a stepped structure
 - Use standard "binary" lithography
 - 2^N levels for N lithography steps
 - More exposure steps
 - · Closer approximation to ideal
 - Degrading efficiency due to alignment errors

Micro-optics IV - Fabrication

154

Micro-605: Optical MEMS and Micro-Optics

Phase levels & efficiency (η)

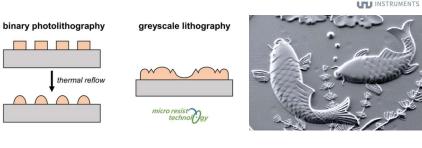
- Phase levels N
 - $N = 2^{M}$
 - M photolith steps
 - η increases with N
- Example
 - 4 photolith steps
 - $M = 4 \Rightarrow N = 16$
 - Then $\eta > \sim 99\%$
- phase leve
 2

 4

 t_{max} t_{step}

 ideal

- Limitations
 - Mask linewidth: 0.1 μm error $\Rightarrow \eta$ reduced by 10%
 - Alignment: 0.3 μm error $\Rightarrow \eta$ reduced by 10%
 - Etch depth: $\pm 2.5\%$ error $\Rightarrow \eta$ reduced by 1%

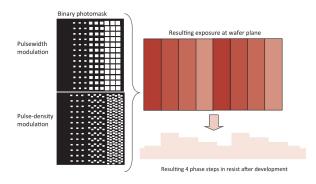


Micro-optics IV - Fabrication

Grayscale/Continuous-relief lithography

- Forming continuous (2.5D) features on a resist layer
- Fabrication of components, molds or etching masks
- Extremely high precision (<10 nm possible)
- Available technologies
 - Direct laser writing
 - Electron beam or focused ion beam (FIB) patterning
 - Thermal scanning probe lithography

Micro-optics IV – Fabrication

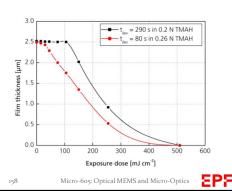

156

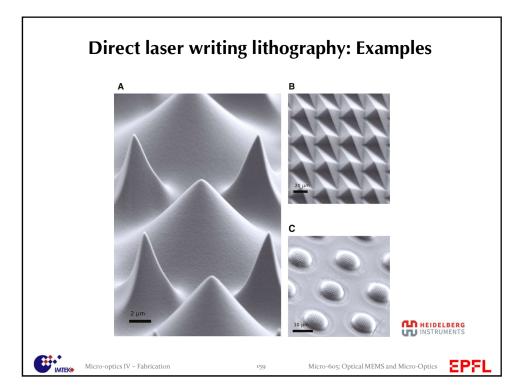
Micro-605: Optical MEMS and Micro-Optics

Binary grayscale lithography

- · Chromium mask with PWM or PWM for controlling dosage
- Features much smaller than the resolution of the tool
- Up to 1000 levels possible within OD range of 0 to 2.0 (1% transmission)
- · A standard mask aligner in proximity mode

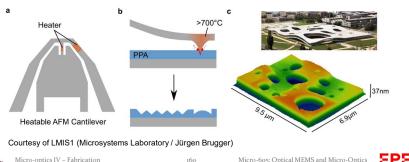
SPIE, Field guide to Digital Micro-optics


Micro-optics IV - Fabrication



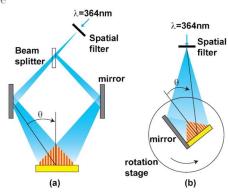
Direct laser writing lithography

- UV sensitive photoresist exposed with an intensity-modulated beam
- No need for a mask
- A development step is needed
- Commercial system specifications
 - Up to 1,000 gray levels
 - Substrates up to 800 mm x 800 mm



Thermal scanning probe lithography (t-SPL)

- Local removal of material with an AFM probe with heated tip
 - No development needed
- Uses a resist that decomposes upon exposure to heat (>300°C, \sim 10 μ s)
- Double heaters
 - Material removal
 - Monitoring of the removal process
- Instrument available at EPFL (NanoFrazor from Heidelberg Instruments)

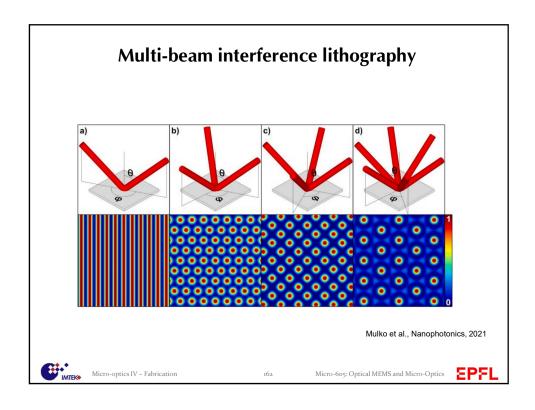


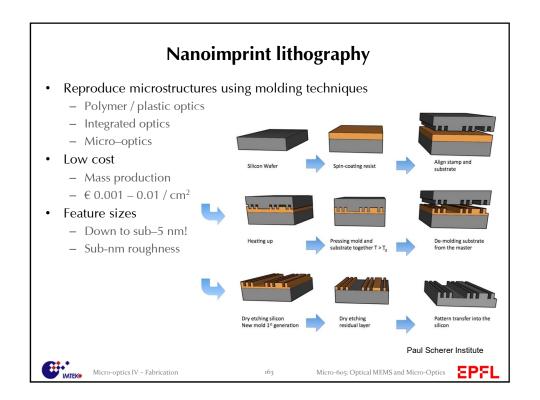
Micro-605: Optical MEMS and Micro-Optics

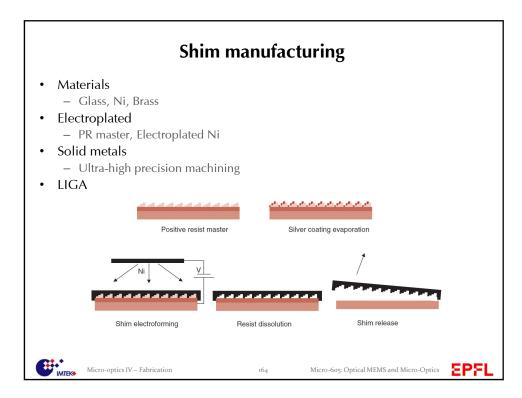
Laser interference lithography

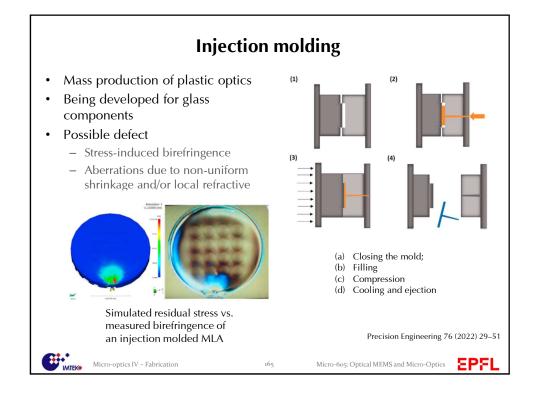
- Approach related to holography
 - Simple gratings: parallel definition, single exposure
 - More complex structures with multiple exposure
 - Curved & chirped gratings possible
 - Large areas possible
- Used for large area coatings
 - Reflectors and anti-reflectors
 - Holographic gratings

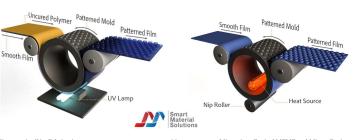
$$\Lambda = \frac{\lambda}{2\sin\theta}$$




Joong et al. (2011 InTech




Micro-optics IV - Fabrication



Roll-to-roll nanoimprint lithography

- Ideal for large-area, polymeric optics
- Step-and-repeat or rotating mould type
- Applications
 - Fresnel lenses as micro-concentrators in photovoltaics
 - Lighting and illumination
 - 3D displays and VR
 - CCD and CMOS sensors
 - Display back- and front light guides

MTEK•

Micro-optics IV – Fabrication

166

Micro-605: Optical MEMS and Micro-Optics

RAPID PROTOTYPING OF MICRO-OPTICS

Micro-optics IV - Fabrication

Micro-605: Optical MEMS and Micro-Optics

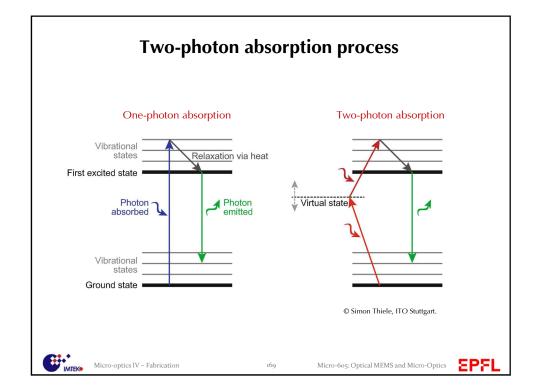
EPFL

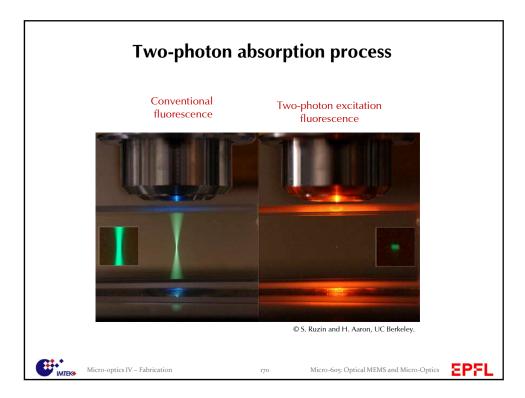
Rapid Prototyping of Micro-optics and MOEMS

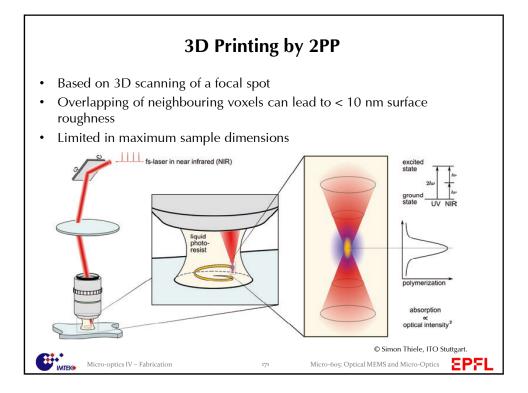
- Motivation
 - How can we cut down design cycle time?
 - How to realize low-volume, high-complexity devices?
 - Can we manufacture optical surfaces and actuators monolithically?

Most promising methods are

- Laser ablation
- Two-photon polymerization
- Selective laser etching



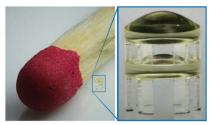


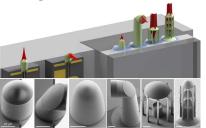

Micro-optics IV - Fabrication

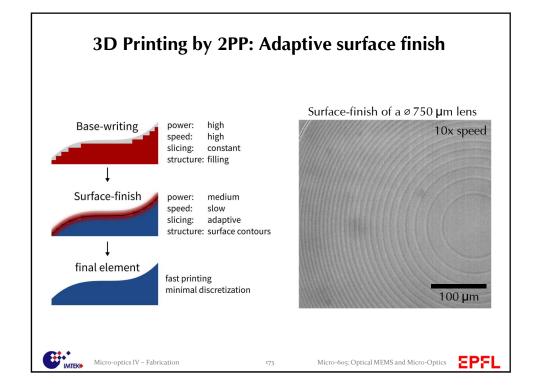
168

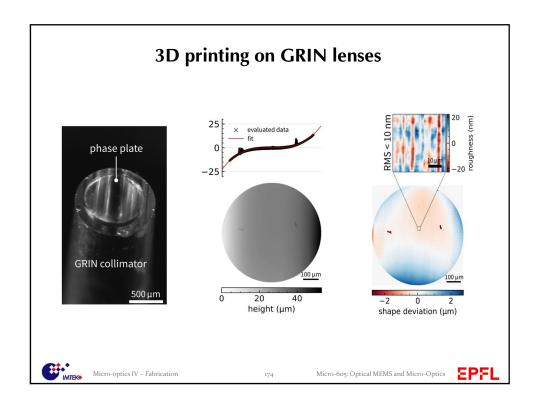
3D Printing by 2PP

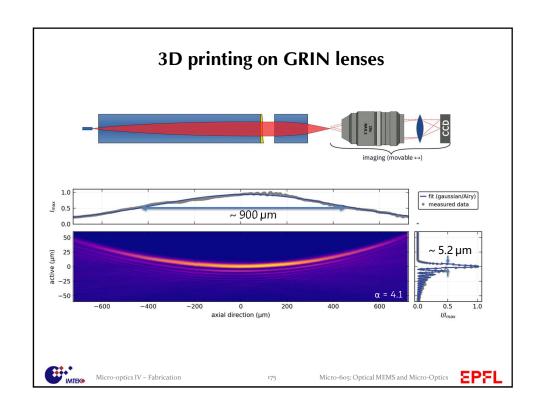
- Voxel size depends on NA
 - 63X objective: 0.2 x 0.2 x 0.7 μm
 - 20X objective: 0.6 x 0.6 x 5 μm
- Optical quality surfaces possible by process optimization
 - Free-form optics
 - Complex optical surfaces
- Emerging actuator concepts
 - EM actuation via magnetic liquids
 - Electrostatic actuators

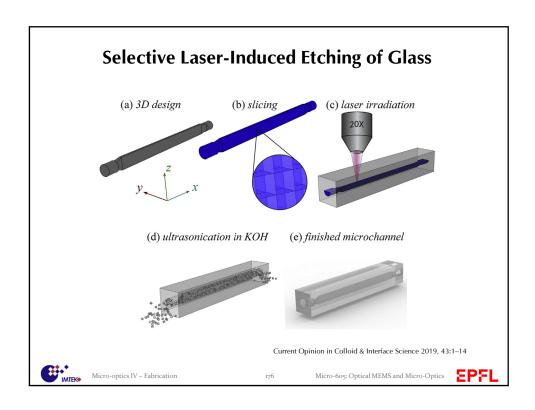








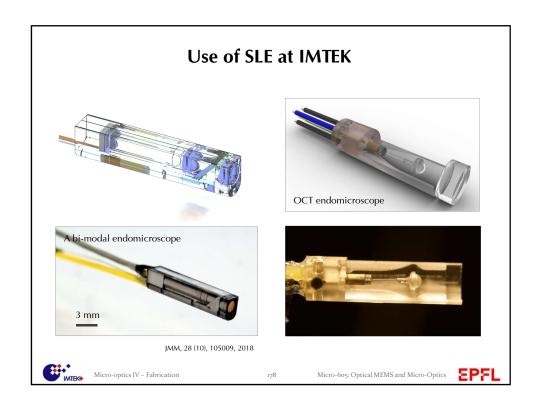

© ITO, Stuttgart

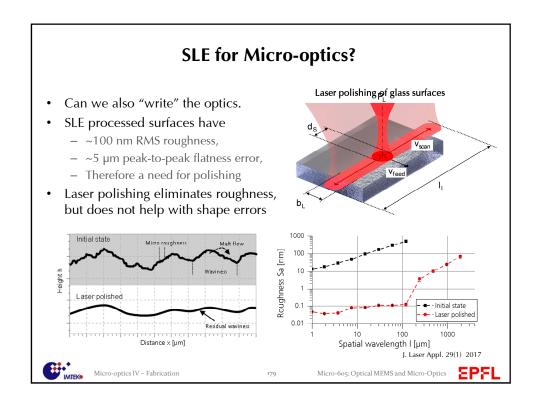


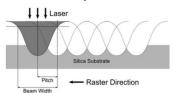
Selective Laser-Induced Etching of Glass

Process details

- Fused silica, quartz substrates
- Two-photon based absorption
- KOH etching of exposed areas
- >1500 aspect ration (with fused silica)
- ~1/2 μm resolution/accuracy

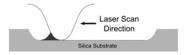

Potential for Optical MEMS


- System integration platforms
- Plug-and-play fibre interfacing
- Actuators with 3D complexity
 - Electrostatic actuators
 - Magnetic actuators



Femtosecond laser ablation

- Surface-relief type glass micro-optics
- · Laser machining
 - Step 1: Laser ablation
 - Pulsed laser raster scanned on the surface
 - Pulses ablate a precise volume of material
 - · Complete part formed by scanning
 - Ends up with a rough surface
 - Step 2: Laser polishing
 - Raster scanning over the surface
 - A very thin surface layer melts
 - Molten silica reflows due to surface tension
- Commercial rapid-prototyping service offered by Powerphotonic


Laser ablation process

Remaining surface

Laser polishing of the surface

Currie, M., et al., Proc. SPIE. Vol. 9727. 2016.

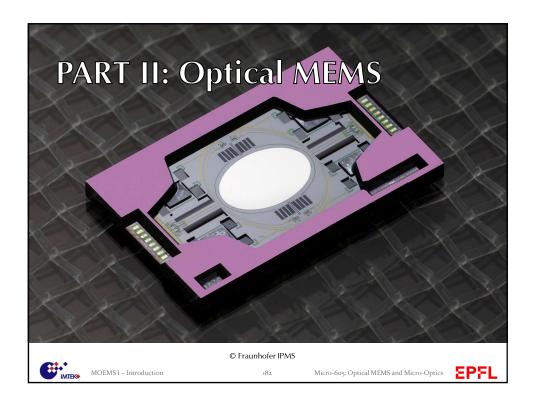
Micro-optics IV - Fabrication

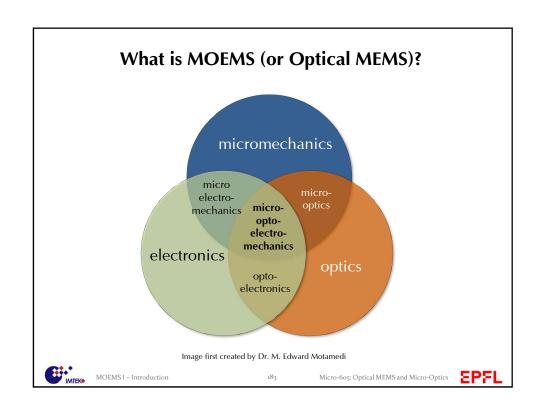
180

Micro-605: Optical MEMS and Micro-Optics

$\textbf{PowerPhotonic LightForge}^{\text{\tiny TM}}$

- · Rapid prototyping service
- Process specs:
 - Substrate dimensions: 25.4 x 25.4 x 1 mm
 - Sag 0 65 μm
 - Slope (form error PV < 500nm): 0 8 degrees
 - Slope 0 45 degrees
 - Feature Size 200 15000 Mm
 - Steps & Discontinuities smoothed over 150μm





Micro-optics IV - Fabrication

.0

Optical MEMS – Components and Devices

- Projection and scanning displays
- Imaging systems
- Optical interconnects
- Spectrometers
 - Projection Displays -
- Wavelength selective switches -
 - Spectroscopy -
 - Maskless Lithography -

- Autofocus and zoom cameras $\,$
- Stereo (3D) imaging
- Endoscopic imaging systems
- Laser-to-fiber couplers

Tunable lasers and optical filters -Reflective displays -Spectrometers -Add-drop multiplexers -

MOEMS I – Introduction

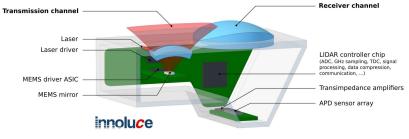
184

Micro-605: Optical MEMS and Micro-Optics

MOEMS Examples

MOEMS I – Introduction

5



- LIDAR: Light Detection and Ranging
- 3D mapping of the environment
- High-speed MOEMS scanners
- Applications
 - Robotic vision
 - Landscape monitoring
 - Autonomous driving

© New York Times

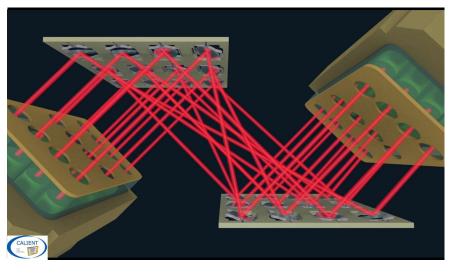
MOEMS I – Introduction

186

Micro-605: Optical MEMS and Micro-Optics

MOEMS Display Engines for AR/VR

- Augmented/Virtual Reality
- 3D image generation
- Numerous micro-optics and MOEMS
 - Waveguide arrays
 - Diffractive couplers
 - MOEMS display engines

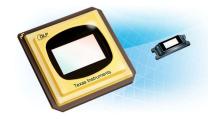


MOEMS I – Introduction

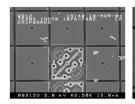
187

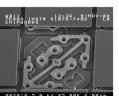
MOEMS for Telecom: 3D Optical Switches

MOEMS I - Introduction


188

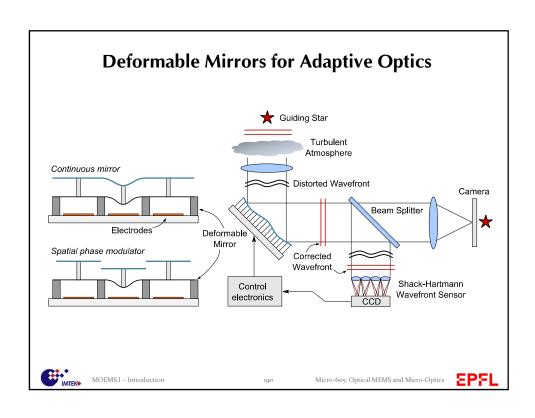
Micro-605: Optical MEMS and Micro-Optics

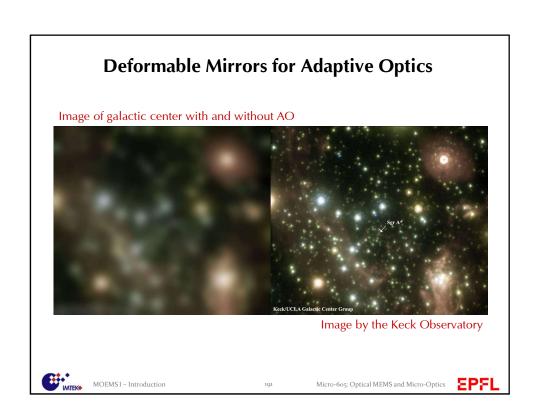



TI Digital Light Processor

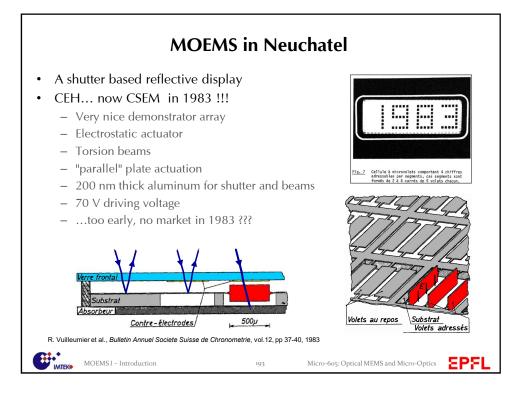
- 3-times Emmy award winner technology! (No kidding)
- Array of active micromirrors
 - Up to 4 million individual mirrors!
 - Up to 8 KHz refresh rate
 - 7.6 μm mirror pitch
- 20 years of development
- Remarkable process chain
- Applications
 - Projectors
 - Automobile head-up displays
 - Maskless lithography
 - Structure illumination
 - Optical metrology
 - Machine vision

SEM images of DLP mirrors





MOEMS I – Introduction


180

Content

- MOEMS: Fundamentals
 - Actuators and sensors
 - Design and modeling
- MOEMS: Devices
 - Micromirrors
 - Tunable gratings
 - Tunable lenses
 - Tunable resonators
- MOEMS: Systems
 - Display systems
 - Imaging systems
 - Telecommunication network components
 - Advanced instrumentation
- Emerging Topics

MOEMS I – Introduction

194

Micro-605: Optical MEMS and Micro-Optics

EPFL

Resources

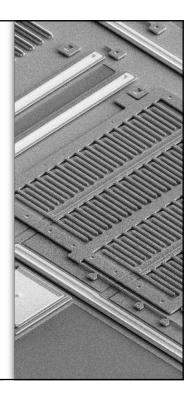
- An Introduction to Microelectromechanical Systems Engineering by N.
 Maluf
- Microsystem Design by Stephen Senturia
- Micromachined Transducers Sourcebook by G. Kovacs
- Fundamentals of Microfabrication by Marc Madou
- Micro Electro Mechanical System Design by J. Allen
- Analysis and Design Principles of MEMS Devices by Minhang Bao
- The MEMS Handbook by Mohamed Gad-el-Hak
- MOEMS: Micro-Opto-Electro-Mechanical Systems by Manouchehr E. Motamedi
- Foundations of MEMS by Chang Liu
- MEMS & Microsystems by Tai-Ran Hsu

MOEMS I - Introduction

FROM STATIC TO DYNAMIC MICRO-OPTICS

MOEMS II - Fundamentals

ACTUATORS AND SENSORS



MOEMS II - Fundamentals

Actuators and Sensors

- Electrostatic Actuators and Position Sensors
- Electromagnetic Actuators
- Thermal Actuators
- Piezoelectric Actuators and Sensors
- Piezoresistive Sensors

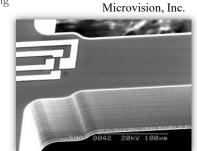
MOEMS II - Fundamentals

98

M(O)EMS Actuators

- Converts energy into mechanical motion
- · Actuator defines dynamic performance
- Requirements
 - Compact size
 - Low power consumption
 - Linear and hysteresis-free operation
 - High-speed, repeatable and stable motion
- Wide range of actuator types
 - Electrostatic
 - Electromagnetic
 - Piezoelectric
 - Thermal
 - Pneumatic/pressure
 - Opto-mechanical
 - Shape-memory

MOEMS II - Fundamentals



Position Sensing in M(O)EMS

- Real-time monitoring of motion
- Integral part of commercial M(O)EMS devices
- Close-loop device control
- Most actuators can be used as sensors as well
 - Electrostatic Actuators → Capacitive Sensing
 - Thermal Actuator → Thermoresistive Sensing
 - Piezoelectric Actuation → Charge Sensing
- Challenges
 - Small displacements
 - Low power consumption
 - Noise
 - Bandwidth
 - Integration

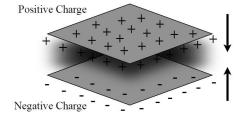
Piezo resistive position sensor on a torsional flexure

MOEMS II - Fundamentals

200

Micro-605: Optical MEMS and Micro-Optics

ELECTROSTATIC ACTUATORS



MOEMS II - Fundamentals

Electrostatic Actuators

- Utilizes capacitive attraction forces (Coulomb's force) between electrodes held at different potential
- By far the most common actuation and sensing method in MEMS
- · Device and substrate typically on ground
- No charge flow (ideally!)
- Advantages
 - Very low power
 - Fast
 - Easily integrated with electronics
- Disadvantages
 - Relatively large surfaces
 - Inherently nonlinear F-V behavior
 - Small forces → only attracting!
 - Actuation and sensing with similar structures

MOEMS II - Fundamentals

12

Micro-605: Optical MEMS and Micro-Optics

Electrostatic Actuation

• The total energy stored in a capacitors is given by

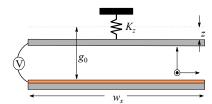
$$U_E = \frac{1}{2}CV^2$$

· Actuator force is defined by the rate of change energy with displacement

$$F = -\Delta U_E \Rightarrow F_x = -\frac{\partial U_E}{\partial x}, F_y = -\frac{\partial U_E}{\partial y}, F_z = -\frac{\partial U_E}{\partial z}$$

· Usually applied potential is independent of displacement. Thus,

$$F = -\frac{1}{2}V^2\Delta C$$



MOEMS II - Fundamentals

203

Electrostatic Actuators

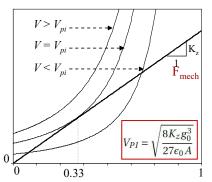
Stored Energy

$$U_E = \frac{1}{2}CV^2 = \frac{1}{2}\epsilon_0 \frac{w_x w_y}{(g_0 - z)}V^2(t)$$

Electrostatic Force

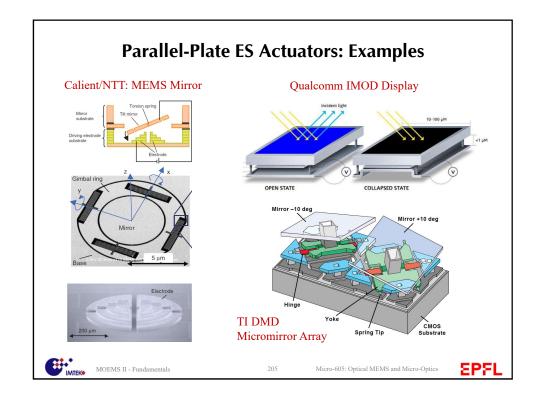
$$F_z = \frac{\partial \, U_E}{\partial \, z} = -\frac{1}{2} \epsilon \frac{w_x w_y}{(g_0 - z)^2} V^2(t)$$

Mechanical Restoring Force


$$F_{mech} = K_z z$$

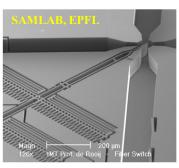
Equilibrium points are given by:

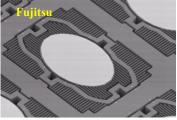
$$F_z = F_{mech}$$


MOEMS II - Fundamentals

Normalized Displacement (z/g 0)

- Susceptible to pull-in instability
 - Maximum travel limited to $g_0/3$
 - Limits analog operation range
 - Provides well-defined digital operation
- Trade-off between voltage and travel range



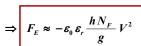

Electrostatic Comb Drive Actuators

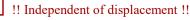
- · High force density
- · Lateral actuation
 - In-plane (IP) motion
- Vertical actuation
 - Out-of-plane (OOP) motion
 - Rotational motion
- · Vary accurate movement
- The contribution from 'fringe capacitance' is substantial, and cannot be ignored.
- 'Fringe capacitance' is highly non-linear

Micro-605: Optical MEMS and Micro-Optics

Force in ES Comb Drive Actuators

Individual capacitance contributions:


$$C_{\perp} = \varepsilon_0 \ \varepsilon_r \ \frac{h(l+x)}{g}$$
 and $C_{\parallel} = \varepsilon_0 \ \varepsilon_r \ \frac{h \ w}{d-x}$

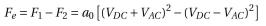

Total capacitance:

$$C_{tot} = \left(2 \ C_{\perp} + 2 \ C_{||}\right) \times N_F$$

$$C_{tot} = 2 \varepsilon_0 \varepsilon_r \left[\frac{h(l+x)}{g} + \frac{h w}{d-x} \right] \times N_F$$

Electrostatic force:
$$\langle \langle \frac{h}{g} \rangle$$

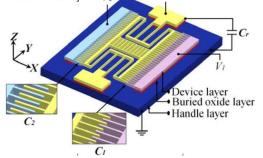
 $F_E = -\frac{1}{2} \frac{\partial C}{\partial x} V^2 = -\varepsilon_0 \varepsilon_r \left[\frac{h}{g} + \frac{h w}{(d-x)^2} \right] N_F V^2$


Linearization of Comb Drive ES Actuators

• The applied potentials are given by

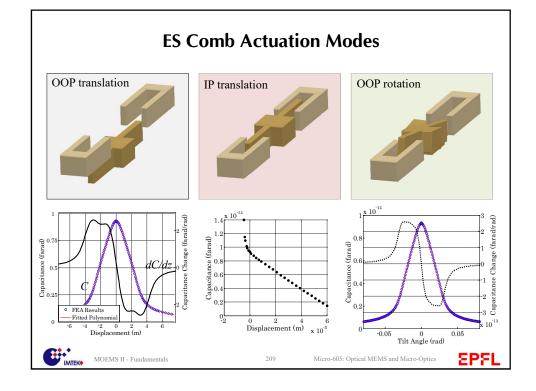
$$V_1(t) = V_{DC} + V_{AC} \Rightarrow F_1 = a_0 (V_{DC} + V_{AC})^2$$

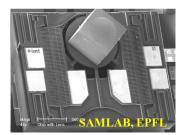
 $V_2(t) = V_{DC} - V_{AC} \Rightarrow F_2 = a_0 (V_{DC} - V_{AC})^2$

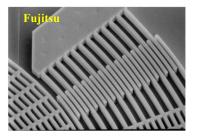

• Resultant ES force:

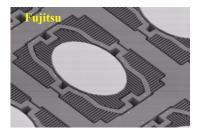
Differential Drive Comb Actuator

• The total force is found to be


$$F_e = 4 a_0 V_{AC} V_{DC}$$




MOEMS II - Fundamentals



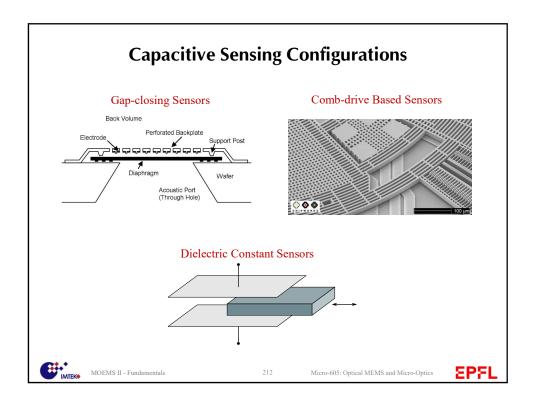
ES Comb Drive Actuators: Examples

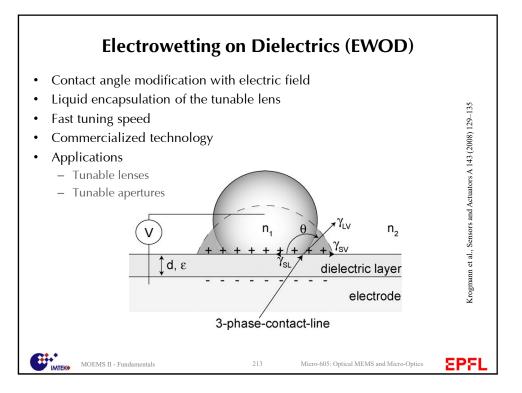
MOEMS II - Fundamentals

Micro-605: Optical MEMS and Micro-Optics

Capacitive Position Sensing

- Widely used for accelerometers and gyroscopes
- Identical to ES actuators in structure
- External capacitive readout circuitry
- Advantages
 - Simple structure identical to the actuators
 - Large bandwidth (limited by electronics)
 - When designed well, very good sensitivity
 - Well studied; commercial ICs available
- Challenges
 - Presence of noise and interference
 - Extremely small typical capacitance values
 - Static capacitance values are in the picoFarad range $-V_0$
 - Capacitance changes are in femtoFarad range
 - Carefully designed complex and sensitive ICs


A simplified capacitance readout circuit


$$C_{S1} = C_0 + \Delta C$$

$$V_x = V_0 \Delta C / C_0$$

$$C_{S2} = C_0 - \Delta C$$

MOEMS II - Fundamentals

ELECTROMAGNETIC ACTUATORS

MOEMS II - Fundamentals

21

ficro-605: Optical MEMS and Micro-Optics

Electromagnetic Actuation

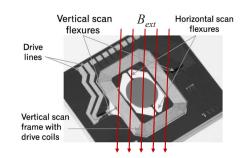
- Exploits electromagnetic interaction forces
- Comes in two common flavours
 - Moving-coil Actuation
 - Moving-magnet Actuation
- Advantages
 - Well-established principles
 - High force density
 - Moderately high speed
 - Possibility of remote actuation
- Disadvantages
 - Power consumption
 - Fabrication challenges
 - Material limitations
 - Integration limitations
 - Process limitations

MOEMS II - Fundamentals

Micro-605: Optical MEMS and Micro-Optics

A SALAN

Moving Coil Electromagnetic Actuation


- μCoil on fabricated on moving features
- · External magnetic field
 - + Low mass → Fast operation
 - Heat generation on the device
 - Electrical access to the device
- Usually Cu; Au and Pt also used

$$\mathbf{F} = \oint\limits_{L} Id\mathbf{l} \times \mathbf{B}$$

F = Force acting on the current loop

I = Current in the conductor

B = External Magnetic Field

! Right Hand Rule !

MOEMS II - Fundamentals

216

Micro-605: Optical MEMS and Micro-Optics

Moving Magnet Electromagnetic Actuation

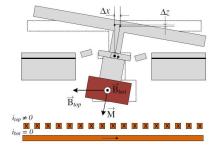
- Interaction between permanent magnet or "soft magnet" and DC magnetic field
 - Torque to align with external field.
 - Non-zero force if field is non-uniform
- Hard magnets: NdFeCo, SmCo, etc.
 - Electroplating
 - Manual assembly
- · Soft magnets
 - Ni/NiFe
 - Electroplating
 - Sputtering/evaporation
 - Polymer magnets
 - · Spin coating, casting
 - 3D Printing

 $F = M(wt)\Delta H$

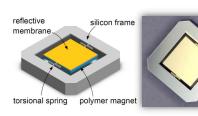
 $M = Magnetization (\mu_0 \chi H)$

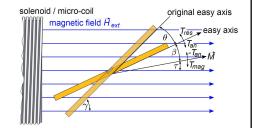
wt = cross-sectional area

 $\Delta H =$ difference in magnetic field


MOEMS II - Fundamentals

N





- · Magnetic materials on device
- · External magnetic field
- + No heat generation on the device
- + Electrically passive device
- High mass → Slow operation

Ataman et al. / J. Micromech. Microeng. 23 (2013) 025002

Weber et al. / J. Microelectromech. Syst. 21 (5) (2012) 1098-1106

MOEMS II - Fundamentals

218

Micro-605: Optical MEMS and Micro-Optics

B Field

Magnetic Position Sensing

Hall Effect Sensors

- Direct voltage output as a function of magnetic fi
- Particularly suitable for moving magnet actuators
 - · Multiple sensors for absolute position encoding
- Advantages
 - High speed
 - Non-contact
 - DC and AC

Back - EMF Sensing

- Used for moving magnet type actuators
- Motion of the magnet induces current on a secondary sensing coil
- Advantages
 - Remote Sensing
 - · Self powering
 - No additional device complexity
- Only for AC operation

MOEMS II - Fundamentals

210

THERMAL ACTUATORS

MOEMS II - Fundamentals

220

Micro-605: Optical MEMS and Micro-Optics

Thermal Actuation

- Actuation using the thermal expansion of materials
- Required heat can be generated by
 - Joule (resistive) heating
 - Optical excitation
- Advantages
 - Strong force
 - Large displacement
 - Linear response
 - Potentially small / CMOS compatible
- Disadvantages
 - Slow
 - High power consumption
 - Heat generation
- Speed is limited by the heat transfer process
 - How fast you can heat and cool down the actuator

MOEMS II - Fundamentals

221

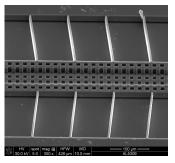
Thermal Transducers – Basic Concepts

- Heat capacity (c): Energy needed to temperature of unit mass in unit amount
 - Ability to store thermal energy
 - Measured in J/kg·K
 - Analogous to electrical capacitor
- **Thermal conductivity (κ):** Ability of a material to transfer heat
 - Measured in W/m⋅K
 - Analogous to electrical conductivity
- Coefficient of thermal expansion (CTE, α): Change in length per unit temperature change $(\Delta I = I_0 \alpha \Delta T)$
 - Measured in 1/K

MOEMS II - Fundamentals

In-Plane Thermal Actuation

Pseudo-Bimorph Actuator

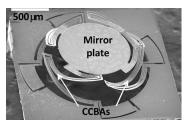

- Based on heterogeneous beam pairs
- Provides arc motion
- With current between the anchors:
 - I. Hot beam heats and expands more
 - II. Long beam expands more

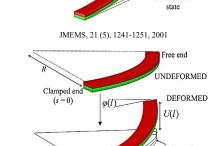
Hot Beam

MOEMS II - Fundamentals

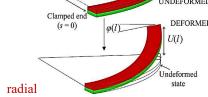
Chevron Actuator

- Large linear displacement and force
- Cascades V-shaped beams
- Up to 800 μN of force demonstrated
- With applied current beams expand and push the shuttle forward





- Most common thermal actuator type
- Surface micromachined
- Based on the difference of CTE
- One layer is used as a heating resistor
- Commonly used for
 - Micromirrors
 - Tunable capacitors
 - Microgrippers


Sen. and Act. A ,188, 349-358, 2012

UNDEFORMED

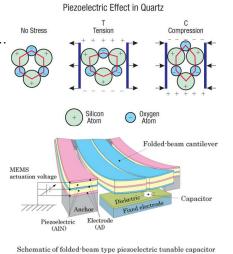
Clamped end

DEFORMED

MOEMS II - Fundamentals

224

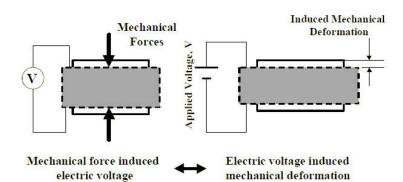
Micro-605: Optical MEMS and Micro-Optics


linear

PIEZOELECTRIC ACTUATORS

- Voltage/E-field on crystal causes displacement
- MEMS coatings: PZT, ZnO, AlN, ...
- III-V substrate: GaAs, ...
- Advantages
 - High force density
 - Low power
 - Very high speed
 - Potentially small
 - Temperature stability
- Disadvantages
 - Low displacement
 - Difficult to fabricate

Schematic of folded-beam type piezoelectric tunable capacitor http://www.toshiba.co.jp


MOEMS II - Fundamentals

226

Micro-605: Optical MEMS and Micro-Optics

Piezoelectric Actuation and Sensing

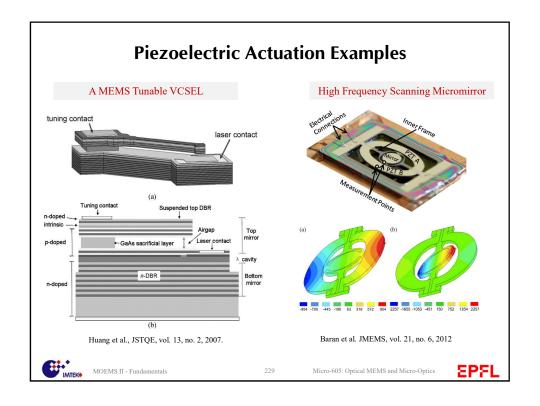
- Electric field induces stress (and therefore strain)
- External stress induces electric field (and therefore voltage)
- Tensor analysis is necessary for complete modelling

MOEMS II - Fundamentals

Micro-605: Optical MEMS and Micro-Optics

EPFL

Typical piezoelectric properties of different piezoelectric films

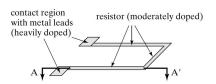

Parameter	ZnO [1]	AlN [1]	PZT [1]	PMN-PT [29]
$e_{31,f}$ (Cm ⁻²)	-1.0	-1.05	−8 to −12	−9 to −20
$d_{33,f} \text{ (pmV}^{-1})$	5.9	3.9–5.5	60–130	100–350
ε_{33}	10.9	10.5	300–1300	1000-3000
$tan \ \delta \ (10^5 \ Vm^{1})$	0.01-0.1	0.003	0.01-0.03	
				-

MOEMS II - Fundamentals

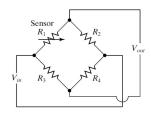
Micro

Piezoresistive Sensing

- Piezoresistive Effect: Change in resistance due to deformation (stress)
- Change in geometry \rightarrow Change in R


$$R = \rho \frac{l}{A} \xrightarrow{\text{resistivity}} \text{length}$$
 area

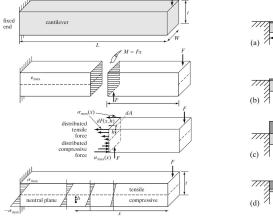
- Additional effect in SC-silicon
 - Stress also changes electron mobility
 - Silicon should be doped
 - Very compact position sensors
 - Need careful design
- Piezoresistors are *implemented on flexures*
- Readout with Wheatstone bridge circuitry



MOEMS II - Fundamentals

Silicon Piezoresistors

Wheatstone Bridge for Readout



$$V_{out} = \left(\frac{-\Delta R}{2R + \Delta R}\right) V_{in}$$

Micro-605: Optical MEMS and Micro-Optics

Effective Piezoresistive Sensor Design

doped resistor

(a) I deposited resistor

(b) ineffective design #1

(c) ineffective design #2

Chang Liu, Foundations of MEMS, 2nd Edition

MOEMS II - Fundamentals

Micro-605: Optical MEMS and Micro-Optics

SPSI

Comparison of Actuation Methods

	Force Density	Speed	Stroke	Power Consump.	Complexity and Cost	Size
Parallel-plate ES	Low	High	Short	Low	Low	Medium
Comb-drive ES	Medium	High	Medium	Low	Low	Small
Electromagnetic	High	High	Long	High	High	Large
Piezoelectric	High	High	Short	Low	Medium	Small
Thermal	High	Low	Long	High	Low	Small
Shape-memory alloy	High	Low	Long	Medium	High	Small
Scratch-drive	Medium	Medium	Medium	Low	High	Medium
Pneumatic	High	Low	Long	High	Medium	Large

Large variety of actuation methods

No "one size fits all" solution

Choice depends heavily on the application

MOEMS II - Fundamentals

232

Micro-605: Optical MEMS and Micro-Optics

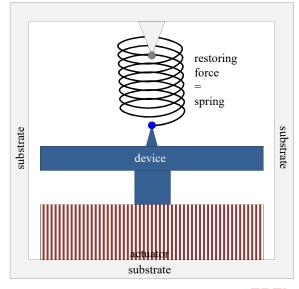
Comparison of Sensing Methods

Method	Advantages	Disadvantages
Electrostatic	Simplicity of materials Low Power Rapid Response	Large footprint Electronics complexity Sensitive to particles and humidity
Thermal	Simplicity of materials Elimination of moving parts	Large power consumption Slower response (than electrostatic)
Piezoresistive	High sensitivity achievable Simplicity of materials	Requires doping of silicon to achieve high performance Sensitive to environmental temperature changes
Piezoelectric	Self generating →No power necessary	Complex material growth and process flow Cannot sustain high temperature operation
Magnetic	High sensitivity	Complex material growth and process flow Power consumption
Optical	Accuracy, high bandwidth	Requires external components (e.g. light sources, detectors), power consumption

MOEMS II - Fundamentals

MOEMS II - Fundamentals

Micro-605: Optical MEMS and Micro-Opt


Reduced Order Device Model

MEMS Elements

- 1. Device
- 2. Actuator
- 3. Restoring force

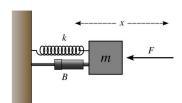
Constraints:

- Device:
 - Not affected
 - Free from substrate
- Actuator:
 - Connected to the device and the substrate
- Spring:
 - Freely moving
 - Released from substrate

MOEMS II - Fundamentals

Micro-605: Optical MEMS and Micro-Optics

EPFL


EoM for 2nd Order Systems

Linear System Model

$$m\frac{\partial^2 x}{\partial^2 t} + b\frac{\partial x}{\partial t} + k_x x = F(x, t)$$

m: Mass k_x : Linear stiffness

b: Damping coefficient \hat{F} : Force

Rotational System Model

$$I_m \frac{\partial^2 \theta}{\partial^2 t} + b \frac{\partial \theta}{\partial t} + k_m \theta = \tau(\theta, t)$$

 k_m : Torsional stiffness

 I_m : Moment of inertia k_m : Torsionab: Damping coefficient τ : Torque

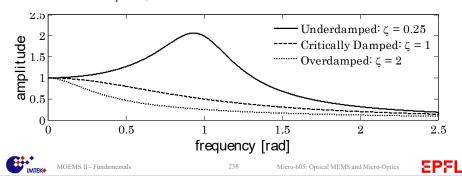
MOEMS II - Fundamentals

236

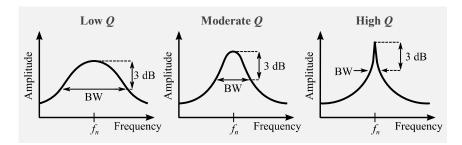
Micro-605: Optical MEMS and Micro-Optics

Reduced Order Device Model

- Construction and solution of equations of motion (EoM)
- · Best way to gain intuition on the system
- · Basic elements in a mechanical system:
 - Inertia
 - Mass (for linear motion)
 - Moment of inertia (for rotational motion)
 - Spring elements
 - · Flexures, Beams, Deformable membranes
 - Damper elements
 - Air/liquid friction, Structural damping, Reaction forces (Eddy currents, etc.)
 - Force/Torque
 - · Actuator modeling
 - Force/moment as a function of displacement/rotation


MOEMS II - Fundamentals

Micro


Frequency Response

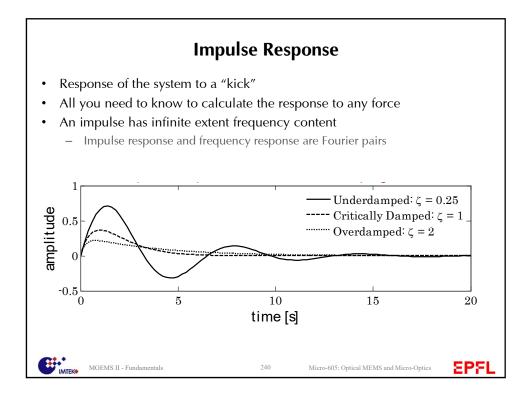
- Response as a function of harmonic excitation frequency
- Fourier transform of the impulse response
- Contains amplitude and phase information
- Very low frequency region is called the **DC response**
- · Maximum amplitude at the natural frequency
 - Small excitation/large response
 - Resonant response/drive

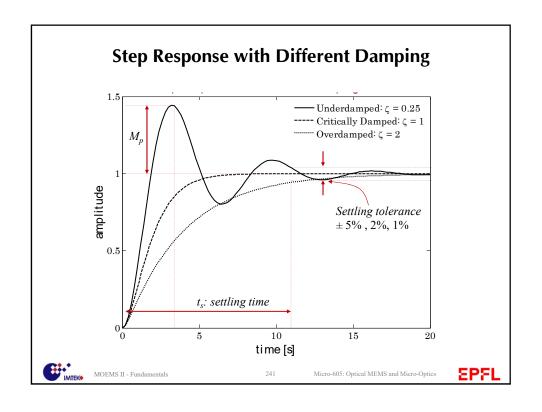
Quality (Q) Factor

$$Q = \frac{\text{maximum energy stored during cycle}}{\text{energy lost per cycle}} = \frac{\text{resonant frequency}}{\text{bandwidth at } 1/\sqrt{2} \text{ of maximum}}$$

Q vs. Bandwidth

$$Q = \frac{f_n}{\Delta f} = \frac{\omega_n}{\Delta \omega}$$

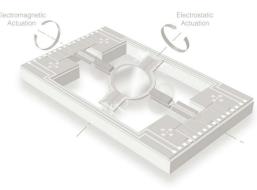

Q vs. Damping Ratio


$$Q = \frac{1}{2\zeta}$$

Q vs. Time constant

$$Q = \frac{\tau \omega_n}{2}$$

MOEMS DEVICES



Micro-605: Optical MEMS and Micro-Optics

MOEMS: Devices

- Reflective: Micromirrors
 - Operation principle and basic characteristics
 - Beam clipping and focusing properties
- · Diffractive: Active Diffraction Gratings
 - Depth tuning
 - Period tuning
 - Rotation
- Refractive: Active Microlenses
 - Movable microlenses
 - Tunable microlenses
- Tunable Optical Resonators
 - Tunable cavities
 - Tunable optical ring oscillators

MICROMIRRORS

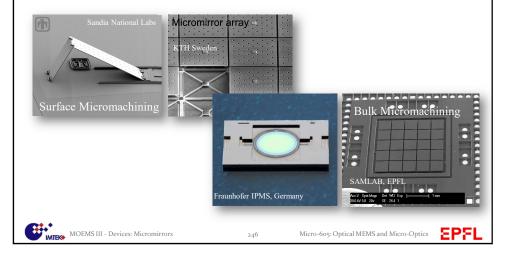
Micromirrors

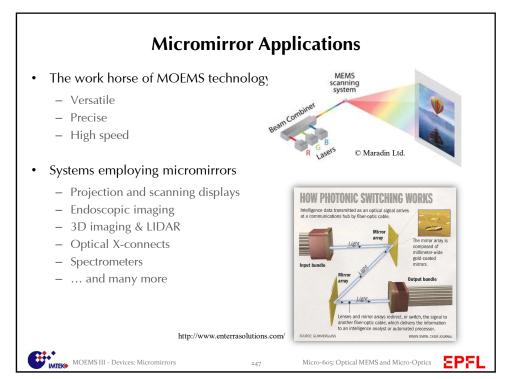
- Tiny movable mirrors for...
 - Off-resonance steering
 - Resonance scanning
 - DC and AC Phase retardation
- 1-2-3D rotational variants in single mirror or array configurations
- Advantages
 - Small and Light weight
 - Fast movement
 - Low-cost batch fabrication
 - CMOS compatible technology (mostly!)
 - High level of integration with position feedback and electronics

Fraunhofer IPMS

Preciseley Inc.

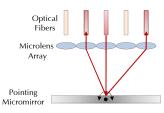
- Disadvantages
 - Small optical apertures (< ~2 mm)
 - Static and dynamic mirror warp




MOEMS III - Devices: Micromirrors

What is a Micromirror?

- By far the most common component in MOEMS
- Huge variety in shape/actuation/configuration
- The basic building block for the most commercial MOEMS products



Pointing vs. Scanning Micromirrors

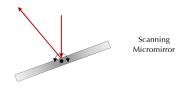
Pointing Micromirrors

- Point-to-point addressing
- > Switching time defined by
 - □ Resonance frequency
 - □ Damping (settling time)
- Applications
 - Vector displays
 - Optical X-connects

ations

Resonance frequency (speed)Damping (amplitude)

- Applications

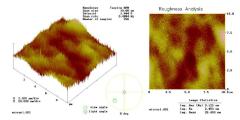

 Projection displays
 - □ Spectrometers

Scanning Micromirrors

Continuous (raster) scanning

Sinusoidal position and speed

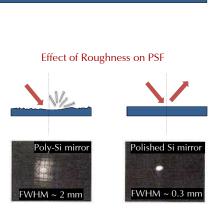
Scan properties defined by



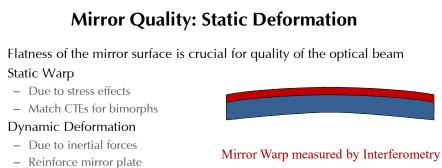
Micro-605: Optical MEMS and Micro-Optics

Mirror Quality: Surface Roughness

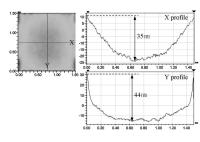
- A measure of surface texture
- Represented in terms of RMS
- Can rise from:
 - Poly-crystalline membrane material
 - Fabrication residues
 - Deposition process variation (local)

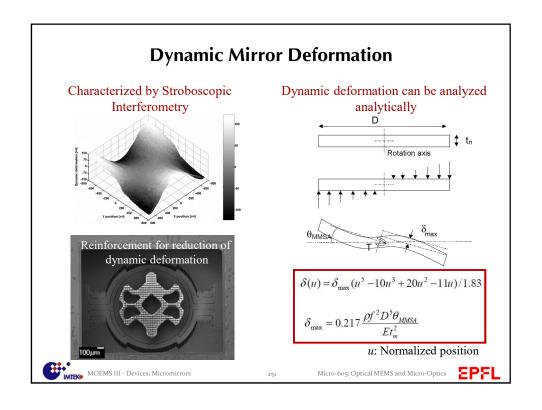

Mirror Roughness Characterized by AFM

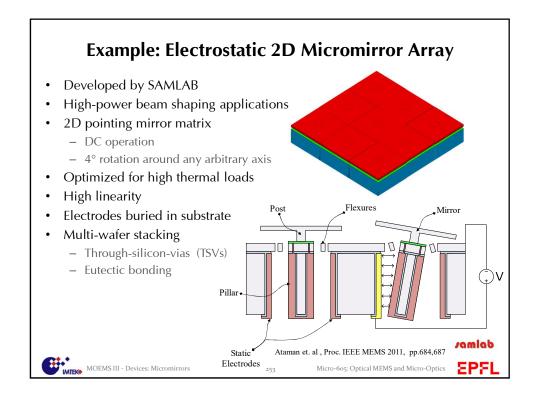
Z.F. Wang et al. / Sensors and Actuators A 114 (2004) 80-87

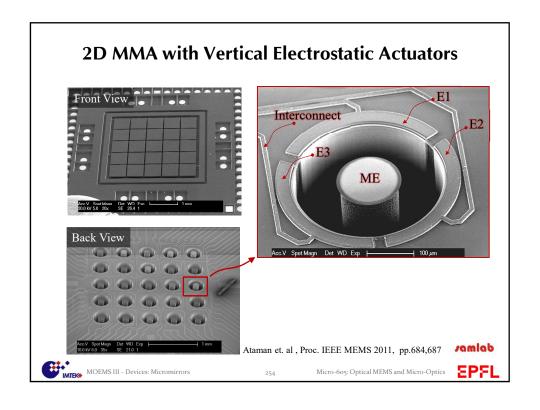


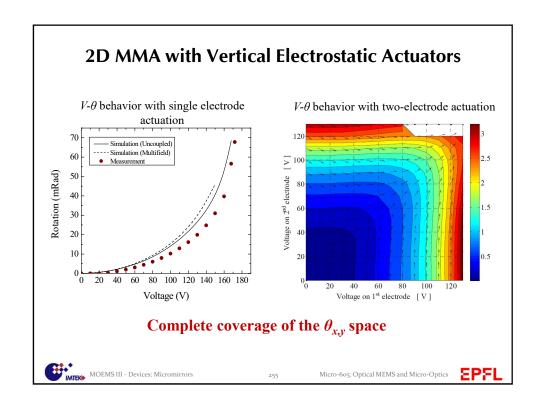
Irregular Surface Variations on a Small-scale


Su et al., Phot. Tech. Let. 13 (6) 2001

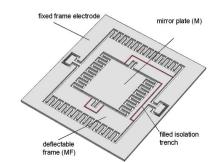








Dynamic Mirror Deformation: Example Measurement conditions Flat mirror PSF > 17.3° mechanical rotation > 38.1 KHz oscillation frequency > 162 nm peak-to-valley deformation > Simulated PSF degradation > 20% reduction in maximum intensity > Side-lobe intensity up to 12.5%. [mRad] [mRad] Mirror surface at full angle Deformed mirror PSF 50 [mRad] MOEMS III - DevicesMicromirrors

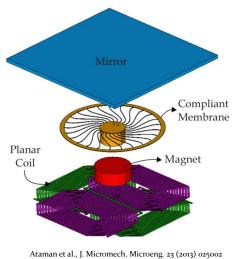


Example: Comb- Actuated Microscanners

- Compact and integrated design
- Very low-power operation
- Integrated position detection
 - Piezoresistors on flexures
 - External quad-detector
- Bi-resonant in default form
 - Offset combs for DC operation
- **Applications**
 - Laser cameras
 - 3D cameras / robotic vision
 - 3D scanning
 - Projection displays
 - Spectrometers

Source: http://www.ipms.fraunhofer.de/en/products/MSD/msm-e.pdf

Micro-605: Optical MEMS and Micro-Optics


Example: A 2D Electromagnetic Micromirror

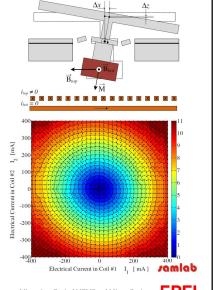
256

- Pointing mirror (DC Operation)
- Designed for high thermal loads
- Bulk mirror
 - Very flat
 - Optimized coatings
- **MEMS** Base
 - High thermal heat conductance
 - Very flexible
 - Radial array of flexible beams
 - Very reliable

Magnetic Actuator

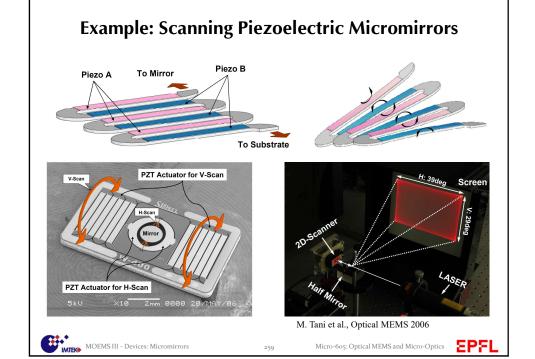
- High force
 - stiffer springs
 - · fast mirror
- Very linear, no snap-in

ramiab

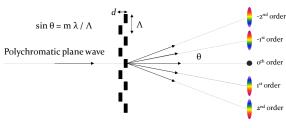


MOEMS III - Devices: Micromirrors

Example: A 2D Electromagnetic Micromirror


- Moving Magnet Actuation
 - Current lines create uniform magnetic field in the lateral plane
 - Magnet rotates to align its magnetization vector with the field
 - Pillar translates the motion to the mirror
- Rotation axis lies in the flexure plane
- Small parasitic displacement of the mirror
- Performance
 - 11° DC mechanical rotation
 - 76nm peal-to-valley static warp
 - <0.02° open-loop position stability over 7h
 - <0.1° open-loop repeatability over 5000 cycles

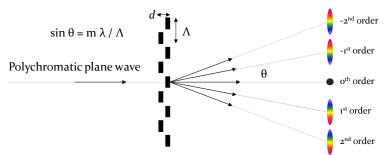
258


TUNABLE DIFFRACTION GRATINGS

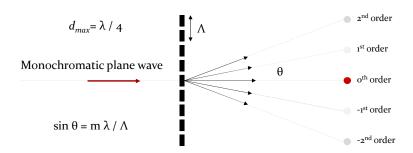
Diffraction Gratings

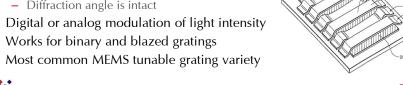
- > Optical component with a periodic structure
 - ☐ Period in the order of the wavelength
 - □ Transmission amplitude/phase gratings
 - □ Reflection binary/blazed gratings
- > Splits light into multiple diffraction orders
- > Orders separated by the diffraction angle
 - □ Defined by the period and the wavelength
- > 2nd most common MOEMS component

MOEMS III - DevicesDiffraction Gratings


TUNABLE-DEPTH GRATINGS

Diffraction Gratings


- A periodic structure, which splits and diffracts light into several beams
- ! Refer to the Micro-Optics part of this course for grating theory!


- MOEMS Tunable Diffraction gratings
 - Grating depth: Modulate the light intensity at different diffraction orders
 - Grating Period: Modulates the diffraction angle
 - Grating Angle: Rotating the entire diffraction profile

Tunable-Depth Gratings: Concept

- By changing the depth of the diffraction grating
 - Intensity of diffraction orders is modified
 - Diffraction angle is intact

MOEMS III - Devices: Diffraction Gratings

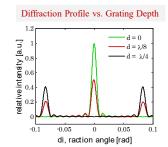
Micro-605: Optical MEMS and Micro-Optics

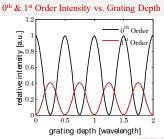
Tunable-Depth Gratings: Principle

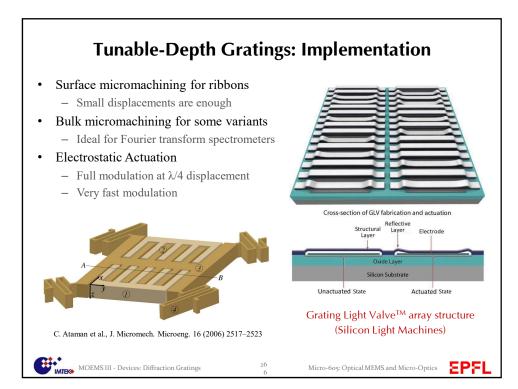
- Narrower diffraction orders with increasing
- A sinusoidal function of grating depth
- 0th order contrast is low due to stray light
- Most modulators work in the 1st order
 - High contrast
 - Low efficiency (solution: blazed gratings)

For a binary grating, the diffraction profile is:

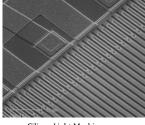
$$I = I_{in} \frac{\sin^2 \left[\frac{\delta}{2}\right] \sin^2 \left[N\frac{\delta}{2}\right]}{\left[\frac{\delta}{2}\right]^2 \sin^2 \left[\frac{\delta}{2}\right]} \qquad \delta = \frac{2\pi}{\lambda} d \sin \theta$$


$$N = \text{Number of illuminated positions}$$


N = Number ofilluminated periods


$$I_0 = I_{in} \cos^2\left(\frac{2\pi d}{\lambda}\right)$$
 $I_{\pm 1} = \frac{4I_{in}}{\pi^2} \sin^2\left(\frac{2\pi d}{\lambda}\right)$

MOEMS III - Devices: Diffraction Gratings

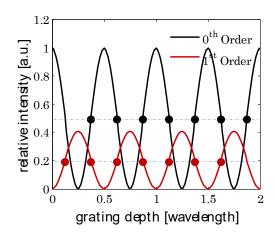


Tunable-Depth Gratings: Examples

- Large effects with miniscule displacements
- $\lambda/4$ displacement for full contrast
- Electrostatic actuation
- **Applications**
 - Projection Displays
 - Wavelength selective switches
 - Spectroscopy
 - Maskless Lithography
- Major Developers/Suppliers
 - Silicon Light Machines Grating Light Valve
 - Micralyne
 - Fraunhofer IPMS
 - Boston Micromachines

http://www.micralyne.com/spatial-light-valve/

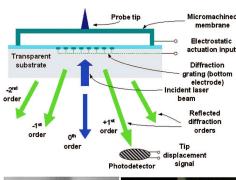
Silicon Light Machines

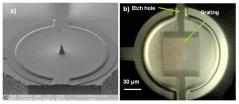


Tunable-Depth Gratings for Sensing

$$I_0 = I_{in} \cos^2\left(\frac{2\pi d}{\lambda}\right)$$

$$I_{\pm 1} = \frac{4I_{in}}{\pi^2} \sin^2\left(\frac{2\pi d}{\lambda}\right)$$

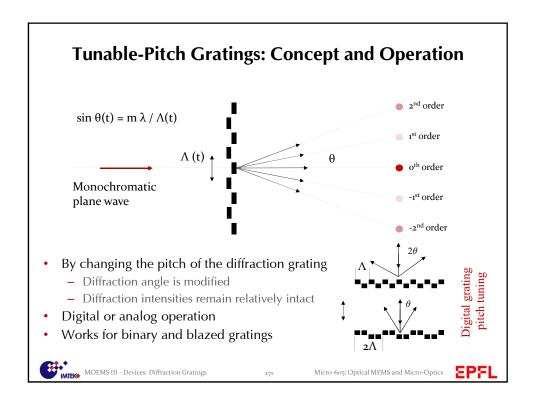


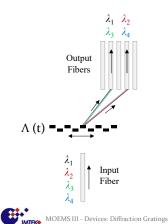

MOEMS III - DevicesDiffraction Gratings

Tunable-Depth Gratings for Sensing

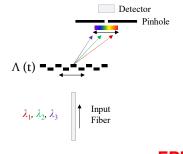
- Diffraction gratings can also be used for precision displacement sensing of MEMS
- Advantages
 - Integrated sensor
 - Extremely sensitive
 - No electrical connection
- Grating sensors are used for...
 - Atomic force microscopy
 - Bio-sensors
 - Process monitoring
 - Microphones
 - Pressure sensors
 - Strain sensors

Onaran et al. Rev. Sci. Instrum. 77, 023501 2006


MOEMS III - Devices: Diffraction Gratings



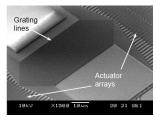
Tunable-Pitch Gratings - Applications


Wavelength selective switching

- Telecommunication networks
- Operates in the 1st order
- Precision control of grating period

Spectrometer/Monochromator

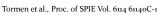
- Chemical analysis
- Operates in the 1st or higher orders
- Pinhole selects a single wavelength
- Time resolved spectrum
- Examples in Lecture 13

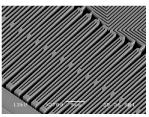


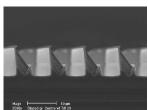
Micro-605: Optical MEMS and Micro-Optics

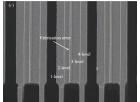
Tunable-Pitch Gratings: Examples

Sub-wavelength Grating

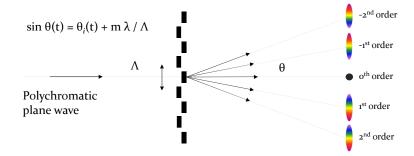



Blazed Grating

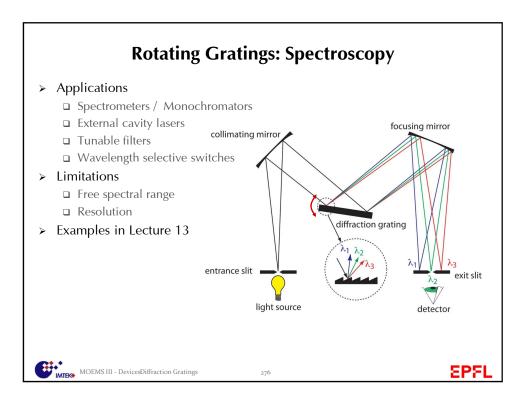



4-Level Grating

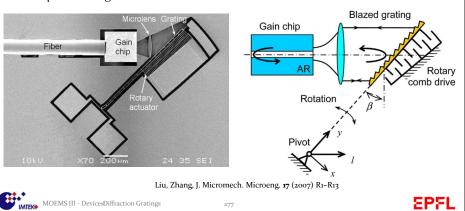
Y. Wong et al., J. Micromech. Microeng. 19 (2009) 025019



EPFL


Rotating Gratings: Concept and Operation

- > By rotating the diffraction grating
 - ☐ Entire diffraction profile is displaced
 - □ Diffraction intensities remain relatively intact
- > Mostly analog variants
- > Works for binary and blazed gratings

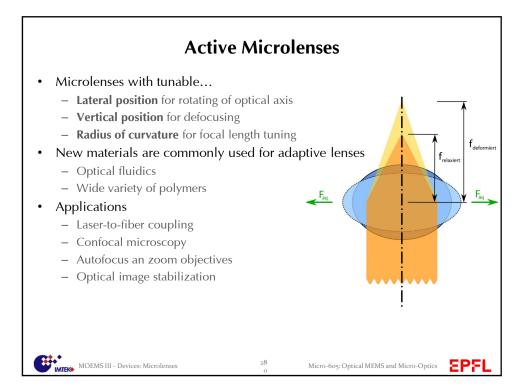


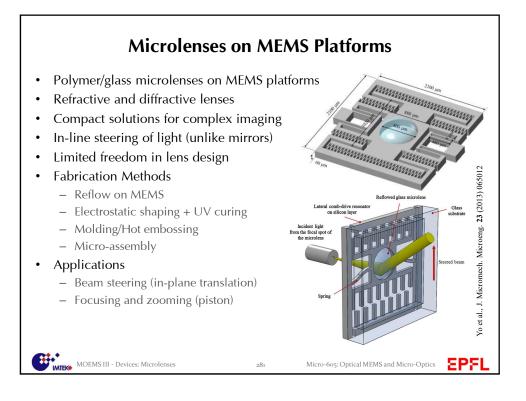
EPFL

Rotating Gratings: Tunable Laser

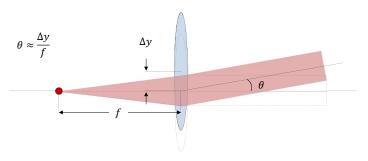
- > External cavity laser with a grating mirror
- > Only selected wavelengths are coupled back into the fiber
- Blazed grating in Littrow configuration
 - □ Incidence and reflection angles are the same
- Compact tuning

Micro-605: Optical MEMS and Micro-Optics



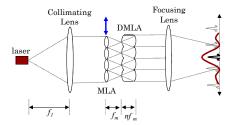

What is a Microlens?

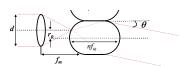
- Lenses with diameters from \sim 5 μ m to 1 mm
- · Refractive or diffractive
- Easy to pack in large arrays (a la compound eye)
- Single lenses or microlens arrays
- Wide range of fabrication methods
 - Large scale/wafer level fabrication
- · Commercially used in
 - Digital photography and IR imaging
 - Retinal scanning displays
 - 3D and light-field cameras
 - Source-to-fiber light coupling



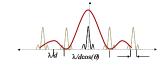
Laterally Translating A Lens

- > Lens translation leads to beam rotation
- > Beam rotation increases with
 - Lens focal length
 - Translation stroke
- > Large displacements for notable steering angles



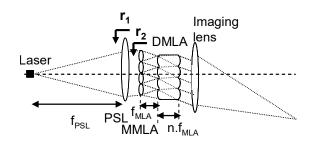

282

Refractive beam scanning



Elimination of spurious light by the field lens

Discrete Addressability


 $t(x) = \left[\exp\left(-i2\pi r_0 x / \lambda f\right) \bullet \operatorname{rect}(x/a)\right] * \left[\left(1/d\right) \operatorname{comb}(x/d) \operatorname{rect}(x/Nd)\right]$

 $I(\theta) = (Nad)^{2} \left[\operatorname{sinc}\left[\left(a/\lambda\right)\left(\sin\theta - r_{0}/f\right)\right] \bullet \left[\operatorname{comb}\left(d\sin\theta/\lambda\right) * \operatorname{sinc}\left(\operatorname{Ndsin}\theta/\lambda\right)\right]^{2}\right]$

EPFL

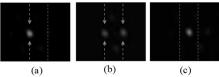
Refractive beam scanning

$$\theta_{T} = -\frac{r_{1}}{f_{PSL}} + \frac{r_{2}}{f_{MLA}}$$

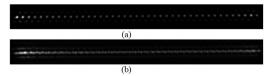
$$OPD_T = -d\frac{2r_1}{f_{PSL}} + d\frac{r_2}{f_{MLA}}$$

Phase Condition

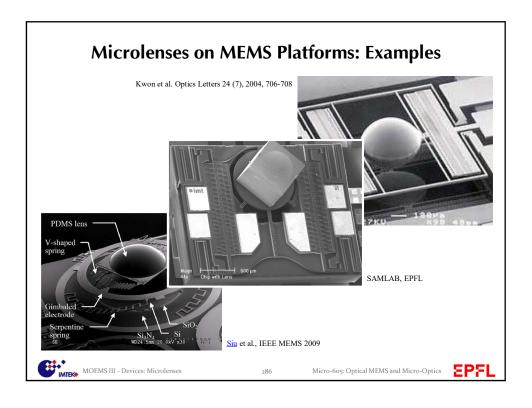
$$r_1 = (\theta_T - n\lambda/d)f_{PSL}$$

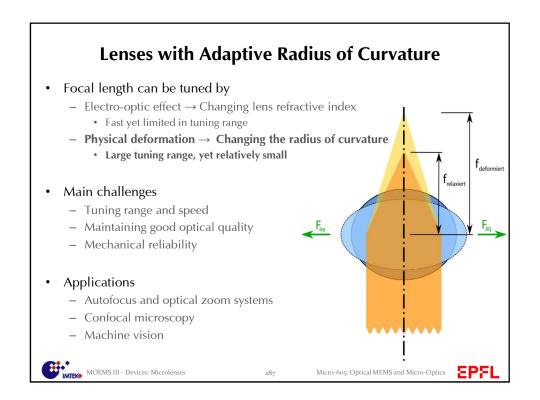

$$r_2 = (\theta_T + r_1/f_{PSL})f_{MLA}$$

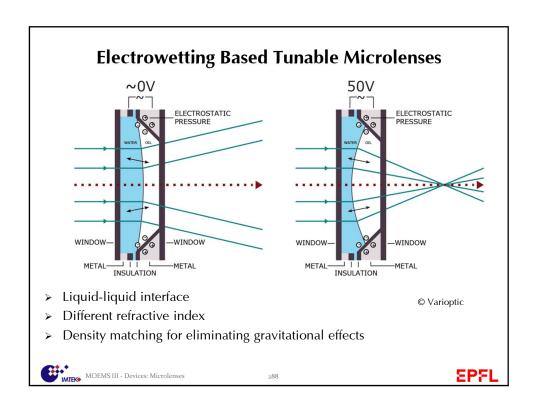
A. Akatay, C. Ataman, H.Urey" Optics Letters, vol.31, no. 19, pp. 2861-2863, 2006.

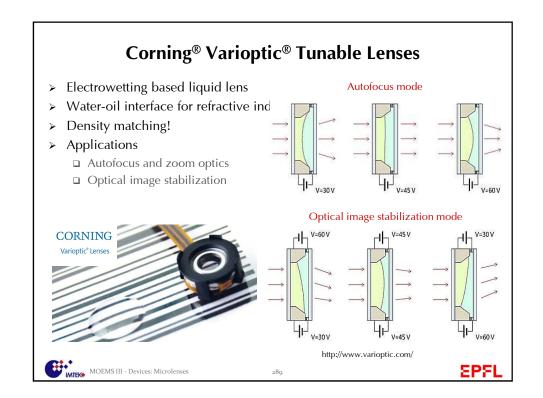


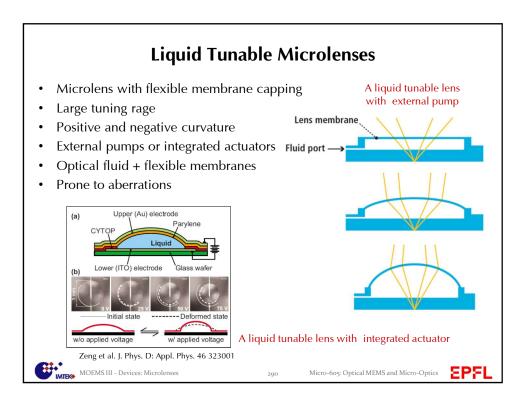
MLA Scanner: Proof of Principle

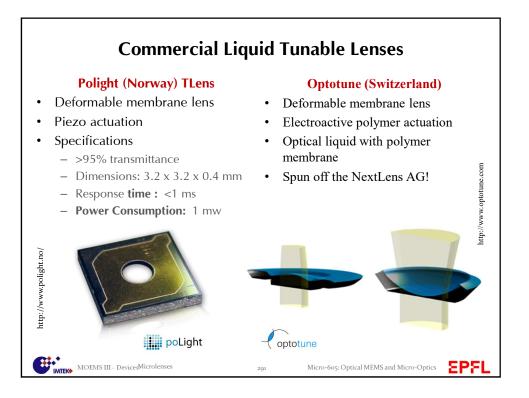

(a) All lenses on-axis, (b) Only the MMLA is moved (c) Both the PSL and the MMLA is moved to meet the phase condition

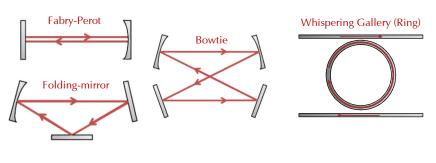



(a) The MMLA motion only produces discrete addressing (b) The PSL and the MMLA move synchronously


A. Akatay, C. Ataman, H.Urey" Optics Letters, vol.31, no. 19, pp. 2861-2863, 2006.


MOEMS III - Devices:

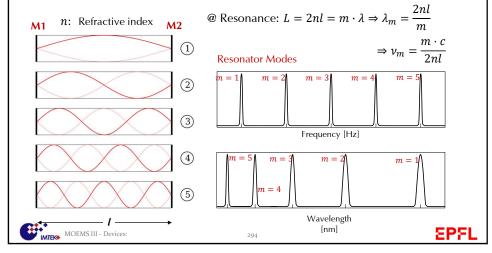


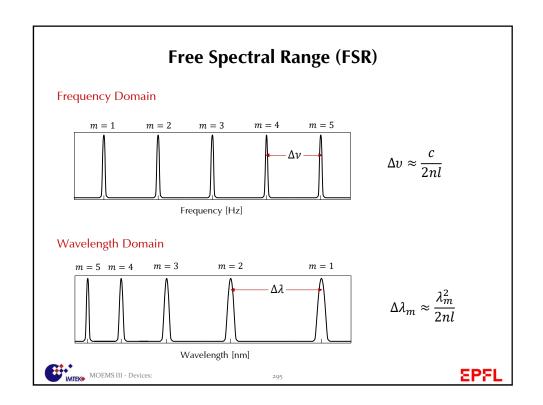


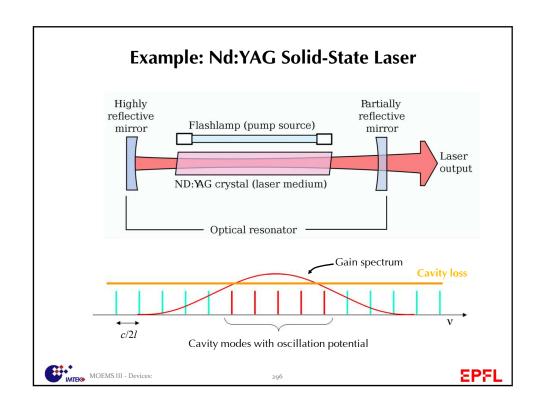
Micro-605: Optical MEMS and Micro-Optics

What is an Optical Resonator?

- > An optical arrangement that allows a beam to circulate in *a closed path*.
- > Discrete resonant frequencies (longitudinal modes)
- > Major component for
 - □ Virtually all types of laser
 - □ Filters and frequency selective components
- > Can be linear or ring type

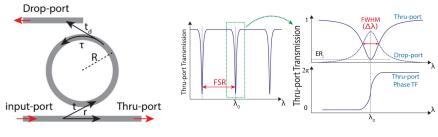



MOEMS III - Devices:


EPFL

Longitudinal Resonator Modes

- > Self-consistent field distributions self-reproducing in each round trip.
- Constructive self-interference after one round trip
- > Free Spectral Range (FSR): distance between two resonator modes



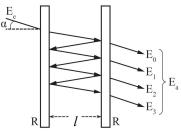
Example: Ring Resonator Notch Filter

- > Cavity length equals to the resonator circumference
- > Near-field in and out coupling via waveguides
- Very high quality factor
- > Key components in photonic transceiver ICs
- > MOEMS for PICs is an emerging topic!

$$\lambda_0 = \frac{n_{eff} 2\pi R}{m} mn = 1,2,3,...$$

CDCI

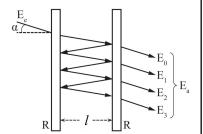
TUNABLE FABRY-PEROT RESONATORS



Fabry-Perot Resonator (FPI) Basics

- > Also called FP interferometer or *etalon*
- > Linear resonator with two mirrors
- > Mirrors are partially reflective
- ➤ Mirror separation of *l*
- > At the resonant wavelengths,
 - □ Transmitted beams interfere constructively
 - □ All the incident energy is transmitted.
- > Control and measurement of spectra
 - Optical filters
 - Tunable lasers
 - Spectrometers
 - Dichroic mirrors
 - ...and many more

Basic Fabry-Perot interferometer


$$\Delta \phi = \frac{4\pi}{\lambda} n \, l \, \cos \alpha$$

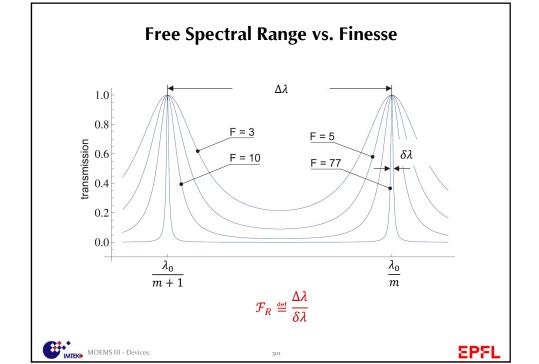
FPI Transmission Spectrum

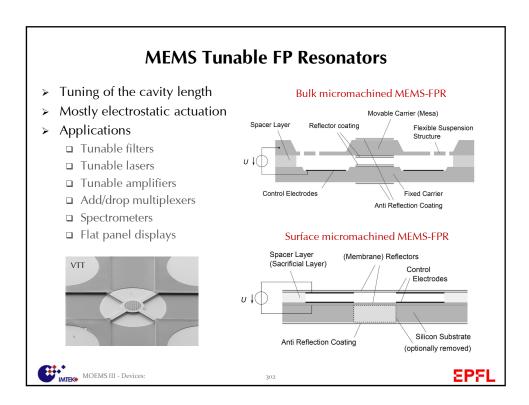
> Total E-field after the FPI:

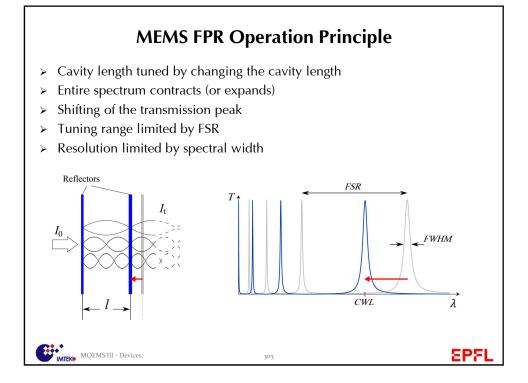
Basic Fabry–Perot interferometer

> Transmitted intensity:

$$I_T = I_e \frac{(1-R)^2}{(1-R)^2 + 4R\sin^2(\Delta\phi/2)},$$


> Define Finesse F

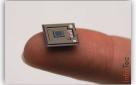

$$I_T = \frac{1}{1 + (2/\pi)^2 \mathcal{F}_R^2 \sin^2(\Delta \phi/2)} \quad \text{with} \quad \mathcal{F}_R \equiv \pi \frac{\sqrt{R}}{1 - R},$$

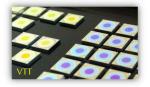


300

EPFL

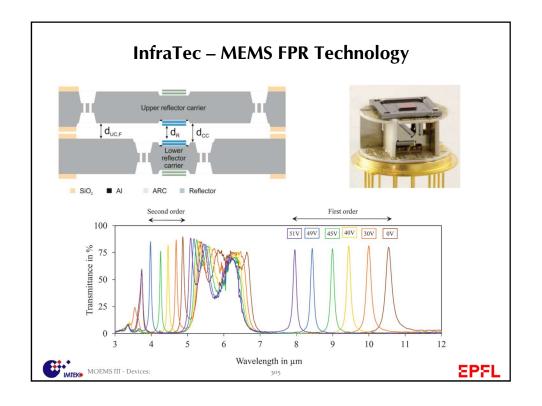
MEMS FPR: Advantages and Requirements

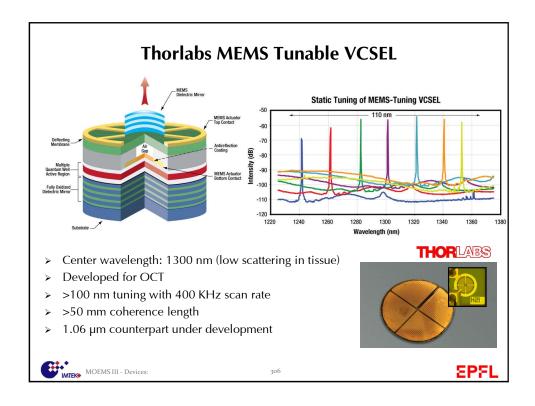

Advantages


- Exceptional mirror quality
- Exceptional parallelism
- \square Short cavity length \rightarrow Large FSR
- Tuning precision and speed
- Batch fabrication

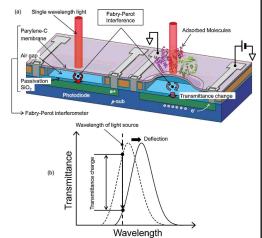
> Requirements

- Good control over cavity gap
- Mirror quality
- □ Large aperture size
- Bow-free mirror displacement
- □ Pull-in control
- Extra filters for order selection





304


MEMS FPR FOR SENSING

MOEMS III - Devices:

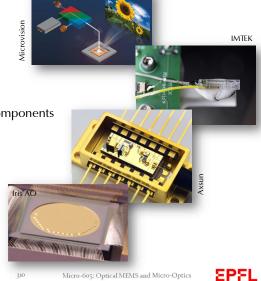
EPFL

- > Cavity with one deformable/movable membrane
- Mass/Pressure/Stress induced displacement leads to a shifted transmission spectrum
 - Intensity based detection
 - □ Spectrograph based detection
- > MEMS Fabry-Perot Cavities for
 - Bio-sensing
 - □ Process monitoring
 - Microphones
 - □ Pressure sensors
 - Strain sensors
 - Microbolometers

K. Takahashi et al., Sensors and Actuators B 188 (2013) 393-399

MOEMS APPLICATIONS

Part IV- Systems:



MOEMS Applications: Overview

- Display Systems
 - Scanning Displays
 - Projection Displays
- **Imaging Systems**
 - Laser Scanned Imaging
 - Endomicroscopy
 - Mobile Photography
 - Infrared Imaging
- **Telecommunication Network Components**
 - Tunable Laser Sources
 - Optical Cross-Connects
 - Wavelength Selective Switches
 - Variable Optical Attenuators
- Advanced Instrumentation

 - Maskless Lithography

Display Systems

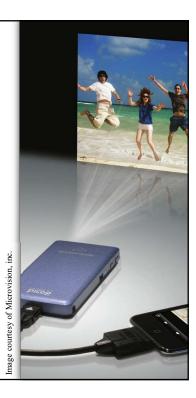
Scanning Displays

- Uses scanning micromirrors
- Pocket Projectors, HUDs, HMDs
- Microvision, Lemoptix, ST

Projection Displays

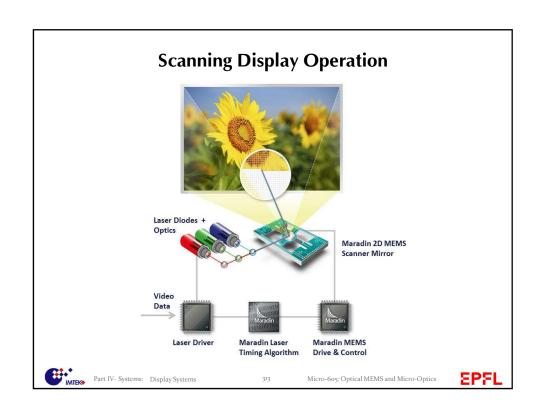
- Imaging of a MOEMS array on a screen
- Projectors, Pocket Projectors, Lithography
- TI DLP, SLM GLV, Sony GxL

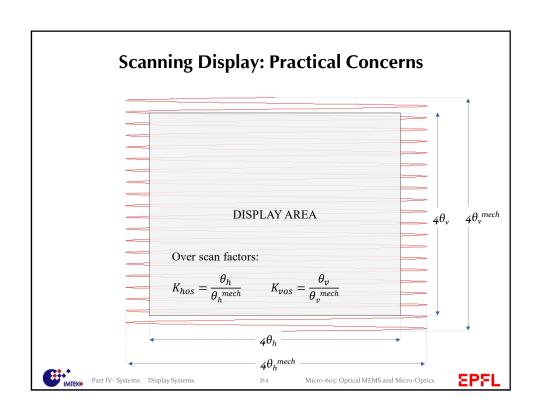
• Backlit Displays


- LCD/OLED Alternatives
- Mobile devices
- Qualcomm Pixtronics, Unipixel

• Reflective Displays

- E-Ink Alternatives
- Mobile devices, e-readers
- Qualcomm IMOD




Part IV- Systems: Display Systems

MICROMIRROR-BASED DISPLAYS

Scanning Display Resolution

$$N_h = \frac{4\theta_h^{mech} K_{hos} D_h K_{sp}}{K_T \lambda}$$

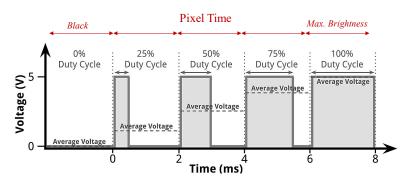
$$N_{h} = \frac{4\theta_{h}^{mech} K_{hos} D_{h} K_{sp}}{K_{T} \lambda} \qquad N_{v} = \frac{4\theta_{v}^{mech} K_{vos} D_{v} K_{sp}}{K_{T} \lambda}$$

: Horizontal resolution : Vertical resolution

 $\Theta_h^{\ mech}$: Maximum horizontal scan angle : Maximum vertical scan angle : Horizontal overscan factor : Vertical overscan factor : Mirror size along horizontal axis : Mirror size along vertical axis : Spot-size/pixel size ratio : Spot-size/pixel size ratio

: Beam-clipping factor : Beam-clipping factor

Scanned Display: Refresh Rate and Standards


 $f_{s} = \frac{F_{r}N_{v}}{K_{ub}K_{vos}} \qquad \begin{array}{c} f_{s} \\ F_{r} \\ K_{ub} \end{array}$: Horizontal scanner frequency

: Refresh rate

: uni/bi-directional scanning

Display Format	N_h	$N_{ u}$	$\theta_{mech}(deg \cdot mm)$	$f_s(Hz)$
QVGA	320	240	3.9	8000
VGA	640	480	7.8	16000
SVGA	800	600	9.7	20000
XGA	1024	768	12.4	25600
sXGA	1280	1024	15.6	34133
UXGA	1600	1200	19.4	40000
HDTV	1920	1080	23.3	36000

Colour and Grayscale Encoding

- Red, green and blue (RGB) sources for full colour display
- Modulation of the light source for pixel formation
- Intensity encoding:
 - Pulse Width Modulation (PWM)

Part IV- Systems: Display Systems

Micro-605: Optical MEMS and Micro-Optic

EPFL

EXAMPLE: MICROVISION PICOP TECHNOLOGY

Part IV- Systems: Display Systems

Micro

Microvision - PicoP

Modulated RGB lasers MEMS 2D microscanner

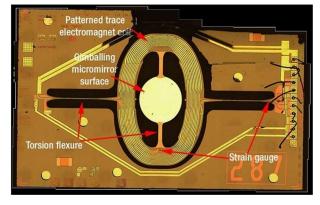
Moving-coil actuation

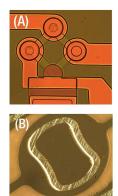
Integrated in

- Pocket projectors and smart phones
- Head mounted displays (HMDs)
- Automobile Head-up Displays (HUDs)

Specifications

- 1920x710 (claimed!)
- 32 lumens
- Full colour
- >80.000 contrast ratio
- 42.1° field of view

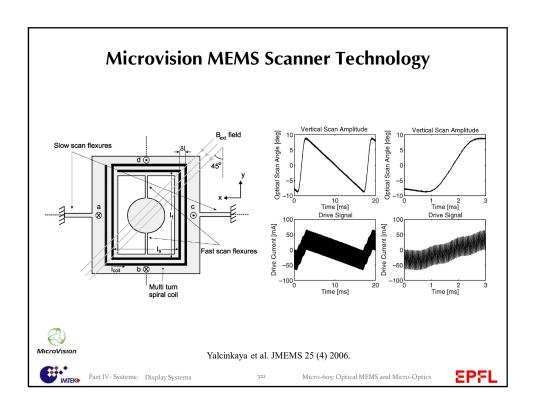




Micro-605: Optical MEMS and Micro-Optics

Microvision MEMS Scanner Technology

Single-coil for 2D actuation External magnetic field via permanent magnets Piezoresistive position sensors Mirror reinforcement for dynamic deformation minimization



Part IV- Systems: Display Systems

www.microvision.com

Other MEMS Scanning Display Systems

Head-Up Displays (HUDs)

- > Automotive Industry
- See-through
- Significant safety advantage

Retinal Scanning Displays (RSDs)

- Projection of the image directly on the retina
- > Augmented reality

Other major players in the pico-projector game

- > INTEL (through acquisition of Lemoptix)
- > ST Microelectronics (through acquisition of bTendo)
- > Maradin, Israel
- Opus Microsystems, Taiwan
- BOSCH Sensortec

Part IV- Systems: Display Systems

222

GRATING LIGHT VALVE

Part IV- Systems: Display Systems

Micro-605: Optical MEMS and Micro-Optic

SLM - Grating Light Valve

- > 1D digitally-tunable grating array
- > Combined with a 1D Scanner
- Diffracting grating
 - □ Color dependent beam deflection
 - ☐ Modulation rate: > 200 kHz
- > Grating/ribbon data
 - □ Array: 1 x 8092 pixels
 - □ Pixel: 3 active + 3 in-active stripes
 - □ Width: 1 10 μm
 - □ Length: 100 1000 μm
 - □ Resonance frequency > 10MHz
 - □ Displacement: $\lambda/4 \approx 100 200 \text{ nm}$

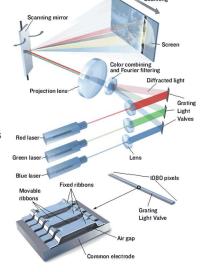
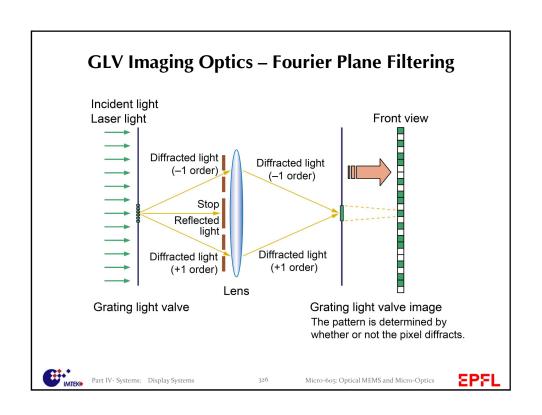
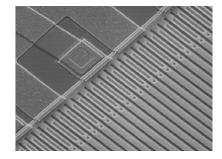
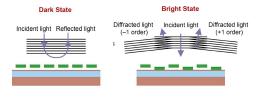


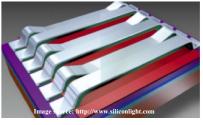
Image source: IEEE Spectrum


Part IV- Systems: Display Systems

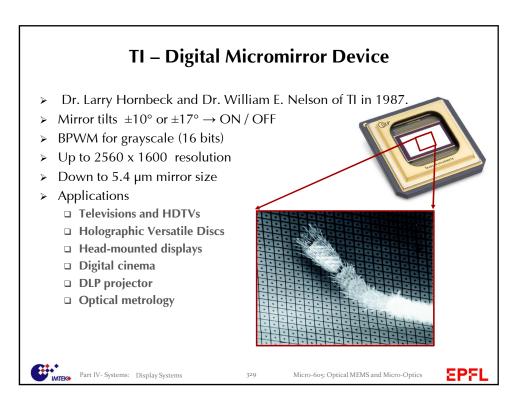
324

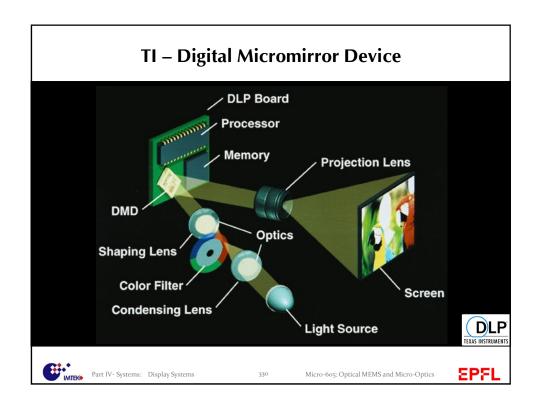


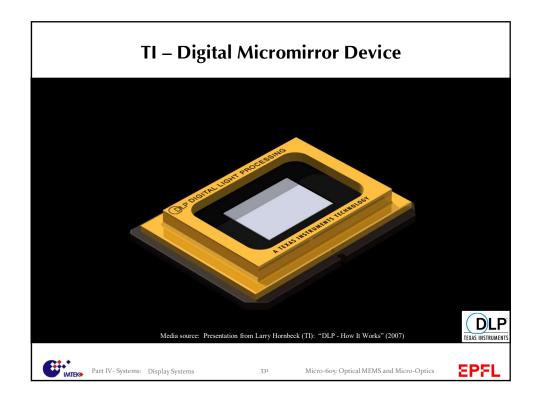


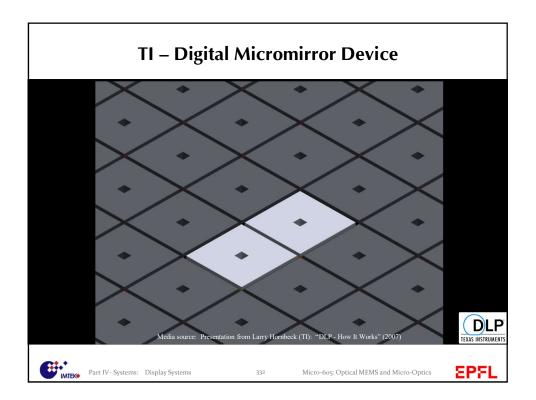


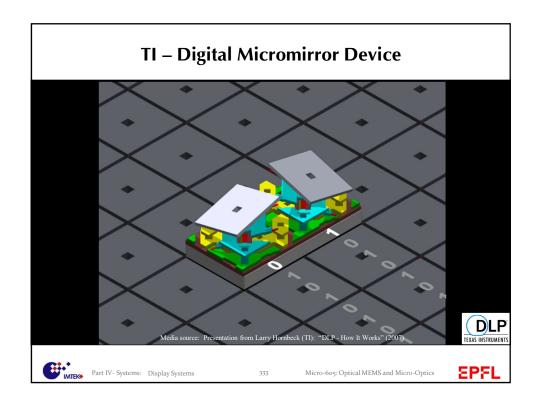
- > Large 1D array of ribbons
- > 6 ribbons per pixel
- > Electrostatic actuation
- > Digital or analog operation
- > Other applications
 - □ Dynamic gain equalization
 - □ Head-up displays
 - □ Optical maskless lithography

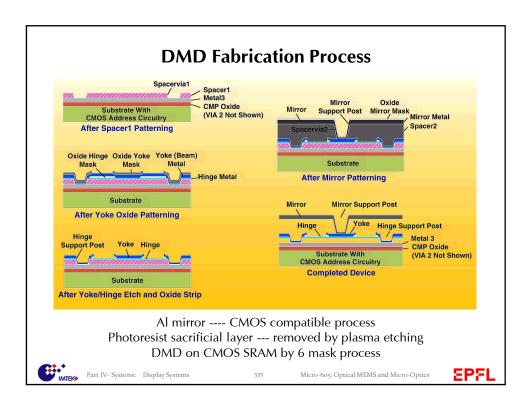



Micro-605: Optical MEMS and Micro-Optics

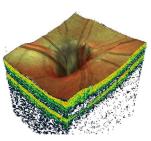



DIGITAL MICROMIRROR DEVICE (DMD)






ENDOMICROSCOPY

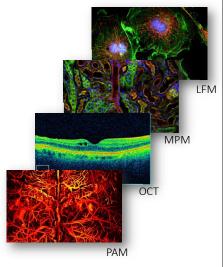


Conventional vs. Optical Biopsy

- Biopsy is the gold standard for tissue analysis
 - + High-resolution
 - + High-specificity and selectivity
 - Needs incision
 - Slow and costly
 - Only vertical sectioning
 - Only visual information

- Optical biopsy is a promising alternative
 - Non-invasive
 - In-vivo, in-situ, real-time
 - Vertical and horizontal sectioning
 - Spectroscopic information
 - Transient tissue information

Micro-605: Optical MEMS and Micro-Optics



Part IV- Systems: Imaging Systems

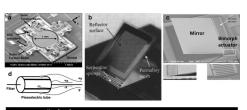
Optical Biopsy: Enormous Health Benefits

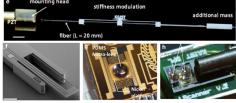
- Imaging-based diagnosis
 - → In-vivo, in-situ, real-time diagnosis
 - → No incision, no pathology
 - → Pre-malignant tissue identification
- Aided surgical procedures
 - → Tumor margin identification
 - ightarrow Guiding of surgical tools
- · Guided conventional biopsy
 - \rightarrow Reduced number of incisions
 - → Improved targeting
 - \rightarrow Single endoscope insertion

Part IV- Systems: Imaging Systems

339

Micro-605: Optical MEMS and Micro-Optics


A Big Family of Imaging Methods

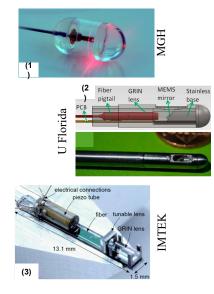

Method	Wide-field or Scanning	2D/3D	Structural or molecular
Endomicroscopy/Narrow-band Imaging	wide-field	2D	Structural
(Auto)Fluorescence Microscopy	both	2/3D	Molecular
Confocal Laser Endomicroscopy	scanning	3D	Structural
Optical Coherence Tomography	scanning	3D	Structural
Optical Coherence Microscopy	scanning	2D	Structural
Multiphoton Microscopy	both	2/3D	Molecular
Raman/CAR Spectroscopy	both	2D	Molecular
Second Harmonic Generation Micr.	both	2/3D	Molecular
Photoacoustic Microscopy	scanning	3D	Structural
Elastic Scattering Spectroscopy	scanning	2/3D	Structural

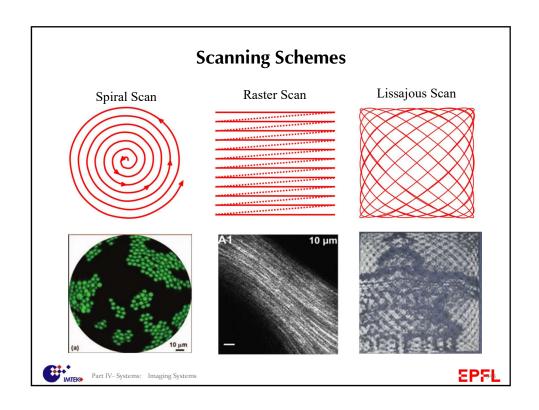
Micro-Optics & Optical MEMS in Endomicroscopy

- Challenges
 - Resolution vs. FoV vs. size
 - Optical quality
 - Packaging and reliability
 - Medical requirements
- · What does Optical MEMS offer?
 - High quality micro-optics
 - Compact laser scanners
 - Adaptive imaging schemes
 - Assembly techniques
- Beam scanning methods:
 - Micromirrors
 - Fiber scanners
 - Lens Scanners

Hwang et al. Micro and Nano Syst Lett (2017) 5:1

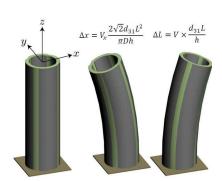
Part IV- Systems: Imaging Systems


Micro-605: Optical MEMS and Micro-Optics


Point-Scanned Imaging

- Light delivery through optical fibers
- Viewing direction
 - Circumferential (1)
 - Side-looking (2)
 - Forward-looking (3)
- · Resolution vs. field-of-view
 - Large NA for confocal techniques
 - Low-NA for large imaging depths
 - Remember Gaussian optics!
- · Light collection
 - Through the illumination path
 - With extra fibers
- Endoscope type
 - Rigid
 - Flexible

IMAGING WITH SCANNING FIBERS


Tubular Piezoelectric Actuators

Piezoelectric Effect

- Electric Field → Deformation
- □ Depends on crystal orientation
- □ Limited by maximum E-field

> Tubular Piezo Actuation

- □ Fixed-free cantilever
- □ 1 inner, 4 outer electrodes
- Developed for AFM
- □ Adapted for endoscopy by E. Seibel et al.
- □ Thinnest available scanning technique

http://www.piezodrive.com

E-OCT Probe with Fourier Plane Scanning

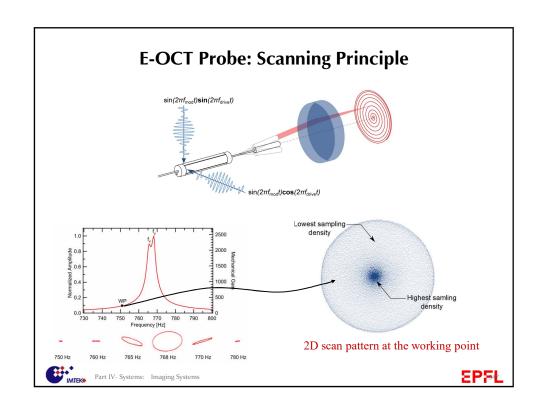
> Features

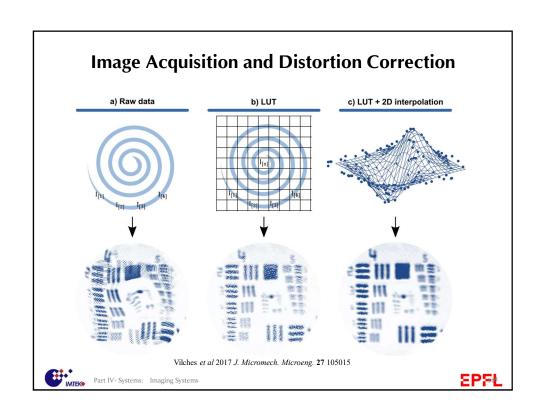
- □ Piezoelectric actuation
- □ Fiber-GRIN cantilever
- □ Telecentric scanning
- Low-distortion imaging
- Uniform PSF over FoV
- □ Ideal for multi-modal imaging

Fourier plane object 7 virtual radiant source

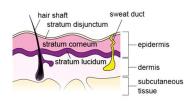
> Specifications

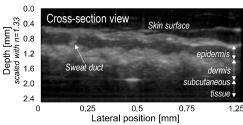
- □ FOV: 2 mm (telecentric)
- □ Working distance: 4.8 mm
- ☐ Lateral resolution = 29 um
- □ Numerical aperture = 0.032
- □ Depth of field = 1.65 mm



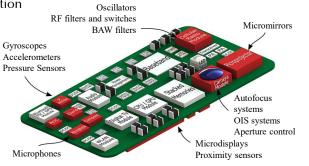

Vilches et al 2017 J. Micromech. Microeng. 27 105015

Part IV- Systems: Imaging Systems




OCT Imaging Results

- SS-OCT parameters
 - ☐ Insight Photonics akinetic source
 - □ 142 KHz A-scan rate
 - 4 volumes/second
 - **3** 32 nm bandwidth @ 1.34 μm
 - $25.4 \, \mu m$ axial resolution in air
 - □ 3.3 mW optical power
 - □ 82 dB SnR
- > Sample: Human fingertip



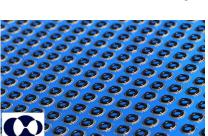
MOEMS FOR CAMERA MODULES

- > Zoom and autofocus systems
 - □ Translating lenses
 - □ Tunable-focus lenses
- > Optical Image Stabilization
 - Tunable lenses
- > Aperture adjustment
 - Microfluidic solutions Accelerometers
 - Mechanical shutters

MEMS and MOEMS in modern smartphones

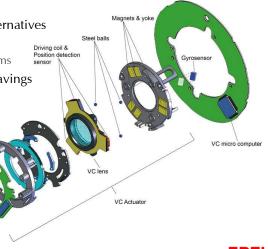
- Vertical comb actuates polymer lens
- Camera specs:
 - Resolution 8MP
 - Pixel Size 1.4 μ m x 1.4 μ m
 - Relative Aperture (f#) f/2.4
 - Focusing Range 10 cm to ∞
 - Module Height 5.35 mm (COB)
- Autofocus specs:
 - Operating Voltage: 2.8 4.5 V
 - Power Consumption: 0.2 mW /0.45 mW
 - Current: 80 μA
 - Settling Time: <10 ms (typical)
 - Travel: 100 μm (min)
 - Repeatability: +/- 1 μm (nom)

Part IV- Systems: Imaging Systems


Micro-605: Optical MEMS and Micro-Optics

Exploded view

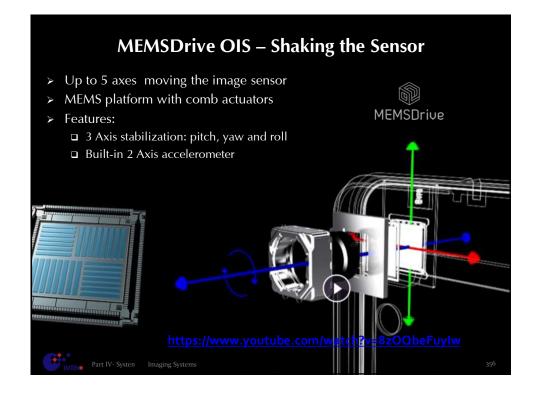
- First commercial smartphone camera with a liquid-tunable lens
- Optotune technology
- Magnetic actuation
- < 5 ms response time
- · Wafer-level lens manufacturing

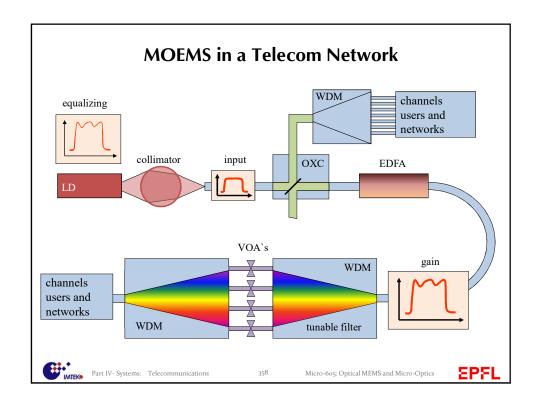

Part IV- Systems: Imaging Systems

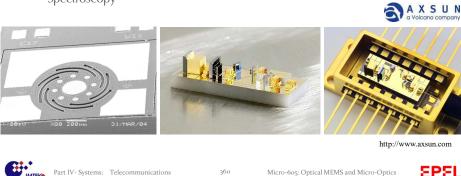
Micro-605: Optical MEMS and Micro-Optics

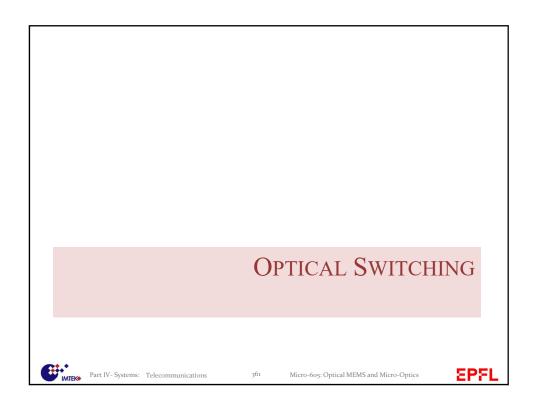
Optical Image Stabilization (OIS)

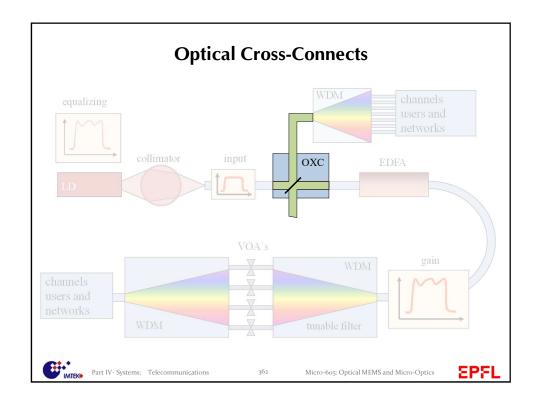
- Reduction of image blurring due to "shaking hands"
- Miniaturize systems for smartphones
 - Voice-coil actuators
- New generation MOEMS alternatives
 - Tunable lens based systems
 - MEMS platform based systems
- Order of magnitude power savings
- · Enhanced speed
- Enhanced precision



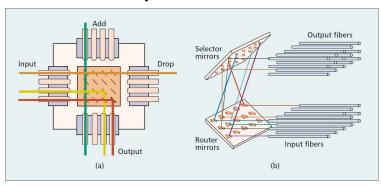

Part IV- Systems: Imaging Systems



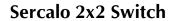


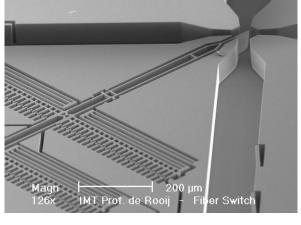


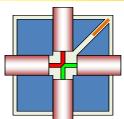
Axsun Tunable Laser System


- MEMS Tunable Fabry-Perot Filter with an SLED
- Up to 100KHz sweep rate with >100 tuning at 1.06 μm
- Micro-Optical toolbox and automated assembly
- Applications
 - Telecommunication
 - Optical Coherence Tomography
 - Spectroscopy

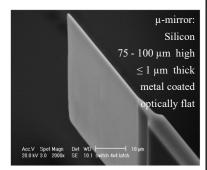
Optical Switches

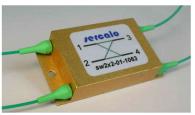



- Faster than conventional optical-electrical-optical switching
- No signal bandwidth limitation
- Comes in three variants:
 - Small lensless switches
 - Sharing 1 x N fiber switches
 - Optical cross-connects (Nx N)


Micro-605: Optical MEMS and Micro-Optics

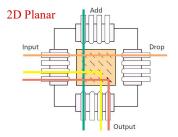
- IMT University of Neuchatel Spin-Off
- Single mode fibers with self-alignment grooves

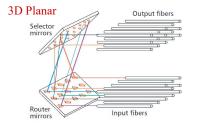



Part IV- Systems: Telecommunications

Sercalo 2x2 Switch

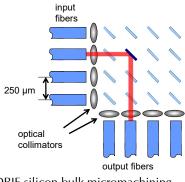
- Broad wavelength range 1.2 1.6 μm
- High repeatability < 0.002 dB
- Fast response time < 1 ms
- High cycling rate > 500 Hz
- Small insertion loss < 0.9 dB
- Low Crosstalk < 50 dB
- PDL < 0.1 dB
- Ext. operation at 5V
- 500 T-cycles (-40°C to 85°C)
- 9760h life test (85°C, 80 Hz)
- Telcordia GR 1221 qualified

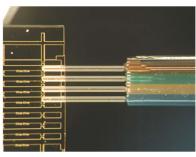



Micro-605: Optical MEMS and Micro-Optics

MxN Optical Switch (XConnect) Architectures

- Based on vertically "flap" mirrors
- Incompatibility with large matrices
 - Chip area becomes too large
- Collimating/focusing optics for fibers
- Self aligned fibers through v-grooves
- Sercalo, OMM, etc.


- Based on 2D biaxial mirror arrays
- More suitable to large fiber count switches
 - 512 x 512 demonstrated
 - Complicated alignment and assembly
- Collimating/focusing optics for fibers
- Lucent, JDSU, Fujitsu, Calient, etc.

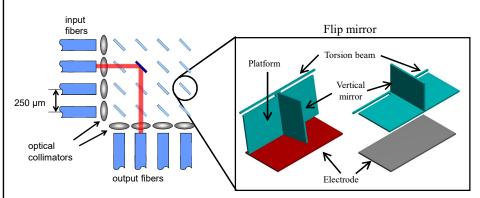


Part IV- Systems: Telecommunications

Sercalo 2D MEMS OXC Array

rercalo

- DRIE silicon bulk micromachining
- Mirrors pitch = fiber pitch of fiber ribbons (= $250 \mu m$)
- Novel compact optical collimators (patent pending)
- Flip mirrors on platforms with torsion hinges
- Electrostatic actuation with bottom electrodes (separate chip)
- Chip based on silicon bulk micromachining (DRIE)

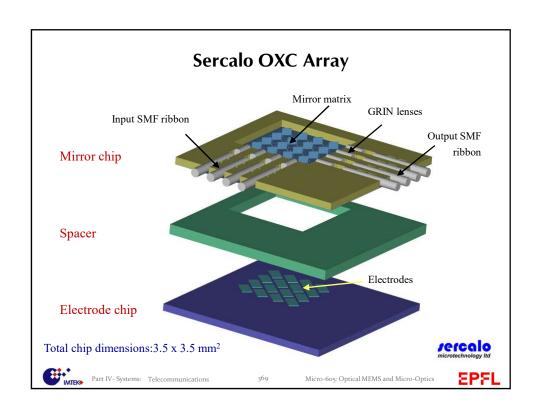

Part IV- Systems: Telecommunication

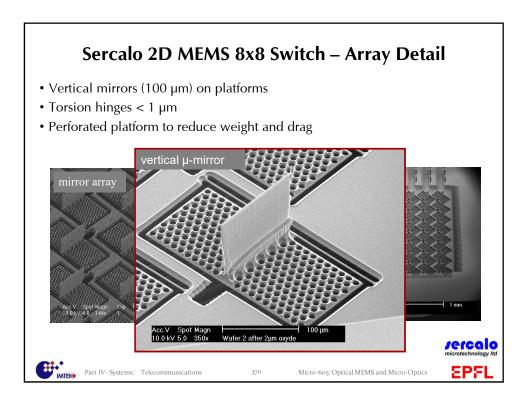
36

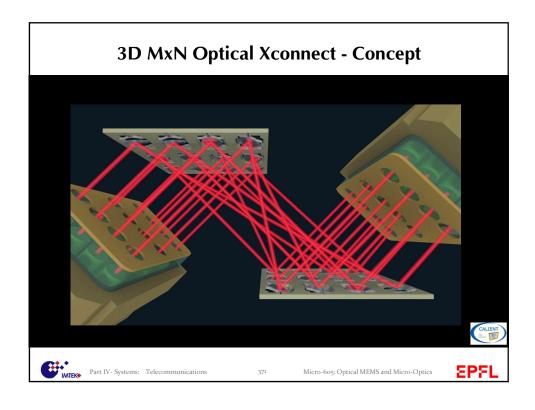
Micro-605: Optical MEMS and Micro-Optics

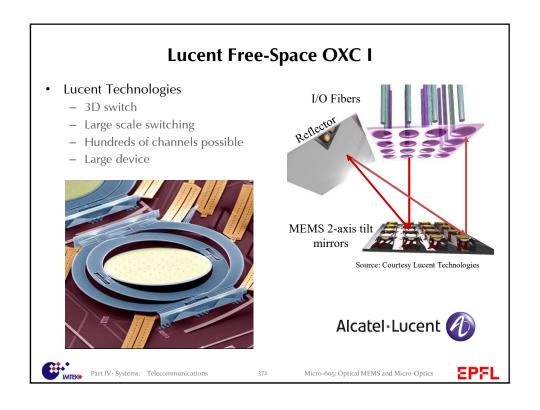
Sercalo 2D MEMS OXC Array

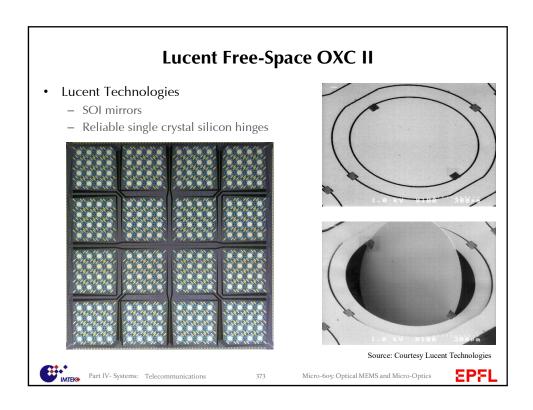
- Pitch of mirrors = pitch of fiber ribbons (250 μ m)
- Novel GRIN lenses for coupling efficiency at small foot print
- · Flip mirrors with torsion hinges and bottom electrodes
- Mirror chip: silicon bulk micromachining (DRIE)
- Electrodes on separate chip

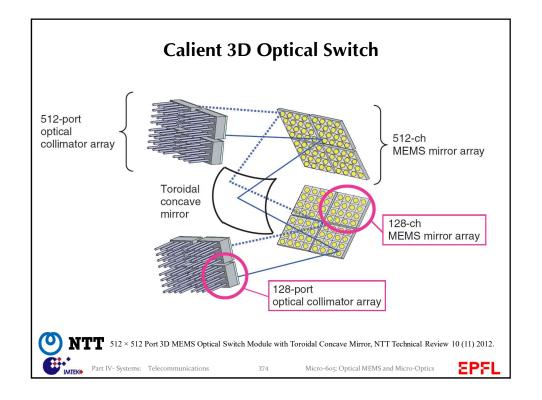


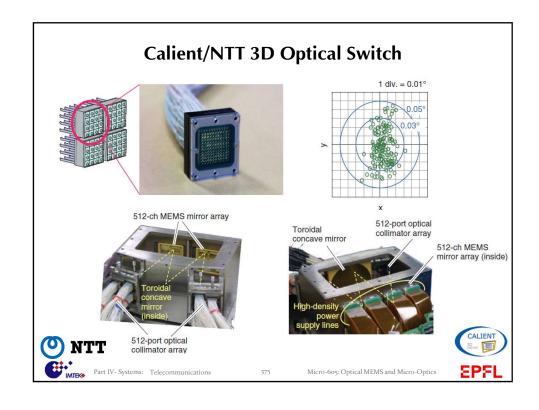


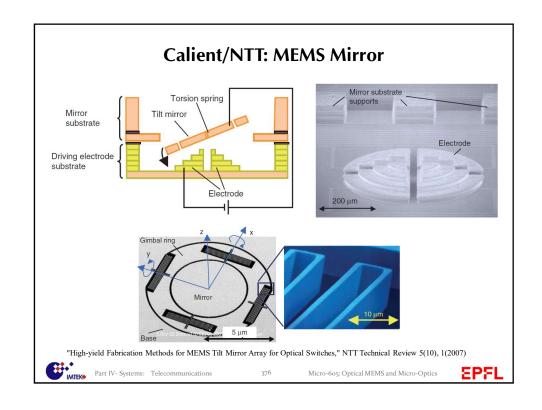

Part IV- Systems: Telecommunications

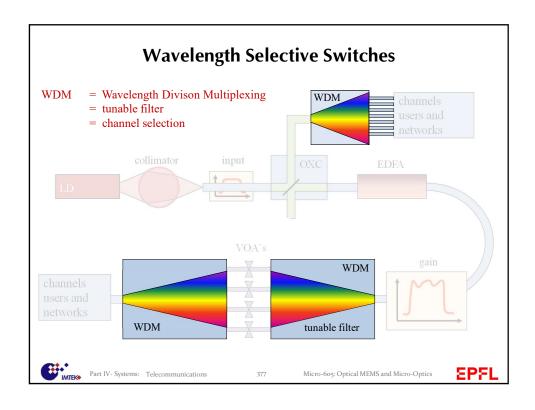

368

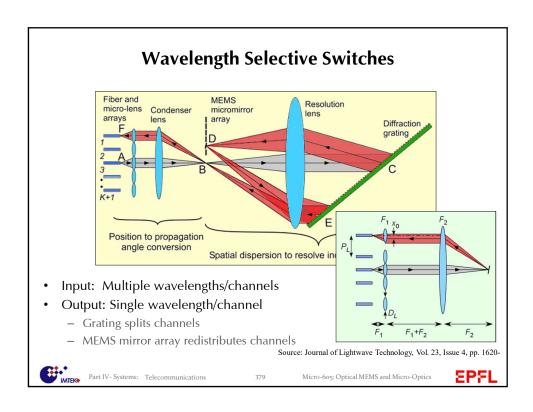


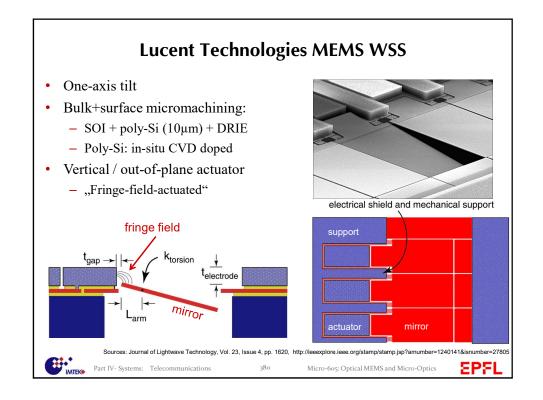












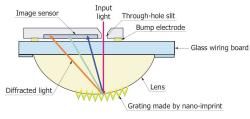
WSS Implementation

- Applications
 - Multiplexers and Demultiplexers
 - Add/Drop multiplexers
- · General elements of a free space optical WSS
 - Fiber array and microlens array (MLA) for input and output;
 - beam shaping of collimated light from MLA via anamorphic optics (cylinders or prisms);
 - Birefrigent crystals and waveplates if needed
 - a diffraction grating used in reflection or transmission or an AWG
 - switching engine

MOEMS SPECTROMETERS

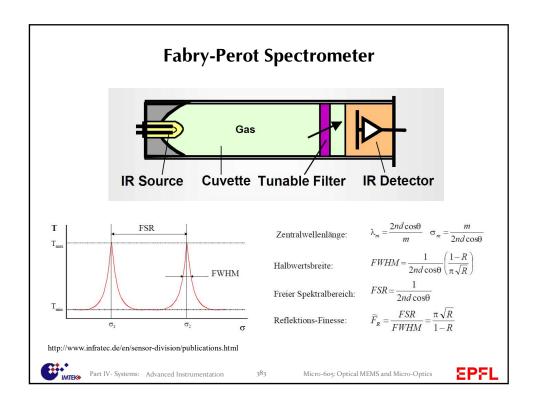
EPFI

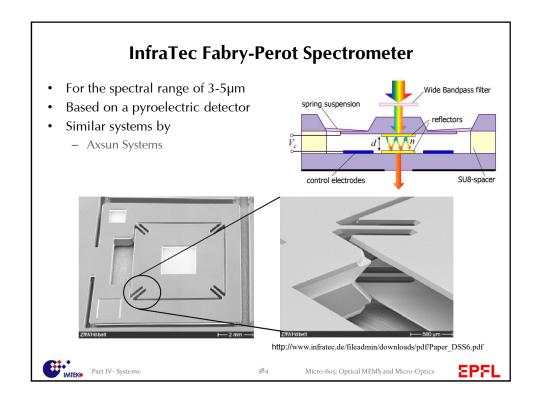
Hamamatsu Compact Spectrometer

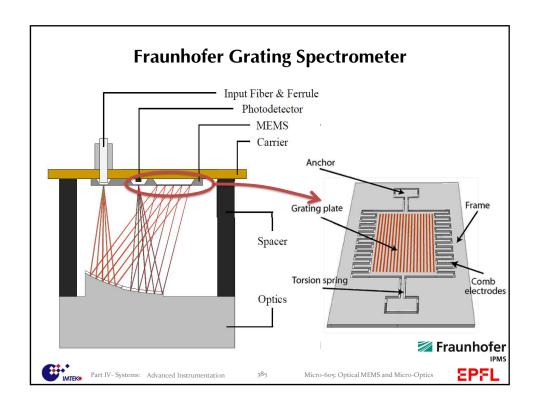

- MS Series
- CMOS integrated Si sensor array
- Specifications
 - Thumb size: $27.6 \times 16.8 \times 13 \text{ mm}$
 - Weight: 9 g
 - Spectral response range: 640 to 1050 nm
 - Spectral resolution: 20 nm

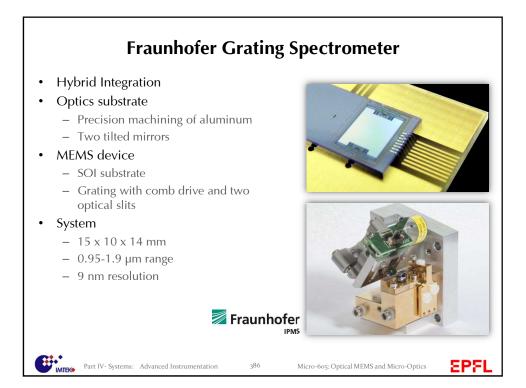
Target Applications

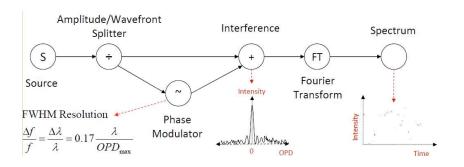
- Color monitoring for printers
- Color control in displays
- Component anyalsis




 $http://www.hamamatsu.com/resources/pdf/ssd/c10988ma-01_etc_kacc1169e07.pdf$

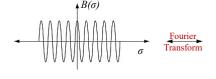


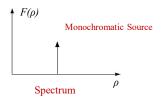

Part IV- Systems: Advanced Instrumentation

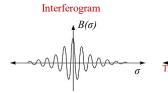


Fourier Transform Spectroscopy

- Throughput Advantage
- Multiplexing Advantage
- Single Detector Measurement




Micro-605: Optical MEMS and Micro-Optics

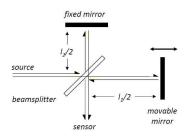

FTS: Interferogram vs. Spectrum

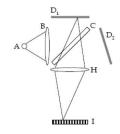
$$F(\rho) = \int_{-\infty}^{\infty} B(\sigma) \cos(2\pi\sigma\rho) d\sigma(W)$$

$$F(\rho) = \int_{-\infty}^{\infty} B(\sigma) \cos(2\pi\sigma\rho) d\sigma (W) \qquad B(\sigma) = \int_{-\infty}^{\infty} F(\rho) \cos(2\pi\sigma\rho) d\rho \left(\frac{W}{cm^{-1}} \right)$$

Wiener-Khinchin theorem:

The autocorrelation function of a wide-sense-stationary random process has a spectral decomposition given by the power spectrum of that process




Part IV- Systems: Advanced Instrumentation

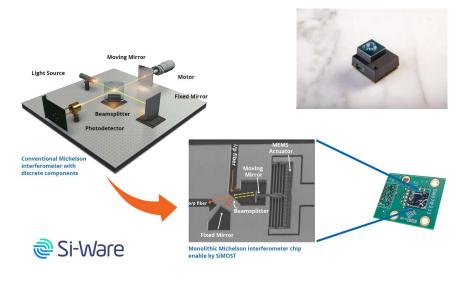
FTS with Amplitude Splitting

Michelson Interferometer

Scanning configuration

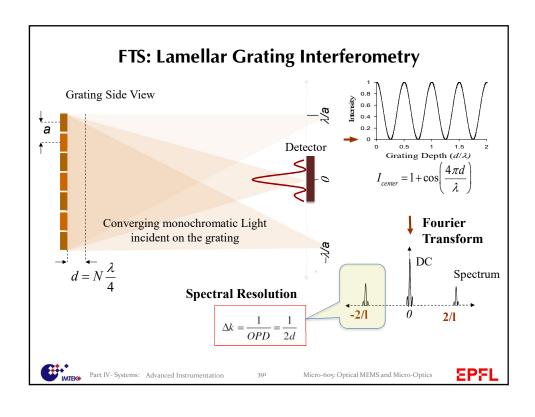
Stationary configuration

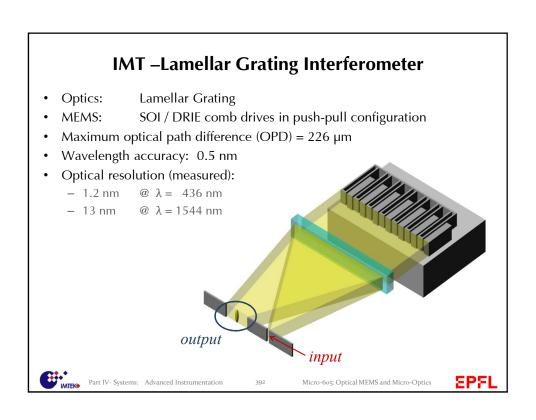
- FTS with Michelson Interferometer
 - Moving mirror and a single detector
 - Static but tilted mirror and a line detector
- Former for IR, latter for visible applications due to detector costs

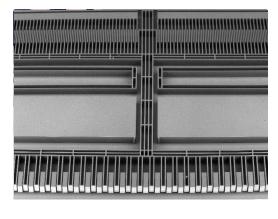


Part IV- Systems: Advanced Instrumentation

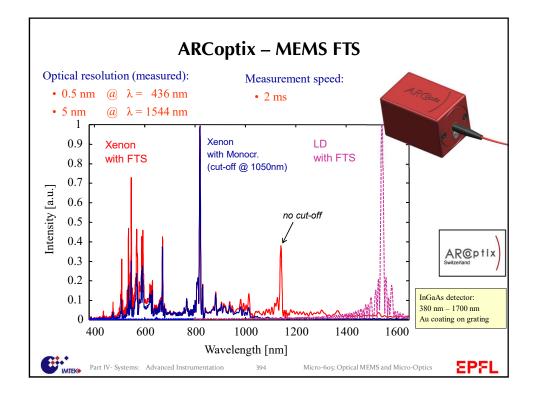
Micro-605: Optical MEMS and Micro-Optics

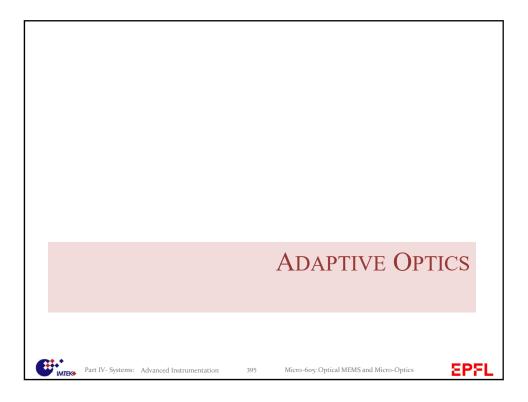


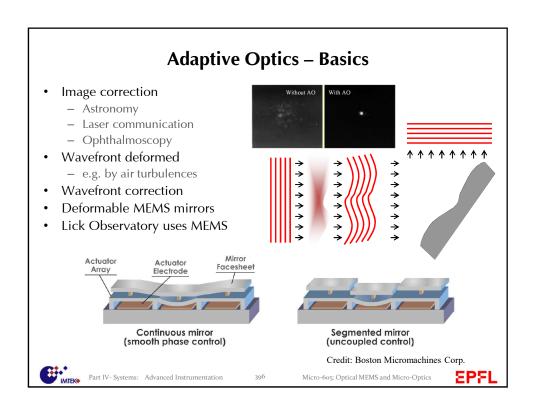


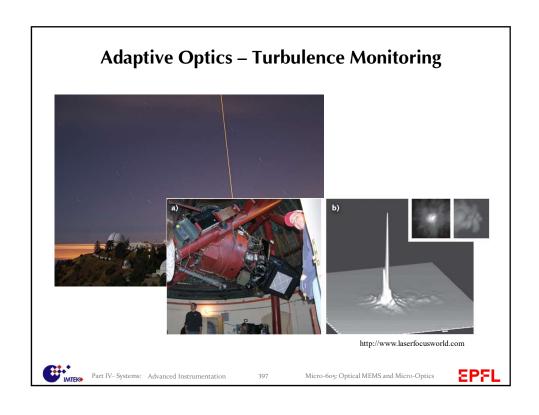

Part IV- Systems: Advanced Instrumentation

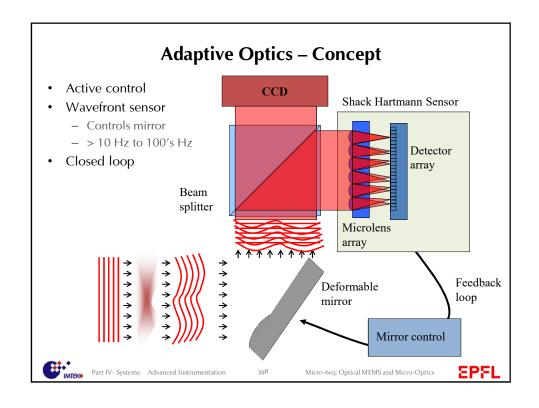
ARCoptix – MEMS FTS

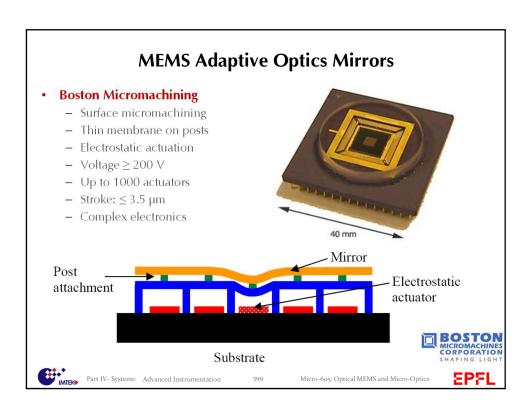

- IMT Spin-off
- Fourier-Transform based (FTS)
- Grating height/ Grating period: 75 μm / 90 μm
- Chip dimensions:
 - 7 x 8 mm
- Maximum OPD: 226 µm
- Illuminated periods: 32
- Long wavelength range:
 - $-0.5-2.6 \mu m$
- Resolution:
 - 0.7 (VIS) to 27 nm (NIR)
- Fast, modular, small
- · Optical fiber input






Part IV- Systems: Advanced Instrumentation





MEMS Adaptive Optics Mirrors

Iris AO

- Actuators: Surface micromachined

- Mirrors: Bulk micromachined

- Wafer level bonding process

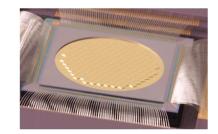
Segmented mirrors

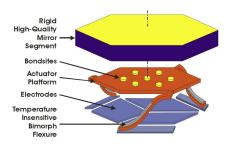
- Electrostatic actuation

– Stroke: 7.6 μm

PTT489 Deformable Mirror[™]

- 489 actuator, 163 segments

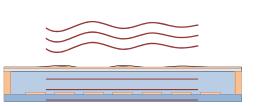

– Stroke: 5 or 8 μm


Tilt Angle: ±4 or ±6.4 mrad

Surface Flatness: < 20 nm rms

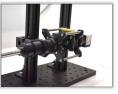
Inscribed Aperture: 7.7 mm

– Mechanical Response: < 200 μs



Part IV- Systems: Advanced Instrumentation

400



$$\Phi(x,y) = \frac{2\pi}{\lambda} d(x,y) \left(n_{liquid} - n_{air} \right)$$

Part IV- Systems: Advanced Instrumentation

Micro-605: Optical MEMS and Micro-Optics

Phaseform Deformable Phase Plate

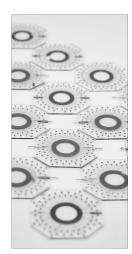
• Performance figures

Clear aperture: 10 mmThickness: 0.85 mmActuator count: 63

 $\begin{array}{lll} - & Stroke: & \pm 4 \ \mu m \ OPD \ (defocus) \\ - & Initial \ flatness: & <0.25 \ \mu m \ RMS \\ - & Best \ flat: & <20 \ nm \ RMS \\ - & Max \ Zernike \ mode: \ 7^{th} \ radial \ order \ (~\lambda) \\ - & Transmission \ eff.: & >85\% \ (0.35-1.2 \mu m) \end{array}$

Switching speed: <100 ms

Damage threshold: >5 W (collimated)


Applications

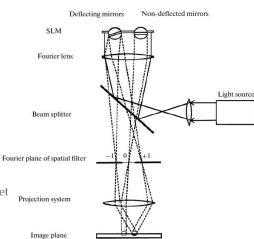
Microscopy

Ophthalmology

- Laser machining

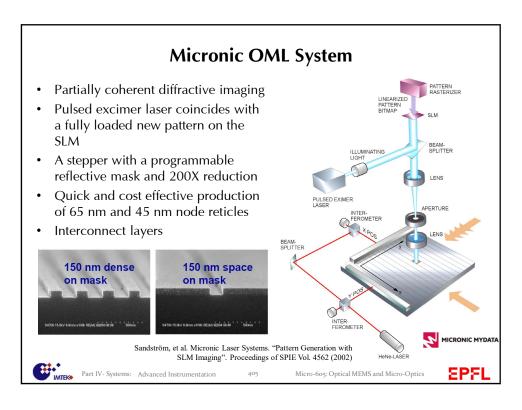
Part IV- Systems: Advanced Instrumentation

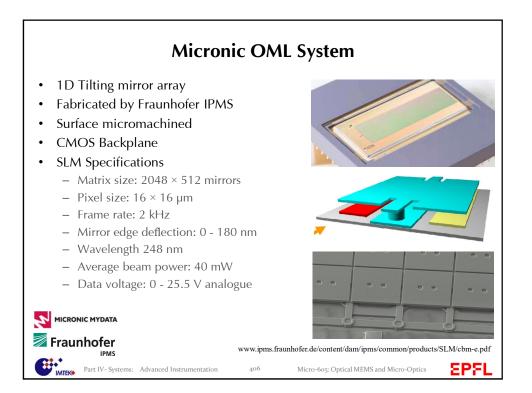
402


MASKLESS LITHOGRAPHY

Optical Maskless Lithography

- Programmable "mask"
 - Vs. permanent photomask
- No cost for prototype masks
 - Vs. \$ millions per set
- Instant mask production
 - Vs. weeks to months per set
- Requirements:
 - High resolution
 - Fast addressing
 - High reliability
 - High reflectivity in deep ultraviolet (DUV), e.g. $\lambda = 257$ nm
 - Stroke typ. $\lambda/2$, ~130 nm




Belokopytov and Ryzhkova, Russian Microelectronics vol. 40 no. 6 2011

Part IV- Systems: Advanced Instrumentation

DLP Based OML Systems

- Applications
 - UV-Setters for printing
 - PCB manufacturing
 - UV sensitive polymer patterning
 - Biopatterning
- Companies
 - BasysPrint
 - Dai Nippon Printing
 - Hitachi Via Mechanics
 - FujiFilm
 - ...

Part IV- Systems: Advanced Instrumentation

Part V **EMERGING TOPICS**

Part V- Emerging Topics

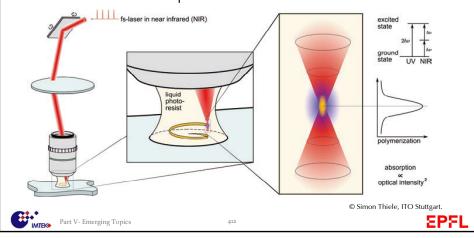
Current Trends in MOEMS

- Today MOEMS is an established technology:
 - Well-understood fundamentals
 - Countless commercial applications
 - Standard foundry processes
- To where is the field heading?
 - New manufacturing platforms
 - · Rapid prototyping
 - Photonic integrated circuits
 - New applications
 - · LIDAR and remote sensing
 - Endomicroscopy
 - Adaptive optics
 - Mobile Imaging (zoom optics)

EPFI

Rapid Prototyping of Micro-optics and MOEMS

- Motivation
 - How can we cut down design cycle time?
 - How to realize low-volume, high-complexity devices?
 - Can we manufacture optical surfaces and actuators monolithically?
- Most promising methods are
 - Two-photon polymerization
 - Selective laser etching

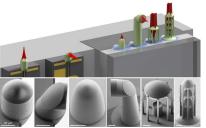


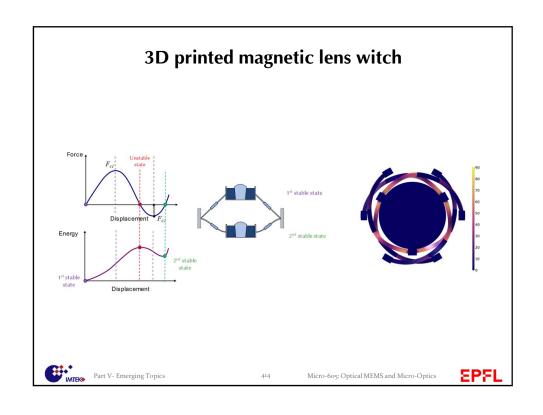
3D Printing by 2PP

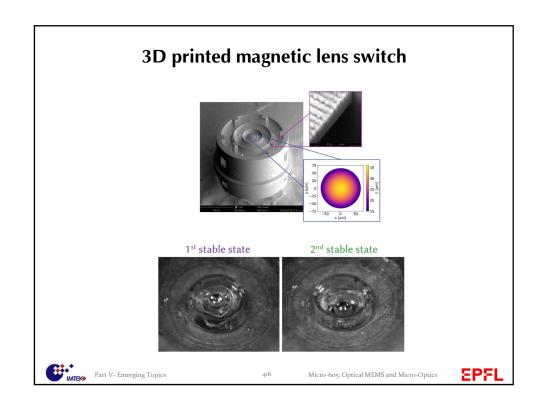
- Based on 3D scanning of a focal spot
- Overlapping of neighbouring voxels can lead to < 10 nm surface roughness
- Limited in maximum sample dimensions

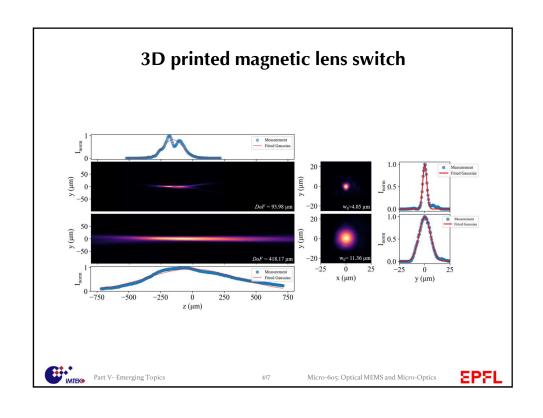
3D Printing by 2PP

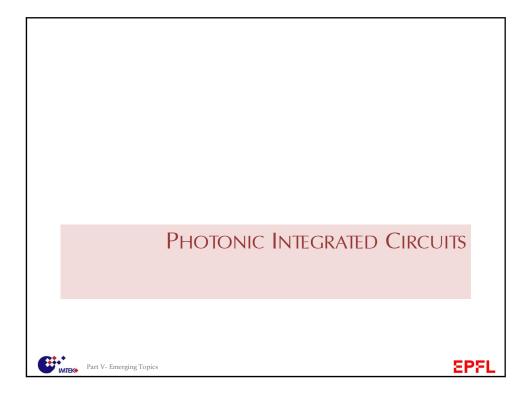
- Voxel size depends on NA
 - 63X objective: 0.2 x 0.2 x 0.7 μm
 - 20X objective: 0.6 x 0.6 x 5 μm
- Optical quality surfaces possible by process optimization
 - Free-form optics
 - Complex optical surfaces
- Emerging actuator concepts
 - EM actuation via magnetic liquids
 - Electrostatic actuators

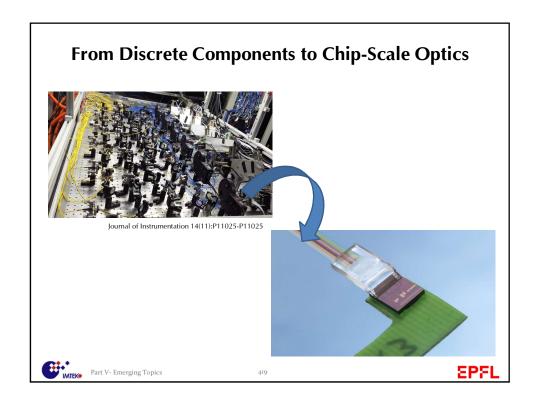


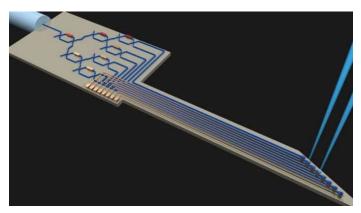








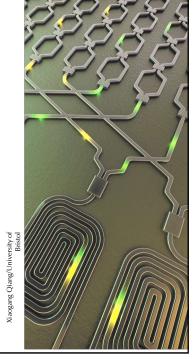




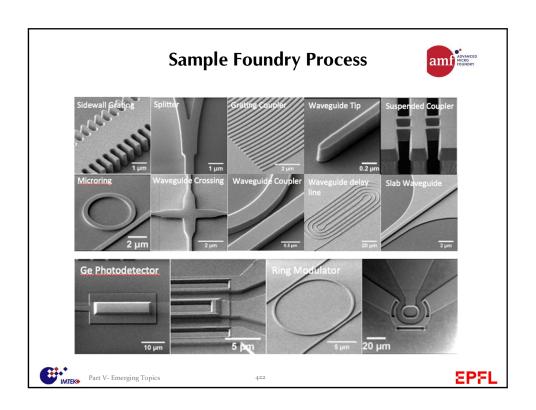
PICs: Enhanced Functionality

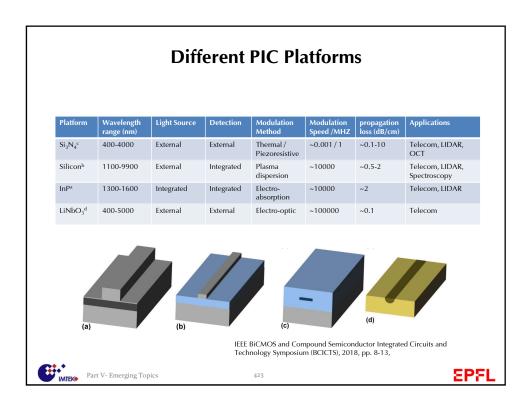
Implantable nanophotonic probe based on an optical switch array for optogenetic neural stimulation. (Credit: Aseema Mohanty/Columbia Engineering)

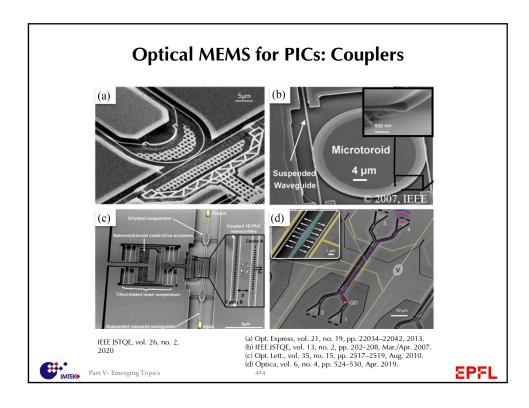
Part V- Emerging Topics

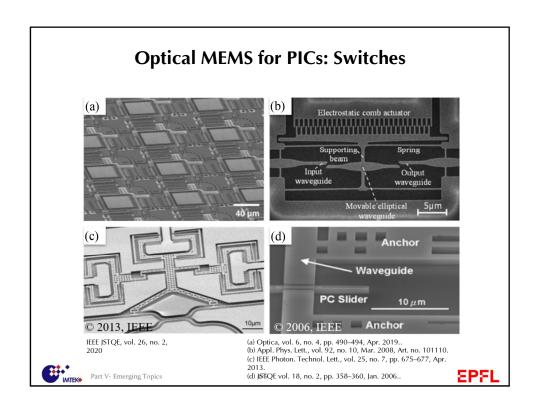


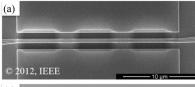
Building Blocks of PIC Platforms

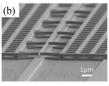

- Passive devices
 - Waveguides/couplers
 - Optical switches and interconnects
 - Filters, multiplexers & demultiplexers
 - Dispersion compensators
 - Variable optical attenuators
 - Isolators and circulators
 - Delay lines

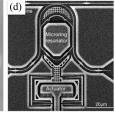

Active devices


- Modulators
- Amplifiers
- Lasers and LEDs
- Detectors
- Wavelength and mode converters





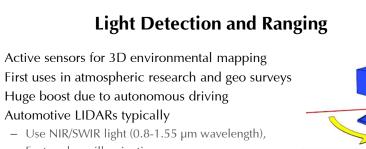




IEEE JSTQE, vol. 26, no. 2, 2020

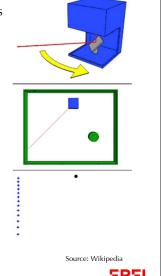
(a) IEEE Photon. J., vol. 4, no. 3, pp. 779–788, Jun. 2012. (b) Proc. Eur. Conf. Integr. Opt., Gent, Belgium, 2019, p. F.A2.4. (c) Opt. Lett., vol. 40, no. 15, pp. 3556–3559, 2015. (d) IEEE Photon. Technol. Lett., vol. 18, no. 2, pp. 358–360, Jan. 2006.

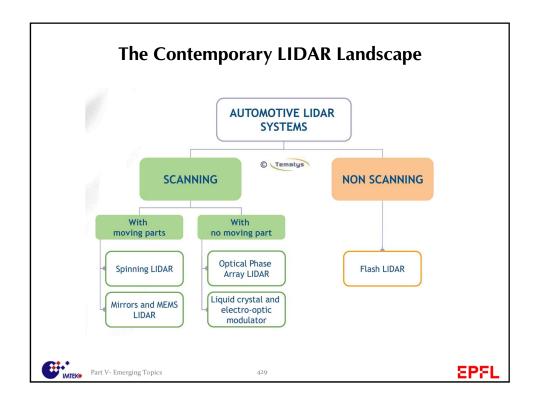
Part V- Emerging Topics

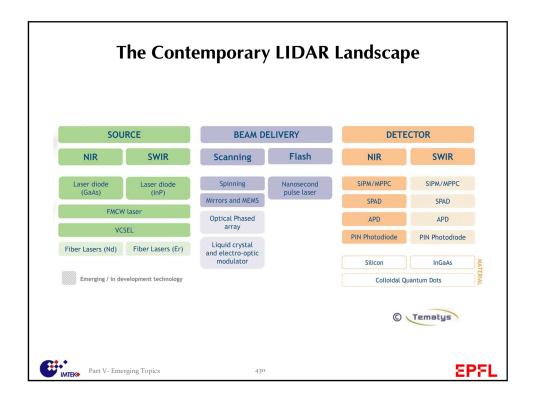


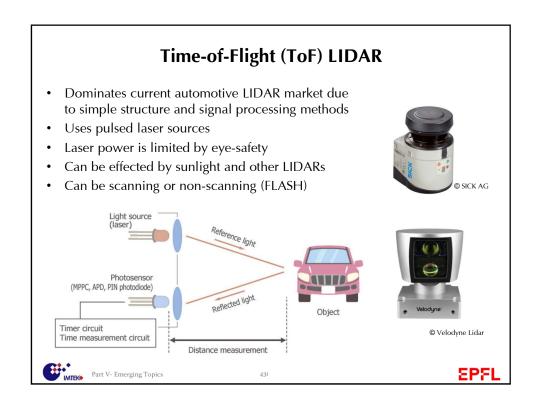
MEMS LIGHT DETECTION AND RANGING

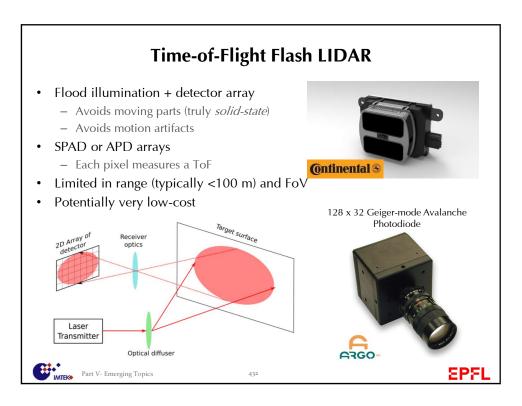
Part V- Emerging Topics


EPFL

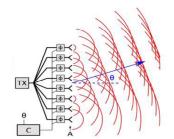

- - Feature laser illumination,
 - Limited by eye-safety concerns,
 - Use some type of avalanche photo-diode,
 - · Literally count photons.

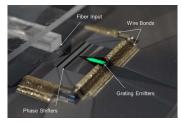

Compared to RADAR, LIDAR has


- Has higher spatial resolution,
- Lower range due to atmospheric effects such as
 - · Absorption,
 - · Scattering.



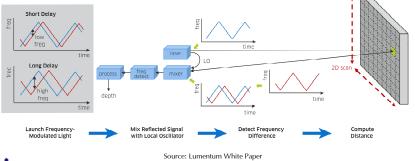
MEMS LIDAR


- High speed scanning at a lower cost w.r.t. spinning LIDARs
- · Cost-effective due to batch manufacturing
- Spatial resolution limited due to mirror sizes
- Approaches to 3D imaging
 - Single laser + 2D scanning
 - Multiple lasers + 1D scanning



- Scanning with no moving parts
 - Robust and low-cost
- · Based on PIC technology
 - Every emitter is phase controlled
- 1D & 2D scanning variants
- · Limited in spatial resolution
- · Recently commercialized

Credit: Steven Miller, Columbia Engineering.



Part V- Emerging Topics

434

FMCW (Coherent) LIDAR

- Frequency Modulated Continuous Wave
- Light source is not pulsed
- · Coherent detection: Return signal is interfered with the local oscillator
- Can measure distance & velocity
- Virtually immune to ambient light
- Complex hardware and software

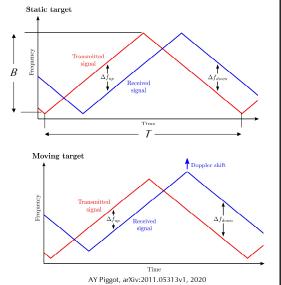
IMTEK

Part V- Emerging Topics

435

EPFL

FMCW (Coherent) LIDAR: Distance & Velocity


- Triangular modulation of the laser frequency
- Full-sweep at every measurement location

Distance of the object

$$d = \frac{c \left(\Delta f_{up} + \Delta f_{down} \right) B}{4}$$

Velocity of the object

$$v = \frac{\lambda \left(\Delta f_{up} - \Delta f_{down}\right)}{4}$$

Acknowledgements

Prof. Hans Peter Herzig Dr. Wilfried Noell

Prof. Hans Zappe – IMTEK Prof. Hakan Ürey – Koç University