

Blood Pressure Monitoring: Wearable Solutions

MICRO-568

Seminar in Physiology and Instrumentation

References

Guyton, A.C. and Hall, J.E. (2006) Textbook of Medical Physiology, Chapter 9 and Chapter 14

World Health Organization (16 March 2023) Hypertension, https://www.who.int/news-room/fact-sheets/detail/hypertension

Rader F, Victor RG. The Slow Evolution of Blood Pressure Monitoring: But Wait, Not So Fast! JACC Basic Transl Sci. 2017 Dec 25;2(6):643-645. doi: 10.1016/j.jacbts.2017.11.001. PMID: 30062179; PMCID: PMC6059006.

Pickering T. Ambulatory blood pressure monitoring: an historical perspective. Clin Cardiol. 1992 Oct;15(5 Suppl 2):II3-5. doi: 10.1002/clc.4960151403. PMID: 1486728.

Medi-Stats, https://www.medi-stats.com/pulse-waveform

FDA, U.S. FOOD & DRUG, https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190792.pdf

Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Töreyin H, Kyal S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans Biomed Eng. 2015 Aug;62(8):1879-901. doi: 10.1109/TBME.2015.2441951. Epub 2015 Jun 5. PMID: 26057530; PMCID: PMC4515215.

Biobeat, https://www.bio-beat.com/

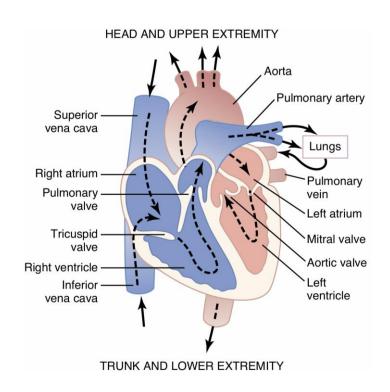
Daochai, S. & Sroykham, Watchara & Kajornpredanon, Y. & Apaiwongse, C.. (2011). Non-invasive blood pressure measurement: Auscultatory method versus oscillometric method. BMEiCON-2011 - 4th Biomedical Engineering International Conference. 10.1109/BMEiCon.2012.6172056.

Park J, Seok HS, Kim SS, Shin H. Photoplethysmogram Analysis and Applications: An Integrative Review. Front Physiol. 2022 Mar 1;12:808451. doi: 10.3389/fphys.2021.808451. PMID: 35300400; PMCID: PMC8920970.

Schutte AE. Wearable cuffless blood pressure tracking: when will they be good enough? J Hum Hypertens. 2024 Sep;38(9):669-672. doi: 10.1038/s41371-024-00932-3. Epub 2024 Jul 12. PMID: 38997475; PMCID: PMC11387187.

John G. Webster (2009) Medical Instrumentation Application and Design, 4th Edition, Chapter TONOMETRY, ARTERIAL, ISBN: 1118312856, 9781118312858 https://books.google.ch/books?id=ejuvtAEACAAJ

Ogedegbe G, Pickering T. Principles and techniques of blood pressure measurement. Cardiol Clin. 2010 Nov;28(4):571-86. doi: 10.1016/j.ccl.2010.07.006. PMID: 20937442; PMCID: PMC3639494.

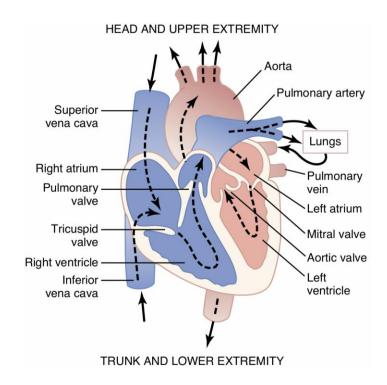

Joung, J., Jung, CW., Lee, HC. et al. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Sci Rep 13, 8605 (2023). https://doi.org/10.1038/s41598-023-35492-y

All images are from cited papers/books, if not mentioned otherwise

Slood Pressure Monitoring / Introductio

- The Problem:
- → Hypertension (to high blood pressure)
- Physiological Aspects:
- → The cardiovascular system
- The Medical Device:
- → Wearable blood pressure monitoring devices (smartwatch or bracelets)

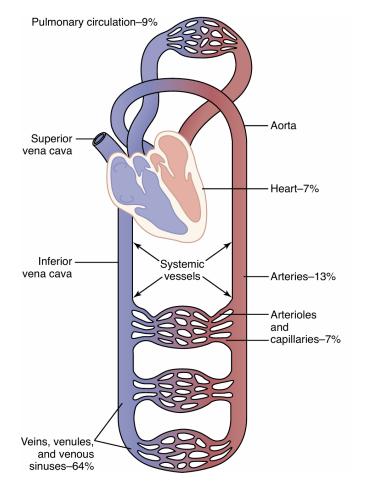
Introduction



Physiological Aspects: The Cardiovascular System

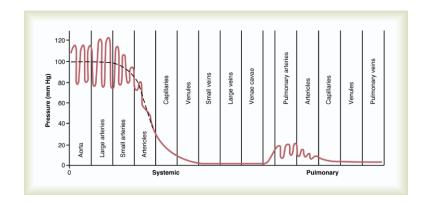
The Heart as a Pump
The Circulation
Blood Pressure
Hypertension

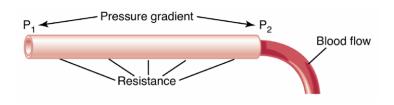
Cardiovascular System: The Heart as a Pump



- Two separate pumps:
 - Right heart → pumps blood through the lungs
 - Left heart → pumps blood through the peripheral organs
- Each pump is composed of an atrium and a ventricle (twochamber pump)
- Cardiac cycle:
 - Systole: period of contraction
 - Diastole: period of relaxation
- Three main types of muscles:
 - Atrial muscle
 - Ventricular muscle
 - Excitatory and conductive muscle fibers

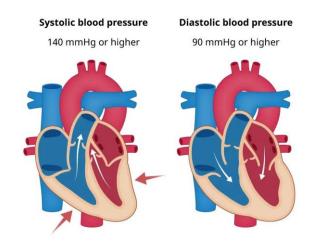
Pressure Monitoring / Physiological Aspects


Cardiovascular System:The Circulation


- Primary Roles of the circulation:
 - Transport oxygen and nutrients to the body tissues
 - Remove waste products
 - Conduct hormones
 - Support the immune system
 - Regulate the body temperature
- Functional Parts:
 - Arteries
 - Arterioles
 - Capillaries
 - Venules
 - Veins

Cardiovascular System: Blood Pressure

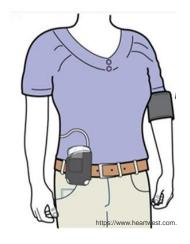
Circulatory Function:


- The local blood flow to each tissue: precisely and locally controlled relative to the needs
- Cardiac output: mainly controlled by the sum of all local tissue flows / the blood returning from the veins
- Arterial pressure: independently controlled from cardiac output or local blood flow
- Ohm's law applied to the cardiovascular system:

$$F = \Delta P/R$$

- Pressure levels:
 - Systolic ~120 [mmHg]
 - Diastolic ~80 [mmHg]

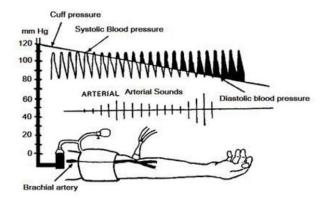
stoogo A looisoloisuda / saisotiach osusoca bos

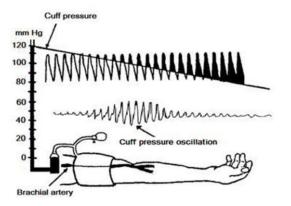

Hypertension (High Blood Pressure)

© IHH Healthcare Singapon

- Hypotension (Low Blood Pressure)
 - Dizziness, fainting, blurred vision, etc.
 - Falls
 - Severe drops: organ damage/failure

- 140/90 [mmHg] or higher
- ~1.28 billion adults aged 30-79 years worldwide
- ~46% of are unaware
- Major cause of premature death worldwide
- "Silent killer": May not feel symptoms! (Possible symptoms: Headaches, nosebleeds, chest pains, etc.)
- Can cause:
 - Stroke: Burst or block arteries
 - **Heart Disease**: Heart attack, heart failure, irregular heart beat
 - Kidney Disease, eye Damage, etc.
- Risk factors
 - Old age, genetics, obese or overweight, not physically active, high salt diet, alcohol, tobacco, stress, medication etc.

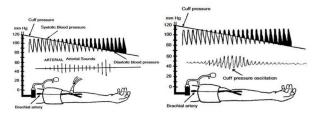



Technical Description

Overview of Different Techniques
Ambulatory Blood Pressure
Monitoring (ABPM)
Photoplethysmography (PPG)
Pulse Wave Analysis

EPFL

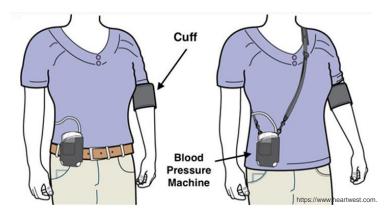
Overview of Different Techniques



Common-used for clinical diagnosis

- Auscultatory BP monitoring
 - Using a sphygmomanometer (composed of an inflatable cuff and a manometer)
 - Stethoscope (over brachial artery)
 - Korotkoff Sounds
 - (+) Accurate and Reliable
 - (-) Not automated/Requires skill, adapted cuff-size is needed
 - Reference method for validating other BP measurements and devices
- Oscillometric BP monitoring
 - Using a sphygmomanometer
 - Electronic pressure sensors (transducer) inside the cuff
 - Pressure oscillations caused by the expansion and contraction of the artery
 - (+) Automated, easy to use, faster, consistent and reproductible results
 - (-) Needs calibration, can be less accurate then auscultatory method

Overview of Different Techniques



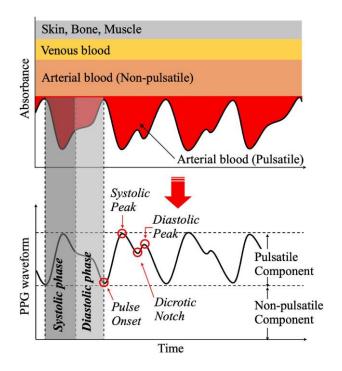
- Research and Critical care:
 - Direct (Intra-Arterial) Measurement
 - → (+) accurate, continuous, reliable
 - → (-) Invasive
 - Tonometry
 - \rightarrow (+) entire wave form, no cuff
 - → (-) sensible to placement, less accurate
 - Ultrasonic Doppler
 - → (+) detect blood flow abnormalities
 - → (-) specialized equipment, expertise
 - MRI
 - → (+) detailed picture of blood flow dynamics
 - → (-) expensive, specialized equipment

- Common-used for clinical diagnosis
 - Auscultatory BP monitoring
 - Using a sphygmomanometer (composed of an inflatable cuff and a manometer)
 - Stethoscope (over brachial artery)
 - Korotkoff Sounds
 - (+) Accurate and Reliable
 - (-) Not automated/Requires skill
 - Reference method for validating other BP measurements and devices
 - Oscillometric BP monitoring
 - Using a sphygmomanometer
 - Electronic pressure sensors (transducer) inside the cuff
 - Pressure oscillations caused by the expansion and contraction of the artery
 - (+) Automated, easy to use, faster, consistent and reproductible results
 - (-) Needs calibration, can be less accurate then auscultatory method (especially with irregular heartbeats, etc.)

EPFL

Ambulatory Blood Pressure Monitoring (ABPM)

- The Device:
 - Measuring over 24-48 hours
 - Usually using oscillometric BP monitoring
 - Cuff on the upper arm connected to a small BP monitor attached to a belt/strap
 - Cuff inflates every ~30 min during the day and ~1 hour during nighttime
- Goal:
 - Avoid white coat-hypertension (15%-30% of subjects)
 - Detect masked hypertension
 - Detect nocturnal BP
 - Evaluate treatment efficacy
 - Assess BP variability
- Limitations:
 - Discomfort
 - Oscillometric BP monitoring (same limitations)


How to measure blood pressure continuously with **high comfort(cuffless)?**

→ Using a **smartwatch/bracelet** on the **wrist**!

Which **technique** is adapted for this purpose?

→ Optical sensing combined with advanced data analysis

Photoplethysmography (PPG)

 Measuring changes of blood volume in tissues beneath the skin using optical sensors

Working principle:

- Light **emission** (by the device)
- Light interaction with the tissue
- Photodetection of the reflected light (by the device)
- Signal Analysis and waveform generation

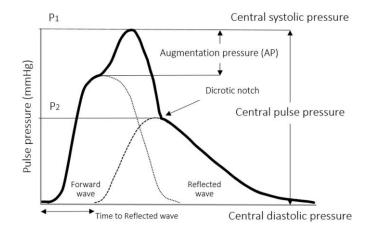
Advantages

- Non-invasive
- Multifunction (heart rate, oxygen saturation, respiration rate)
- Compact and low-cost
- Enables real time tracking

Limitations

- Limited in depth (not always the dynamics of the central cardiovascular system)
- Sensitive to motion artifacts
- Sensitive to external light sources, skin tones, etc.

Pulse Wave Analysis


- Using machine learning algorithms
- Extracting waveform features correlating with blood pressure (amplitude, pulse wave velocity proxies(slope, rise time, etc.), reflection indices, ...)
- Higher BP → Stiffer arteries → Faster Pulse wave
- Some devices additionally use:
 - ECG signals to compute pulse arrival time(PAT)
 - Contextual data (demographic factors, heart rate variability, motion tracking)

Advantages

Comfortable, non-invasive and continuous monitoring

Limitations

- Calibration with an initial cuff-based blood pressure device to link the features to the absolute blood pressure
- Low accuracy

The Wearable Blood Pressure Monitoring Device

Specifications
Medical Significance
Clinical Applications
The product
Further Improvements

Specifications

- General requirements:
 - Comfortable, lightweighted and compact
 - User-friendly app for data visualization
- Specifications for smartwatches or bracelets:
 - PPG sensor:
 - Sampling rate: ~25-100 Hz
 - Wavelength: Green, red or infrared
 - Processing Unit:
 - Low-power microcontroller (real-time processing)
 - ML algorithms and efficient signal processing techniques
 - Battery
 - Life 2-10 days of regular use
- Regular calibration(~monthly)

Medical Significance

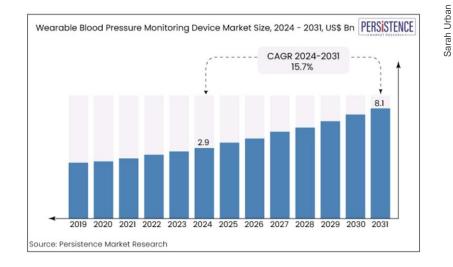
- Early detection of hypertension
 - Many people remain undiagnosed before complications occur
 - User can seek medical advice early
 - Help doctors to optimize treatment strategy
- Continuous monitoring
 - Capture variations
- Real-time feedback
 - Medication
 - Life-style changes
 - Stressors
 - Awareness and Motivation
- Reduce the need of clinical visits
- Combination with other health measurements (heart rate, SpO2, ...)

EPFL

Clinical Applications

"This is the first cuffless blood pressure solution to be cleared by the FDA—no more need for an inflating cuff"
- Arik Ben Ishay, Founder and CEO of Biobeat

- FDA Risk Classification
 - Class I: Low Risk
 - Class II: Moderate Risk
 - Class III: High Risk
- Class II requires a clearance (510(k) premarket notification)
 - Demonstrate that the device is substantially equivalent to an existing device already on the market.
- Biobeat (first to get FDA clearance in 2019)
- Multiple brands are in the current process for FDA clearance:
 - Samsung Galaxy Watch
 - Withings ScanWatch
 - Aktiia (CE-marking but not yet FDA)
 - And many more....


EPFL

The Product

- Cost: ~ \$150 \$600
- Mode of use:
 - Wearing on the wrist
 - Frequent calibration
 - Frequent charging of the watch

- Wearable health tech devices are largely demanded (in general a multi-billion-dollar industry)
- "The global wearable blood pressure monitor market size totaled US\$ 1.8 Bn in 2021" cited in Future Market Insights

EPFL

Further improvements

- Improving accuracy and reliability
 - Adaptive algorithms (to environmental conditions, etc.); Machine learning and Al models (could learn form user's physiological data)
 - Improving the PPG sensors by for example using multiple wavelengths
 - Reducing Motion artifacts by compensating body movement

Cuffless calibration

Cross-validation with other sensors (ECG)

Pressure Monitoring / Conclusion

- Hypertension is a major global health issue, affecting over one billion people worldwide
- Technical advancements in wearable technology are unlocking the high potential of wearable and continuous blood pressure monitoring
- Multiple companies are in the process of pursuing FDA clearance (Clinical Accuracy remains a challenge)
- Wearable blood pressure devices can link individual health tracking and clinical care
- Will these optical techniques one day overtake the classic, wellestablished methods?

Conclusion

Thank You for Listening QUESTIONS

