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INTRODUCTION

Statistics can be called that body of analytical and compu-
tational methods by which characteristics of a population
are inferred through observations made in a representative
sample from that population. Since scientists rarely
observe entire populations, sampling and statistical infer-
ence are essential. Although, the objective of statistical
methods is to make the process of scientific research as
efficient and as productive as possible, many scientists and
engineers have inadequate training in experimental
design and in the proper selection of statistical analyses
for experimentally acquired data. Gill (1) states:
“...statistical analysis too often has meant the manipula-
tion of ambiguous data by means of dubious methods to
solve a problem that has not been defined.” The purpose of
this article is to provide readers with definitions and
examples of widely used concepts in statistics. This article
first discusses some general principles for the planning of
experiments and data visualization. Then, since it is
expected that most readers are not studying this article

to learn statistics, but to find practical methods for analyz-
ing data, a strong emphasis has been put on choice of an
appropriate standard statistical model and statistical
inference methods (parametric, nonparametric, resam-
pling methods) for different types of data. Then, methods
for processing multivariate data are briefly reviewed. The
section following it deals with clinical trials. Finally, the
last section discusses computer software and guides the
reader through a collection of bibliographic references
adapted to different levels of expertise and topics.

DATA SAMPLE AND EXPERIMENTAL DESIGN

Any experimental or observational investigation is moti-
vated by a general problem that can be tackled by answer-
ing specific questions. Associated with the general problem
will be a population. For example, the population can be all
human beings. The problem may be to estimate the prob-
ability by age bracket for someone to develop lung cancer.
Another population may be the full range of responses of a
medical device to measure heart pressure and the problem
may be to model the noise behavior of this apparatus.

Often, experiments aim at comparing two subpopula-
tions and determining if there is a (significant) difference
between them. For example, the frequency occurrence of
lung cancer of smokers compared may be compared to
nonsmokers or the signal/noise ratio generated by two
brands of medical devices may be compared and deter-
mined which brand outperforms the other with respect to
this measure.

How can representative samples be chosen from such
populations? Guided by the list of specific questions, sam-
ples will be drawn from specified subpopulations. For
example, the study plan might specify that 1000 presently
cancer-free persons will be drawn from the greater Los
Angeles area. These 1000 persons would be composed of
random samples of specified sizes of smokers and non-
smokers of varying ages and occupations. Thus, the
description of the sampling plan will imply to some extent
the nature of the target subpopulation, in this case smok-
ing individuals.

Choosing a random sample may not be easy and there
are two types of errors associated with choosing represen-
tative samples: sampling errors and nonsampling errors.
Sampling errors are those errors due to chance variations
resulting from sampling a population. For example, in a
population of 100,000 individuals, suppose that 100 have a
certain genetic trait and in a (random) sample of 10,000, 8
have the trait. The experimenter will estimate that 8/
10,000 of the population or 80/100,000 individuals have
the trait, and in doing so will have underestimated the
actual percentage. Imagine conducting this experiment
(i.e., drawing a random sample of 10,000 and examining
for the trait) repeatedly. The observed number of sampled
individuals having the trait will fluctuate. This phenom-
enon is called the sampling error. Indeed, if sampling is
truly random, the observed number having the trait in
each repetition will fluctuate randomly ~10. Furthermore,
the limits within which most fluctuations will
occur are estimable using standard statistical methods.
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Consequently, the experimenter not only acknowledges the
presence of sampling errors, but he can estimate their
effect.

In contrast, variation associated with improper sam-
pling is called nonsampling error. For example, the entire
target population may not be accessible to the experimen-
ter for the purpose of choosing a sample. The results of the
analysis will be biased if the accessible and nonaccessible
portions of the population are different with respect to
the characteristic(s) being investigated. Increasing sample
size within the accessible portion will not solve the pro-
blem. The sample, although random within the accessible
portion, will not be representative of the target population.
The experimenter is often not aware of the presence of
nonsampling errors (e.g., in the above context, the experi-
menter may not be aware that the trait occurs with higher
frequency in a particular ethnic group that is less acces-
sible to sampling than other groups within the population).
Furthermore, even when a source of nonsampling error is
identified, there may not be a practical way of assessing its
effect. The only recourse when a source of nonsampling
error is identified is to document its nature as thoroughly
as possible. Clinical trials involving survival studies are
often associated with specific nonsampling errors (see the
section dealing with clinical trials below).

DESCRIPTIVE STATISTICS

Descriptive statistics are tabular, graphical, and numer-
ical methods by which essential features of a sample can be
described. Although these same methods can be used to
describe entire populations, they are more often applied to
samples in order to capture population characteristics by
inference.

The two main types of data samples will be differen-
tiated: qualitative data samples and quantitative data
samples. Qualitative data arises when the characteristic
being observed is not measurable. A typical case is the
“success” or “failure” of a particular test. For example, to
test the effect of a drug in a clinical trial setting, the
experimenter may define two possible outcomes for each
patient: either the drug was effective in treating the
patient, or the drug was not effective. In the case of two
possible outcomes, any sample of size n can be represented
as a sequence of n nominal outcome x1, xs,. . .,x, that can
assume either the value success or failure.

By contrast, quantitative data arise when the charac-
teristics being observed can be described by numbers.
Discrete quantitative data is countable, whereas continu-
ous data may assume any value, apart from any precision
constraint imposed by the measuring instrument. Discrete
quantitative data may be obtained by counting the number
of each possible outcome from a qualitative data sample.
Examples of discrete data may be the number of subjects
sensitive to the effect of a drug (number of success and
number of failure). Examples of continuous data are
weight, height, pressure, and survival time. Thus, any
quantitative data sample of size n may be represented
as a sequence of n numbers x4, xs,. . .,x, and sample statis-
tics are functions of these numbers.
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Table 1. Result of a Hearing Aid Device Satisfaction
Survey in 1000 Patients Showing the Frequency Distribu-
tion of Each Response

Satisfaction rank Number of Responses

0 38
1 144
2 342
3 287
4 164
5 25
Total 1000

Discrete data may be preprocessed using frequency
tables and represented using histograms. This is best
illustrated by an example. For discrete data, consider a
survey in which 1000 patients fill in a questionnaire for
assessing the quality of a hearing aid device. Each patient
has to rank product satisfaction from 0 to 5, each rank
being associated with a detailed description of hearing
quality. Table 1 represents the frequency of each response
type. A graphical equivalent is the frequency histogram
illustrated in Fig. 1. In the histogram, the heights of the
bars are the frequencies of each response type. The histo-
gram is a powerful visual aid to obtain a general picture of
the data distribution. In Fig. 1, notice a majority of answers
corresponding to response type 2 and a 10-fold frequency
drop for response types 0 and 5 compared to response
type 2.

For continuous data, consider the data sample in
Table 2, which represents amounts of infant serum calcium
in mg-100 mL* for a random sample of 75 week old infants
whose mothers received vitamin D supplements during
pregnancy. Little information is conveyed by the list of
numbers. To depict the central tendency and variability
of the data, Table 3 groups the data into six classes, each
of width 0.03 mg-100 mL ™! The “frequency” column
in Table 3 gives the number of sample values occurring
in each class. The picture given by the frequency distribu-
tion in Table 3 is a clearer representation of central
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Figure 1. Frequency histogram for the hearing aid device satis-
faction survey of Table 1.
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Table 2. Serum Calcium (mg-100 mL ') in a Random Sample of 75 Week Old Infants Whose Mother Received Vitamin D

Supplement During Pregnancy

9.37 9.34 9.38
9.29 9.36 9.30
9.35 9.36 9.30
9.32 9.37 9.34
9.36 9.33 9.34
9.38 9.39 9.34
9.29 9.41 9.27
9.31 9.33 9.35
9.40 9.35 9.37
9.35 9.36 9.39
9.31 9.36 9.34

9.32
9.31
9.32
9.38
9.37
9.32
9.36
9.34
9.35
9.31
9.31

9.33 9.28 9.34
9.33 9.34 9.35
9.33 9.35 9.36
9.36 9.37 9.36
9.44 9.32 9.36
9.30 9.30 9.36
9.41 9.37 9.31
9.35 9.34 9.38
9.32 9.36 9.35
9.31 9.30

9.32 9.34

tendency and variability of the data than that presented by
Table 2. In Table 3, data are grouped in six classes of equal
size and it is possible to see the centering of the data about
the 9.325-9.355 class and its variability: The measure-
ments vary from 9.27 to 9.44 with ~95% of them between
9.29 and 9.41. The advantage of grouped frequency dis-
tributions is that grouping smoothes the data so that
essential features are more discernible. Figure 2 repre-
sents the corresponding histogram. The sides of the bars of
the histogram are drawn at the class boundaries and their
heights are the frequencies or the relative frequencies
(frequency/sample size). In the histogram, the distribution
of the data centered about the point 9.34 is clearly seen.
Although grouping smoothes the data, too much grouping
(that is choosing too few classes) will tend to mask rather
than enhance the sample’s essential features.

There are many numerical indicators for summarizing
and describing data. The most common ones indicate cen-
tral tendency, variability, and proportional representation
(the sample mean, variance, and percentiles, respectively).
We assume that any characteristic of interest in a popula-
tion, and hence in a sample, can be represented by a
number. This is obvious for measurements and counts,
but even qualitative characteristics (described by discrete
variables) can be numerically represented. For example, if
a population is dichotomized into those individuals who are
carriers of a particular disease and those who are not, a 1
can be assigned to each carrier and a 0 to each noncarrier.
The sample can then be represented by a sequence of zeroes
and ones.

The most common measure of central tendency is the

sample mean:
M = (xy+x2+...+x,)/n also noted X (1)

Table 3. Frequency distribution of infant serum calcium
data

Serum Calcium mg-100 mL ! Frequency
9.265-9.295 4
9.295-9.325 18
9.325-9.355 24
9.355-9.385 22
9.385-9.415 6
9.415-9.445 1
Total 75

where x1, xg,...,x, is the collection of numbers from a
sample of size n. The sample mean can be roughly visua-
lized as the abscissa of the horizontal center of gravity of
the frequency histogram. For the serum calcium data of
Table 2, M =9.34, which happens to be the midpoint of the
highest bar of the histogram (Fig. 2). This histogram is
roughly symmetric about a vertical line drawn through M,
but this is not necessarily true of all histograms. Histo-
grams of counts and survival times data are often skewed
to the right (long-tailed with concentrated mass at the
lower values). Consequently, the idea of M as a center of
gravity is important to bear in mind when using it to
indicate central tendency. For example, the median
(described later in this section) may be a more appropriate
index of centrality depending on the type of data and the
kind of information one wishes to convey.
The sample variance, defined by

52 :%[(xl MY 4 (g — M)+ (0 — M)

-1
" (x; — M)
n—1

(2)
i=1

is a measure of variability or dispersion of the data. As

such, it can be motivated as follows: x;-M is the deviation of

the ith data sample from the sample mean, that is, from the

“center” of the data; we are interested in the amount of

30

251

20+

0 }
9.235 9.265 9.295 9325 9355 9.385 9.415 9.445 9475

Infant serum calcium (mg/100 mL)

Figure 2. Frequency histogram of infant serum calcium data of
Tables 2 and 3. The curve on the top of the histogram is another
representation of probability density for continuous data.



deviation, not its direction, so the sign is disregarded by
calculating the squared deviation (x;-M)?; finally, the
squared deviations are averaged by summing them and
dividing by the sample size —1. (Division by n—1 ensures
that the sample variance is an unbiased estimate of the
population variance.) Note that an equivalent and often
more practical formula for computing the variance may be
obtained by developing Eq. 2:

2 S xZ —nM?

s n-—1

3)

A measure of variability in the original units is then
obtained by taking the square root of the sample variance.
Specifically, the sample standard deviation, denoted s, is
the square root of the sample variance.

For the serum calcium data of Table 2, s>=0.0010 and
s=0.03 mg-100 mL~'. The reader might wonder how the
number 0.03 gives an indication of variability. Note that for
the serum calcium data M+s=9.34+0.03 contains 73% of
the data, M+2s=9.34+0.06 contains 95% and M+3s=
9.34+0.09 contains 99%. It can be shown that the interval
M+3s will include at least 89% of any set of data (irrespec-
tive of the data distribution).

An alternative measure of central tendency is the med-
ian value of a data sample. The median is essentially the
sample value at the middle of the list of sorted sample
values. We say essentially because a particular sample
may have no such value. In an odd-numbered sample,
the median is the middle value; in an even-numbered
sample, where there is no middle value, it is conventional
to take the average of the two middle values. For the serum
calcium data of Table 3, the median is equal to 9.34.

By extension to the median, the sample p percentile
(say, e.g., 25th percentile) is the sample value at or below
which p% (25%) of the sample values lie. If there is no value
at a specific percentile, the average between the upper and
lower closest existing round percentile is used. Knowledge
of a few sample percentiles can provide important informa-
tion about the population.

For skewed frequency distributions, the median may be
more informative for assessing a population center than
the mean. Similarly, an alternative to the standard devia-
tion is the interquartile range: it is defined as the seventy-
fifth minus the twenty-fifth percentiles and is a variability
index not as influenced by outliers as the standard devia-
tion.

There are many other descriptive and numerical meth-
ods (see, e.g., Ref. (2)). It should be emphasized that the
purpose of these methods is usually not to study the data
sample itself, but rather to infer a picture of the population
from which the sample is taken. In the next section,
standard population distributions and their associated
statistics are described.

PROBABILITY, RANDOM VARIABLES, AND PROBABILITY
DISTRIBUTIONS

The foundation of all statistical methodology is probability
theory, which progresses from elementary to the most
advanced mathematics. Much of the misunderstanding
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and abuse of statistics comes from the lack of understand-
ing of its probabilistic foundation. When assumptions of
the underlying probabilistic (mathematical) model are
grossly violated, derived inferential methods will lead to
misleading and irrational conclusions. Here, only enough
probability theory to provide a framework for this article is
discussed.

In the rest of this article, experiments that have more
than one possible outcome, the actual outcome being deter-
mined by some chance mechanism will be studied. The set
of possible outcomes of an experiment is called its sample
space; subsets of the sample space are called events, and an
event is said to occur if the actual outcome of the experi-
ment is a member of that event. A simple example follows.

The experiment will be the toss of a pair of fair coins,
arbitrarily labeled coin number 1 and coin number 2. The
outcome (1,0) means that coin No. 1 shows a head and coin
No. 2 shows a tail. Then, the sample space by the collection
of all possible outcomes can be specified:

S ={(0,0)(0,1))(1,0)(1, 1)} (4)

There are four ordered pairs so there are four possible
outcomes in this coin-tossing experiment. Consider the
event A “toss one head and one tail”, which can be repre-
sented by A ={(1,0) (0,1)}. If the actual outcome is (0,1) then
the event A has occurred.

In the example above, the probability for event A to
occur is obviously 50%. However, in most experiments it is
not possible to intuitively estimate probabilities, so the
next step in setting up a probabilistic framework for an
experiment is to assign, through some mathematical
model, a probability to each event in the sample space.

Definition of Probability

A probability measure is a rule, say P, which associates
with each event contained in a sample space S a number
such that the following properties are satisfied:

1. For any event, A, P(A) > 0.

2. P(S) =1 (since S contains all the outcomes, S always
occurs).

3. P(not A)+P(A)=1.

4. If A and B are mutually exclusive events (that
cannot occur simultaneously) and independent
events (that are not linked in any way), then

P(AorB) =P(A)+P(B) and P(AandB)=0

Many elementary probability theorems (rules) follow
directly from these definitions.

Probability and Relative Frequency

The axiomatic definition above and its derived theorems
dictate the properties that probability must satisfy, but
they do not indicate how to assign probabilities to events.
The major classical and cultural interpretation of prob-
abilities is the relative frequency interpretation. Consider
an experiment that is (at least conceptually) infinitely
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repeatable. Let A be any event and let n be the number of
times the event A occurs in n repetitions of the experiment;
then the relative frequency of occurrence of A in the n
repetitions is na/n. For example, if mass production of a
medical device reliably yields 7 malfunctioning devices out
of 100, the relative frequency of occurrence of a defective
device is 7/100.

The probability of A is defined by P(A) =lim nu/n asn —
00, where this limit is assumed to exist. The number P(A)
can never be known, but if the experiment can in fact be
repeated a large number of times, it can be estimated by the
relative frequency of occurrence of A.

The relative frequency interpretation is an objective
interpretation because the probability of an event is
assumed to be independent of judgment by the observer.
In the subjective interpretation of probability, a probability
is assigned to an event according to the assigner’s strength
of belief that the event will occur, on a scale of 0—1. The
assigner could be an expert in a specific field, for example, a
cardiologist that provides the probability for a sample of
electrocardiograms to be pathological.

Probability Distribution Definition and Probability Mass
Function

It has been assumed that all data can be numerically
represented. Thus, the outcome of an experiment in which
one item will be randomly drawn from a population will be
a number, but this number cannot be known in advance.
Let the potential outcome of the experiment be denoted by
X, whichis called arandom variable in statistics. When the
item is drawn, X will be realized or observed. Although the
numerical values that X will take cannot be known in
advance, the random mechanism that governs the out-
come can perhaps be described by a probability model.
Using the model, the probability that the random variable
X will take a value within a set or range of numbers can be
calculated.

One such popular mathematical model is the probability
distribution of a discrete random variable X. It can be best
described as a mathematical equation or table that gives,
for each value x that X can assume, the probability asso-
ciated with this value P(X =x). For example, if X represents
the outcome of the tossing of a coin, there are two possible
outcomes, tail and head. If it is a fair coin P(X =tail) =0.5
and P(X = head) = 0.5. In statistics, the function P(X =x) is
called the probability mass function of X.

It follows from the relative frequency interpretation of
probability that, for a discrete random variable or for the
frequency distribution of a continuous variable, relative
frequency histograms estimate the probability mass func-
tions of this variable. For example, in Table 3, if the
random variable X indicates the serum calcium measure,
then

P(Xis in the first bin) = P(9.265 < X <9.295) = 4/75

the ~ symbol on P indicating estimated probability
values, since actual probabilities describe the population
itself and cannot be calculated from data samples.
Similarly the probability that X is in the second bin,

the third bin, ... can be estimated and the collection of
these probabilities constitute an estimated probability
mass function.

Probability Density Function for Continuous Variables

The probability mass function above best describes discrete
events, but what probabilities can be assigned to contin-
uous variables? Since a continuous variable X can assume
any value on a continuum, the probability that X assumes a
particular value is 0 (except in very particular cases that
will not be discussed here). Consequently, associated with
a continuous random variable X, is a function f¥, called its
probability density function that can be used to compute
probability. The probability that a continuous random
variable X assumes a value between values x; and x5 is
the area under the graph of fx over the interval x; and x5;
mathematically

Plx; < X <xp) = /xz fi () 5)

For example, for the infant serum data of Table 2 (see
also Table 3), it can be estimated that the probability that
an infant whose mother received a vitamin D supplement
during pregnancy has between 9.35 and 9.38 mg-100 mL !
calcium is 22/75 or 0.293, which is the relative frequency of
the 9.355-9.385 class in the sample. For continuous data, a
smooth curve passing through the midpoint of a histogram
bars’ upper limit should resemble the probability density
function of the underlying population.

There are many mathematical models of probability dis-
tribution. Three of the most commonly used probability
distribution models described below are the binomial
distribution and the Poisson distribution for discrete
variables, and the normal distribution for continuous
variables.

The Binomial Distribution

The scenario leading to the binomial distribution is an
experiment that consists of n independent, repeated trials,
each of which can end in only one of two ways arbitrarily
labeled success or failure. The probability that any trial
ends in a success is p (and hence ¢ = 1—p for a “failure”). Let
the random variable X denote the total number of successes
in the n trials, and x denote a number in {0; .. .; n}. Under
these assumptions:

P(X:x):(n>pxq”7x x=0,1,....n (6)
x
with

n n!

<x> :x!(n—x)! @)

where n!=1"2"3..."n is n factorial.

For example, suppose the proportion of carriers of an
infectious disease in a large population is 10% (p =0.1) and
that the number of carriers follows a binomial distribution.
If 20 individuals are sampled (n = 20) and X is the number
of carriers (successes) in the sample, then the probability



that there will be exactly one carrier in the sample is
_ (20 1 20-1 _
PX=1)= 1 (0.10)"(0.90) =0.27

More complex probabilities may be calculated with the
help of probability rules and definitions. For instance the
probability that there will be at least two carriers in the
sample is
PX>2) = 1-PX<2)

(see third probability definition)
= 1-PX=0o0rX=1)
1(PX=0)+PX =1))
(see fourth probability definition)

1—(200) (0.10)°(0.90)%°— (210)(0.10)1(0.90)19
1-0.12-0.27=0.61

Historically, single trials of a binomial distribution are
called Bernoulli variates after the Swiss mathematician
James Bernoulli who discovered it at the end of the seven-
teenth century.

The Poisson Distribution

The Poisson distribution is often used to represent the
number of successive independent events of a specified
type (e.g., cases of flu) with low probability of occurrence
(<10%) in some specified interval of time or space. The
Poisson distribution is also often used to represent
the number of occurrence of events of a specified type
where there is no natural upper limit, for example, the
number of radioactive particles emitted by a sample over a
set time period. Specifically, X is a Poisson random variable
if it obeys the following formula:

PX=x)=e*2/x! x=0,1,2,... )

where e =2.178. . .is the natural logarithmic base and \ is a
given constant. For example, suppose the number of a
particular type of bacteria in a standard area (e.g.,
1em?) can be described by a Poisson distribution with
parameter A\ =5. Then, the probability that there are no
more than 3 bacteria in the standard area is given by

PX<3)=PX=0)+P(X=1)+P(X=2)+PX =3)

=e55%/0! + 7551 /1! + 7552 /2! + 7553 /3!
= 0.265

Note that the Poisson and the binomial distributions are
closely related. In the case of a rare event (p <10%), the
binomial distribution (described by probability p and n
events) is well approximated by the Poisson distribution
with the constant N\ =np. The Poisson distribution was
named after the French mathematician Siméon-Denis
Poisson, who discovered it in the early part of the nine-
teenth century.

The Normal Distribution

The binomial and Poisson distributions describe discrete
events, but there are also many distributions describing
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continuous variables. The most important one is the nor-
mal distribution (also called Laplace—Gauss distribution as
it was discovered by the French astronomer Pierre—Simon
Laplace and the German mathematician Karl Friedrich
Gauss in the early nineteenth century). Normal distribu-
tions arise as a result of many small random fluctuations
about some general average (e.g., repeated recordings of a
constant body temperature using a noisy electronic ther-
mometer). A random variable X is said to be a normal or
Gaussian random variable with mean parameter p and
standard deviation parameter o if its probability density
function is

ficlw) = — el 127

—oo<x< 9
o 00 <X <00 9)

The normal probability density function graphed in
Fig. 3, is bell shaped with tails rather rapidly receding
to zero height. Because fx represents probability density,
the total area bounded by the curve is 1 (see Eq. 9). The
area between two values of variable X (x; and xy where
x1<xg) represents the probability that X lies between x;
and x5, (Eq. 5).

As shown in Fig. 3, if X is normal (p, o), it can be
calculated that P(p. —30 < X < w+30)=0.997, which,
according to the relative frequency interpretation of prob-
ability, states that ~99.7% of a large sample from a “nor-
mally distributed population” will be contained in the
interval mean plus or minus three standard deviations
(£ 30).

Note that there is a relation between the normal and the
binomial distribution. Using the same notation as in Eq. 6,
if n, the number of samples, is large enough then the
variable z defined as

x—np
z= (10)
Vnpq

is approximately normally distributed with mean 0 and
standard deviation 1. In a coin throwing experiment,
throwing the coin a large number of times and counting

0.4

0.3

0.2

0.1

_ N

0 .
-4 -3 =2 -1 0 1 2 3 4
-36 26 -© +c +206 +30

z value

Figure 3. The normal probability density function showing
symmetry about a vertical line through p and the role of o as a
variability parameter. Vertical bars indicates +o, +20, +30.
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the number of heads x, then building a histogram for the
value z, the histogram will be close to a normal distribution
(as shown in Fig. 3). Similarly, there is a relation between
the Poisson and the normal distribution, the variable z
defined as z=(x—N)/\ is normally distributed for large
values of \.

Many statistical inferential methods described in the
next section assume that the data is approximately nor-
mally distributed. Much abuse occurs, however, when
these methods are applied blindly with no verification of
the normality assumption. Incidentally, methods that
incorporate assumptions of normality often can be applied
to non-normal situations because under certain conditions,
the normal distribution can approximate other distribu-
tions, such as the binomial and the Poisson distributions.
Sometimes, the data can also be preprocessed to fit the
normal distribution. For example, a histogram might indi-
cate nonnormality, while a histogram of the logarithms of
the data would fit the normal distribution, indicating that
normal-based models can be applied to the log-transformed
data. These transformations are discussed in most experi-
mental design textbooks.

The importance of the normal distribution in statistics is
also due to the central limit theorem in statistics that
states that the distribution of any linear mixture of two
or more independent random variables is more normal (has
a shape closer to the normal distribution) than the dis-
tribution of the random variables themselves. This prop-
erty is used by some algorithms processing multivariate
data (as described in a later section).

There are many other continuous probability distribu-
tions besides the normal distribution. For example, the
most commonly used distribution in survival analysis is
the Weibull distribution. The von Mises distribution allows
parametric statistical tests for periodic data (i.e., seasonal).

Characteristics of Probability Distributions

Just as there are numerical indexes for sample description,
for example, sample means, variances, and percentiles,
there are numerical characteristics of probability distribu-
tions. The expectation or mean (not sample mean) of an
random variable X is

EX) = ZxP(X =x) Xdiscrete
x 1
= [*_xfx(x)dx X continuous

The expectation E is a measure of central tendency for a
population (i.e., the center of gravity of the probability
distribution about the y axis). The variance of X is defined
in terms of expectation by

Var(X)=E{[X — E(X)%} (12)

In words, Var(X) is the expected squared deviation of X
from E(X), and in this sense is a measure of variability or
dispersion for a population. The standard deviation of X is
the square root of its variance. Table 4 indicates mean and
variance for the binomial, the Poisson, and the normal
distribution.

Numerical descriptors of populations are often the very
things we want to know about populations. They should not

Table 4. Mean and Variance for Standard Distributions
(see text for details)

Binomial Poisson Normal
Mean w=Np w=A n
Variance o%=Npgq o=\ o?

be confused with their sample counterparts; the sample
numerical descriptors are the basis for drawing inferences
regarding their population counterparts, which are of pri-
mary interest.

Statistical Inference

A statistical hypothesis is a statement about the probabil-
ity distribution of populations using one or more data
samples. Typical questions are Is this single data sample
consistent with this theoretical distribution of values?, Are
these two data samples originating from the same popula-
tion?, Are these n data samples originating from the same
population?. Associated with each of these questions, in
statistics, two hypotheses are usually formulated.

Hypothesis Hy: All data samples originate from the same
population (or the single data sample is consistent
with a given theoretical distribution).

Hypothesis H: Some data samples do not originate from
the same population (or the single data sample is not
consistent with the given theoretical distribution).

The test is called significant if hypothesis Hy is rejected
with respect to a user-defined confidence interval (e.g., 5%
of chance of wrongly rejecting H,). It is important to
remember that inference tests can never disprove hypoth-
esis Hy. Instead, based on the significance threshold and on
the inference test chosen, it can be said that the data
support rejecting Hy. The test is called nonsignificant if
the hypothesis Hy and reject hypothesis H; is accepted.
Accepting Hy means that we failed to find any significant
difference with respect to our user-defined confidence
interval. Because the error in accepting Hy is usually large
(see error types below), in general we should avoid drawing
any conclusion about the experiment when accepting H).

Degree of Freedom. Elementary tests usually depend
on the data sample size as well as the number of para-
meters (e.g., mean or variance) that have to be estimated
from the sample, to run the test. Specifically, the number of
degrees of freedom of a statistics is defined as the number of
independent observations minus the number of population
parameters, which must be estimated from sample obser-
vations. Details will be provided for each test.

p-Values. Once hypotheses H, and H; have been
defined, that a test has been chosen to address these
hypotheses (see below), and that parameters for this test
have been calculated, one must choose a level of signifi-
cance. The term p <0.05 is the arbitrary value that is
generally accepted to be significant. This means that there
must be < a 5% possibility of falsely detecting a significant
difference. Now describe how the p value relates to the
different types of errors associated with elementary tests.



Type | and Type Il Errors. If a hypothesis Hj is rejected
when it should be accepted, it can be said that a type I error
has been made. If a hypothesis H, is accepted when it
should be rejected, it can be said that a type II error has
been made. In either case, a wrong decision or judgment
has occurred. This is not a simple matter because decreas-
ing one error type usually leads to increasing the other
error type. One way of getting around this problem is just
to set your significance level at 0.05 (and not at 0.01 or
0.001). In this way, you are balancing between type I and
type II errors in your decision making process. One way to
decrease both error types is to increase the size of the
sample. However, two ways of analyzing the same size
dataset (i.e., two types of inference test) might have dif-
ferent efficiency, so that the more efficient might give
better performance on both error types. As an example
of type I and type II errors, let us imagine that there is a
significant difference between the average of blood pres-
sure measured from a population of patients and the
general population at p =0.05. Then there will be a 5%
chance that our statement is false (type I error). This
means that if we repeat the test 100 times, when in fact
no real effects are present, we will draw a wrong conclusion
~5% of the time that we observe a significant difference. In
contrast, if we state that there is no such difference
between population of patients at p =0.05, there is not a
5% chance of being wrong, but usually more (type II error).
This is why, in general, when accepting hypothesis Hy, no
conclusions should be drawn about the results of an experi-
ment. The exact calculation of type II error usually depends
on the size of the actual effect in the population, hence it
is usually described by curves as a function of effect
magnitude.
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Correction for Multiple Comparisons. When multiple
tests are performed, the probability that one of them is
significant by chance becomes larger. As for type I error, if
100 tests are performed with significance threshold of
p=0.05, when in fact no real effects are present, then on
average about five of them will indicate significance, but
will be false positives. This is the case, for example, when
processing biophysical images, such as magnetic, reso-
nance imaging data: a collection of values is acquired for
each coordinate on a three-dimensional (3D) grid and a
statistical test must be performed on this data. The same
problem may arise when processing time series data. The
standard conservative approach developed by Bonferroni
(3) consists of dividing the p-value threshold by the number
of comparisons performed. For example, for 100 tests per-
formed at p=0.05, the corrected p value is 0.05/100 =
0.0005. This is a conservative approach and a less stringent
method has been developed by Holm (4): first choose a
significance level p =« (e.g., p =0.05). Then compute the
exact p-value for each test, which is usually possible using
modern computerized approaches. Rank the collection of p-
values from smallest to largest. The smallest p-value is
tested against o/N, where N is the number of tests. If the
smallest p-value is not <a/N, stop the procedure. However,
if it is <a/N, proceed to test the second smallest p-value
against a/(N—1), and so on. A variant of the Holm’s
procedure consist of testing the first p-value against a/N,
the second one against 2a/N, the third one against 3a/N,
and so on. Technical details and theory about multiple
comparisons may be found in (5).

Paired/Unpaired Samples. Table 5 distinguishes
between paired versus unpaired data samples. For

Table 5. Which Statistical Inference Test to Use for Which Type of Data

Goal

Dataset
Continuous Continuous
measurement measurement, Rank, or
Binomial or (from a normal Score (from non-
Discrete distribution) normal distribution)

Example of data sample

Describe one data sample
Compare one data
sample to a hypothetical
distribution
Compare two
paired samples
Compare two
unpaired samples
Compare three or
more unmatched samples
Compare three or
more matched samples
Quantify
association between
two paired samples

List of patients
recovering or not
after a treatment
Proportions
x2 or Binomial test
Sign test
x? Fisher’s exact test
X2 test

Cochrane Q test

Contingency coefficients

Readings of heart
pressure from
several patients

Mean, SD

One-sample t test

Paired t test
Unpaired t test

One-way ANOVA?

Repeated-measures ANOVA®

Pearson correlation

Ranking of several
treatment efficiency by
one expert

Median
Sign test or
Wilcoxon test

Sign test or

Wilcoxon test
Mann-Whitney test
Kruskal-Wallis test

Friedman test

Spearman correlation

“All statistical tests in this table are described in the text and often instantiated using a numerical example.
®Analysis of Variance = ANOVA
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unpaired data samples, there is no direct correspondence
between values. This may be the case when a specific
measure (e.g., blood pressure) is taken from two distinct
populations of patients (e.g., patients suffering from heart
failure and control patients). The two data samples corre-
sponding to the two groups of patients are said to be
unpaired because there is no relationship between them.
In contrast, for paired samples, each value in one sample
corresponds to a value in the other sample. In the previous
example, it could be the case if each patient tested had a
twin volunteering to be a control patient. This would also
be the case if two assessments were performed on the same
patients (e.g., measure of blood pressure before and after
taking a drug). Note that paired groups must necessarily be
of the same size. Matched/unmatched data samples are an
extension of paired/unpaired data samples when there are
more than two samples.

Sampling With or Without Replacement. Sampling with
replacement means that each item is put back in the data
sample after being sampled (so it may be sampled more
than once and appear twice or more in a data sample).
Sampling with replacement satisfies the requirement that
the trials are independent, but when the sample size is
small relative to the size of the population, sampling with
or without replacement makes little difference. In elemen-
tary statistics, a representative sample is synonymous
with the concept of a random sample. When sampling from
a population of finite size, a sample of n items is a random
sample if it is chosen in such a way that any other sample of
size n would be equally likely to be chosen. Sampled items
can be chosen with or without replacement. Although
impractical in many situations, sampling with replace-
ment leads to easier mathematical analysis. When the
population is large relative to the sample size, the analy-
tical methods developed for sampling with replacement
yield good approximations. A random sample can be chosen
by assigning a number to each member of the population,
and then choosing at random n numbers (with or without
replacement). This can be done by the so-called Monte
Carlo method (consisting of random draws) that uses
computer-generated (pseudo)-random numbers.

Table 5 indicates which statistical test should be used
depending on data type and question type. Most types of
questions have already been described when hypotheses
H, and H; were defined. The last row of Table 5, which is
concerned with the relationship between data samples (or
more specifically the relationship between variables under-
lying two paired data samples) was not covered. The cor-
responding question may be formulated as ‘Is there any
relationship between the two variables (e.g., two paired
measurements)?” The Hy hypothesis is that there is no
relationship between the two variables.

Columns of Table 5 contain elementary tests for differ-
ent types of variables. Elementary tests cover confidence
interval estimation and parametric hypothesis testing for
situations involving normally distributed samples, includ-
ing two-sample situations where the purpose is to compare
two populations with respect to their means or variances.
Other types of elementary confidence intervals are for
proportions and difference of proportions, usually based

on the binomial distribution or based on the normal
approximation to the binomial distribution. Confidence
interval estimation for parameters of nonnormal distribu-
tions are much more difficult and closed form formulas
often do not exist. In these cases, experimenters must use
nonparametric statistical tests that only take into account
rank ordering of data samples. They may also use resam-
pling statistical tests, which estimates confidence intervals
using many computer-generated random resamplings. For
practicality, in Table 5, hypothesis testing was divided into
three main categories: hypothesis testing on discrete vari-
ables, parametric statistical testing on continuous vari-
ables, and nonparametric statistical testing on continuous
variables. In a separate section, resampling methods will
be dealt with, since it may be applied to any type of data.
The list of tests is not exhaustive but instead seeks to
provide, within the limited scope of this short article, a
range of methods to perform statistical inference on dif-
ferent types of data.

Which type of test to use is often one of the most delicate
choices an experimenter has to make. For continuous data,
for example, one could use at least three tests: a para-
metric, a nonparametric, or a resampling inference test.
Different tests make different assumptions: parametric
test, such as the ¢-test, make the hypothesis that the
data is normally distributed. Nonparametric tests make
fewer assumptions about the population distribution but
require more data samples. Resampling tests make the
assumption that the data samples are an accurate repre-
sentation of the population. There is no ideal test
(although some applied statisticians would argue that
resampling methods are indeed superior to other meth-
ods), and the test to choose often depends on the type of
data being processed or common usage in one specific field
of research.

Testing Hypothesis on Discrete Variables

For discrete variables, data is most often represented by
proportions of different outcomes. As shown in the first
column of Table 5, specific tests have been designed to deal
and compare proportions between data samples. Some of
these tests (as indicated below) can only deal with binomial
data samples (success or failure).

Goodness of Fit to Distribution for One Data Sample. A
goodness of fit test may be used to compare one data sample
to a hypothetical value or distribution. In a goodness-of-fit
test the hypotheses are concerned with the distribution
itself. For example, a drug has been repeatedly tested on
adults and has shown minor side effects in 2.5% of the cases
in which it was administered. To validate this drug for
treating children, it is given to a sample of 300 children.
The goal of this study is to determine if children showed
more or less side effects than adults. The hypothesis Hy is
that the distribution of sample data values for children is
generally the same as the hypothetical distribution for
adults. The hypothesis H; is that the distribution of sample
data values for children generally differs from the hypothe-
tical distribution for adults. Table 6 indicates that 13 out of
300 children showed an abnormal reaction to the drug. The



Table 6. Measured and Expected Frequencies of Side
Effect for 300 Children Treated With a Test Drug

Children Expected value
Side effect 13 7.5
No side effects 287 292.5
Total 300 300

second column in Table 6 indicates the expected values
from the theoretical distribution (2.5% of cases for 300
subjects is 7.5 individuals; it is not so important that the
expected value is not a whole number since this distribu-
tion is only theoretical).

The x2 value is then simply calculated by comparing the
expected frequencies e; (7.5 individuals showing side
effects) and ey (292.5 individuals showing no side effects)
to the observed frequencies O; (13) and O, (287) using the
formula:

s (01 —e)?

2= L (02— es)”

€1 €2

or more generally

2 (0; —ei)”
X Z o (13)
where O; is the frequency observation in row i and e; is the
corresponding expected frequency. The degrees of freedom
is equal to (n — 1), where n is the number of rows in the
table. Once the x? value and the degrees of freedom have
been calculated, the critical value for thzrit can be looked up
in Table 7 for a given level of significance. If x2 > Xgrit’ we
reject hypothesis Hy in favor of hypothesis H; and
conclude that the data support the hypothesis that there
is a difference between the sample data and the
theoretical distribution at the 5% level of significance.
In the example shown in Table 6,

s (13—-175)% (287 —2925)%
C="ws T oees 1

with 1 degree of freedom (2 rows minus 1). For a test at the
5% level of significance (p = 0.05) with 1 degree of freedom,
xgrit in the x? table (Table 7) is equal to 3.84. Since
4.13 > 3.84, the hypothesis that the proportion of children
having side effects in the same as that of adults is rejected.
Comparing actual and expected frequencies in Table 6, we
conclude that children have higher occurrences of side
effects than adults for this drug.

Note that the construction of the x? table is relatively
simple. One can simply assume that a known population
(whose expected distribution is known) is sampled several
times and that the x? value is computed for each of these
samples. The histogram of these observed x? values, when
in fact no real effects are present, is an approximation to
the x? distribution for the null hypothesis (Fig. 4). The tails
of this distribution may be used to set thresholds for
significance testing (if an observed x? value ends up in
the tail of the distribution, then it is likely that it does not
originate from the known population). For example, the x2
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Table 7. x> Distribution of Critical Values®

p=0.05 p=0.01 p=0.001
1df 3.84 6.64 10.83
2 5.99 9.21 13.82
3 7.82 11.35 16.27
4 9.49 13.28 18.47
5 11.07 15.09 20.52
6 12.59 16.81 22.46
7 14.07 18.48 24.32
8 15.51 20.09 26.13
9 16.92 21.67 27.88
10 18.31 23.21 29.59
11 19.68 24.73 31.26
12 21.03 26.22 32.91
13 22.36 217.69 34.53
14 23.69 29.14 36.12
15 25.00 30.58 37.70
16 26.30 32.00 39.25
17 27.59 33.41 40.79
18 28.87 34.81 42.31
19 30.14 36.19 43.82
20 31.41 37.57 45.32
21 32.67 38.93 46.80
22 33.92 40.29 48.27
23 35.17 41.64 49.73
24 36.42 42.98 51.18
25 37.65 4431 52.62
26 38.89 45.64 54.05
27 40.11 46.96 55.48
28 41.34 48.28 56.89
29 42.56 49.59 58.30
30 43.77 50.89 59.70
35 49.80 57.34 66.62
40 55.76 63.69 73.41
50 67.51 76.15 86.66
60 79.08 88.38 99.62
70 90.53 100.42 112.31
80 101.88 112.33 124.84
90 113.15 124.12 137.19
100 124.34 135.81 149.48

“To use this table, choose a p value (column) and read the value for your
calculated degrees of freedom (df). If your calculated x> value is larger than
the one you read in the table, the test you performed is significant (see text
for details).

value for a data sample is significantly different from the x2
standard distribution at p =0.05 if it lies in the lower or
upper tails each containing only 2.5% of the values of the
standard x? distribution.

Binomial Test for Binomial Variables. For data samples
that are assumed to be obeying the binomial distribution, it
is possible to compute exact p values as explained in a
previous section. For example, a coin is tossed 10 times to
determine if it returns fair results or not. It returns 9
heads. The hypothesis Hj is that the coin is fair and that
the probability of obtaining a head is 0.5. The H; hypoth-
esis is that the coin is biased toward head. Using the
binomial distribution, the probability of obtaining an equal
or more extreme number of heads than the one measured
needs to be computed. The probability of obtaining 9 heads
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0.2 3 0.4 0.8
X dist. df =5 t dist. F dist.
df=5 df,=5
dfy=10
0.1 0.2 5 59 of 0.4
0, 5% o
5% of area i;g;’ of area 5% of area
Figure 4. Standard distributions (x2,
t, and F). Tails of these distributions are l l l
used to determine significance thresh- 0 0 0
olds (see text). 0 10 20 10 0 10 0 5 10
or more is equally or more extreme number of + or — than the one

P(X>9)=P(X=9)+P(X = 10) = (;0)0.59(1 —0.5)10-9

10
0.519=0.011
*(10)

It appears that this result would appear by chance in
only 1.1% of coin tossing trials if the coin is returning fair
results. If p < 0.05 is considered to be the standard thresh-
old for significance, it can be concluded that the coin does
return more heads than a fair coin at the 5% level of
significance. Note that this was a one-sided test, assuming
that there was prior knowledge that the coin will be biased
toward heads (based, e.g., on the aspect of the coin): for a
two-sided test that would assess if the coin is fair in
returning both faces and heads, it would be necessary to
add the probability of obtaining both 9 to 10 heads and 9 to
10 faces.

Sign Test to Compare Paired Samples. This test is best
illustrated by an example. To determine if drug A is more
effective than a drug B for pain control, 10 patients are
tested with these two drugs (with an interval of 7 days to
prevent carry over effects) and asked if the drug was
effective in controlling their pain. Hypothetical results
are shown in Table 8, with + signs indicating a positive
effect of the drug and — signs indicating no effect of the
drug. The last row indicates the sign of the difference
between the first two rows: a + sign indicates that drug
A is performing better than drug B and a — sign indicates
that drug B is performing better than drug A. When the
outcome is the same, the cell is left empty. If the two drugs
are equally effective, and if the sample is large enough,
then there should be approximately equal numbers of +
and — signs in the last row. The expected number of + signs
(6 out of 7 nonempty cells) using binomial probability (note
that for a large number of values, the approximation of the
binomial distribution by the normal distribution may be
used). We need to compute the probability of obtaining an

obtained, hence to compute P(0, 1, 2, 5, 6, 7):

7 7
P(+=0,1,2,5,6,7) = (0)0.50(1 —05)7%4+ (1)0.51

(1-05)7"1+...2045

Although it seems that drug A is a better pain killer than
drug B, the p value did not reach significance (p > 0.05). In
other words, Hy, the hypothesis that the two drugs are
performing equally well cannot be rejected. This type of
test applied to binomial variables is also sometimes called
the Mc Nemar’s test.

x* Test to Compare Two or More Unpaired Samples. The
X2 test allows the comparison of proportions observed in
several groups under two or more conditions. Suppose that
we wish to determine which of four prosthetic devices
perform better for improving muscular response. Each of
the four devices is implanted in four random samples of 100
patients each. For each patient, a clinician then estimates
if there has been no improvement or partial to full restora-
tion. Data is cross-classified as shown in Table 9. The test
described here is usually called the x? test of independence
because it aims at finding if results from different groups
can or cannot originate from the same population.

Here, the objective is to determine whether improve-
ment is independent of the type of device. If it is the case,
then the proportion of responses with no improvement and
partial to full restoration should be similar for all four types
of devices. The x? test allows the comparison of the actual
proportion of responses to each type of device to the idea-
lized proportions, where all types of devices perform
equally well. These proportions (also called expected fre-
quencies) are calculated by pooling the responses for all
types of devices. For instance, in Table 9, irrespective of the
device type, there are 120 patients showing no restoration
and 280 patients showing some degree of restoration, so the
expected frequency for no restoration is 30% and the
expected frequency for partial to full restoration is 70%.

Table 8. Success (+) or Failure (—) of Drug A and B for Reducing Pain in 10 Patients

Patient 1 2 3 4 5 6 7 8 9 10
Drug A + + + - + + + + + +
Drug B + - - + + - - + - -
Sign + + - + + + +
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Table 9. Results of Improvement in Muscular Response Following Implantation of an Electronic Device Available in Four

Types

Type of Device

1 2 3 4 Total
No improvement 35(30)° 40(30) 35(30) 10(30) 120
Partial-to-full restoration 65(70) 60(70) 65(70) 90(70) 280
Total 100 100 100 100 400

“Numbers are observed frequencies and number in parentheses are expected frequencies.

As for the simpler example earlier in this section com-
paring a sample data distribution to a theoretical distribu-
tion, the x? is simply calculated by comparing the expected
frequencies, denoted by e; ; for device i (where i ranges from
1 to 4) and outcome j (where j =1 indicates no restoration
and j=2 indicates partial to full restoration), to the
observed frequencies O;; using the formula:

K= "(0ij —eij)?/ei) (14)
i.Jj
The degrees of freedom is equal to (r— 1) (c — 1), where r
and c¢ are the number of rows and columns in the table.
Once the x? value and the degrees of freedom have been
calculated, the critical value for x2. can be looked up in
Table 7 for a given level of significance. If x%>xZorit, then
there is a significant difference between the groups being
compared.
For the example shown in Table 9,

35-30)2 (65—170)2 (40 —30)2
Xz:( )+( )+( )

30 70 30

The degrees of freedom is (4—1)(2—1)=3. In this
example, for a test at the 5% level of significance (p =0.05)
and three degrees of freedom, Table 7 indicates that
Xerit = 7.82. Since 26.2 > 7.82, the hypothesis that all four
devices are equally effective is rejected. It can be seen that
device type 4 is most effective. In fact, further analysis
supports the conclusion that differences between the other
device types can be explained by sampling variation, and
that there is a statistically significant difference between
the first three device types taken together and the fourth
device type. The additional analysis is sensible because the
first three types are different vintages of essentially the
same design, whereas the type four device is an experi-
mental version of a fundamentally different design.

The 2 test may be used on a table of any size and not
necessarily on binomial variables. For the example shown
in Table 9, three possible outcomes could be imagined: no
improvement, partial restoration, and full restoration.
This would have added a row to Table 9 but the x? formula
(Eq. 14) would still apply.

+---=26.2

Quantify Relationship between Variables. Classification
in a table often reflects characteristics of individuals or
objects, so they are often referred to as attributes. A
measure of the degree of relationship, association, or
dependence of two attributes (and the associated variables
in the population) is called the coefficient of correlation. It

is given by

r= X (15)
N(min(No. rows, No. columns) — 1)

where x? represents the value computed from the x? table;
N is the total number of observations, and min(No. rows,
No. columns) represents the smaller number between the
number of rows (No. row) and the number of columns (No.
columns). r can only take values between 0 and 1. The
closer r is to 1, the greater the association between the two
(or more) columns of the table. To determine if a value of r is
significant or not, x* tests previously described in this
section may be used.

Parametrical Hypothesis Testing on Continuous Variables

A parametric statistical hypothesis assumes that the data
sample originates from a population that fits a specific
model (most often the normal model). This is usually the
case when recording a measure that fluctuates around a
fixed mean because of environmental noise. Before running
any statistical tests, one must verify that the data distri-
bution is consistent with the normal distribution. First,
plot the histogram to check that the distribution’s overall
shape is similar to that of the normal distribution. You may
then perform a goodness of fit test with the normal dis-
tribution. In a goodness-of-fit test, the hypotheses are
concerned not with the parameters, but with the distribu-
tion itself. For example, Hy: X has a normal distribution;
H;: X does not have a normal distribution. This may be
done using the x® goodness of fit test (mentioned in the
previous section) applied to the data histogram frequencies
compared to expected values calculated from the normal
distribution (by integrating Eq. 9 using Eq. 5). Other good-
ness-of-fit tests are the Kolmogorov—Smirnov, Cramer—
Von Mises, and Anderson—Darling. There are also tests
when Hj involves some specific distribution, for example,
the Shapiro—Wilk test for normality. Most computer
packages incorporate such tests.

One-Sample t-Test to Compare One Data Sample to a
Hypothetical Distribution. This test is used to determine if
a data sample belongs to a population with mean p and
standard deviation o (the hypothesis H, is that it does
belong to this population). This test applies to continuous
or noncontinuous data that have a distribution that is not
significantly different from normal. First, check that the
standard deviation of the data sample is similar to the
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Table 10. The t Distribution of Critical Values®

STATISTICAL METHODS

One-Tailed 0.1 0.05 0.025 0.01 0.005 0.0001
Two-Tailed 0.2 0.1 0.05 0.02 0.01 0.0002
df
1 3.078 6.314 12.71 31.82 63.66 318.3
2 1.886 2.920 4.303 6.965 9.925 22.33
3 1.638 2.353 3.182 4.541 5.841 10.21
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297
10 1.372 1.812 2.228 2.764 3.169 4.144
11 1.363 1.796 2.201 2.718 3.106 4.025
12 1.356 1.782 2.179 2.681 3.055 3.930
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733
16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.611
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.562
21 1.323 1.721 2.080 2.518 2.831 3.527
22 1.321 1.717 2.074 2.508 2.819 3.505
23 1.319 1.714 2.069 2.500 2.807 3.485
24 1.318 1.711 2.064 2.492 2.797 3.467
25 1.316 1.708 2.060 2.485 2.787 3.450
26 1.315 1.706 2.056 2.479 2.779 3.435
27 1.314 1.703 2.052 2.473 2.771 3.421
28 1.313 1.701 2.048 2.467 2.763 3.408
29 1.311 1.699 2.045 2.462 2.756 3.396
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
50 1.295 1.676 2.009 2.403 2.678 3.261
60 1.296 1.671 2.000 2.390 2.660 3.232
80 1.292 1.664 1.990 2.374 2.639 3.195
100 1.290 1.660 1.984 2.364 2.626 3.174
1000 1.282 1.646 1.962 2.330 2.581 3.098
inf. 1.282 1.64 1.960 2.326 2.576 3.091

“To use this table, find your degrees of freedom in the df column (or a lower one if yours is not present in the table). Then, look up the probability in the top row
(p =0.05 is a test of significance at 5%). If your calculated ¢ value is larger than the one you read in the table, the test you performed is significant (see text for

details).

population’s standard deviation o (within a twofold range).
For a data sample containing N values that has a mean M
and standard deviation SD, the variable ¢ is defined as

M—pn

t=—p VN (16)
The degrees of freedom associated with ¢ is equal to
df=N-1. After calculating ¢ and df, set up a threshold for
significance (i.e., p < 0.05) and look up ¢, critical value in
Table 10. In the ¢-test table, you may choose either one- or
two-tailed ¢-test critical values. One-tailed ¢-tests are used
when there is some prior knowledge to predict the direction
of the difference. Most commonly, two-tailed ¢-tests are
used when there is no such knowledge. If the calculated ¢
value is > ¢4, there is a statistically significant difference
between the data sample and the hypothetical distribution

(the null hypothesis Hj is rejected).

As for the x? table, building the ¢-test table is straight-
forward. One may assume that, for a given degree of free-
dom, a known population (with a normal distribution) is
sampled several times and that the ¢ value is computed for
each of these samples (M should on average be the same as
w since it is the theoretical population which is being
sampled). The histogram of these observed ¢ values,
obtained when in fact no real effects are present, is an
approximation to the ¢ distribution (Fig. 4, middle panel).
The tails of this distribution allow for threshold setting for
significance (as for the x2, if an observed value ends up in
the tail of the distribution, then it is likely that it does not
belong to this distribution). Note that for an infinite
number of degrees of freedom, the ¢ distribution is equal
to the normal distribution.

For example, in the past, a machine has been producing
washers having a thickness of 0.06 in. (0.15 cm) on average.



To test if the machine is still working properly, 10 washers
of size (0.065; 0.062; 0.060; 0.059; 0.061; 0.064; 0.067; 0.064;
0.061; 0.062) are produced. The sample mean is 0.0625 and
the sample standard deviation is 0.0025. The ¢ value is
equal to

0.0625 — 0.06

A two-tailed ¢-test is used since there is no a priori
knowledge about the sampled distribution. At the 5% sig-
nificance level, ¢..i59 is equal to 1.83. Since ¢> 1.83, it can
be concluded that there is a significant difference between
the expected washer thickness and the observed one (reject
hypothesis Hy, which assumes that the sample distribution
has a mean of 0.06 in., 0.15 cm). However, at 0.5% signifi-
cance level, ¢..t14 is equal to 3.25. Since ¢< 3.25, it cannot
be concluded that such a difference exists at this level of
significance (hypothesis H, cannot be rejected).

Paired t-Test to Compare Paired Data Samples. This test
applies to two paired samples of continuous or noncontin-
uous data that have a distribution nonsignificantly differ-
ent from normal and similar standard deviations (with less
than twofold difference). First calculate the difference
between each pair and average them (D,,) (note that
differences in values also have to be normally distributed).
Then calculate the value of ¢ using

D

t= S;)” VN (17)

where SD is the standard deviation of the difference
between each pair. Since the accuracy of a statistic is
influenced by the population size, the degrees of freedom
(df) or the number of independent parameters used in the
calculation of the test statistic must then be calculated. The
degrees of freedom is equal to the degrees of freedom used
in calculation the sample SD, that is, the number of pairs
minus 1: df=N-1.

Finally, as for the one sample ¢-test, set up a threshold
for significance, look up % critical value in Table 10, and
compare it to the calculated value. If the calculated ¢ value
is >t.q, there is a statistically significant difference
between the two groups (the null hypothesis Hy is rejected).

For example, to test if a newly designed electronic blood
pressure (BP) device returns similar (hypothesis H,) or
different (hypothesis H;) readings compared to an old
manual blood pressure device, readings on 10 patients
are performed and presented in Table 11 (only systolic
pressure in Hgmm is reported in the table).

First, ensure that the two standard deviations are simi-
lar (14.1 for the electronic BP device and 13.5 for the
manual BP device). To calculate the ¢ value, compute the
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difference between each pair, check that their distribution
is normal, and then average them, D,,=((121-115)+
(130—131)+---)/10 =2.8. The standard deviation of the dif-
ference is SD =2.57, and the degrees of freedom is 9 (10
readings minus 1). Thus the ¢ value is equal to

2.8
t= 257@ =344

At the 5% level of significance, for 9 degrees of freedom,
teritsa 18 equal to 2.26. Since ¢ > 2.26, it can be concluded
that the two devices return different averages (reject
hypothesis Hy). The newly devised electronic BP device
probably has to be recalibrated to better match the read-
ings of the manual one.

Unpaired t-Test to Compare Unpaired Data Samples. An
unpaired ¢-test aims to compare two unpaired data samples
and applies to continuous or noncontinuous data that have
a distribution not significantly different from normal. Sam-
ple sizes should be similar (with less than twofold differ-
ence) for the two groups and, if n < 30, variances should
also be similar (with less than twofold difference). If the ¢-
test is used in other circumstances, the results will have no
meaning.

The most common way of calculating the ¢-statistics for
unpaired data samples is to use the pooled variance esti-
mate (it is also possible to use unpooled variance estimates,
but this is less common and will not be presented here).
First, calculate the unbiased pooled variance estimate:

_ValNA-1) + V(N - 1)

v Ny +Np -2

(18)

Then estimate the standard error of the difference of the
means:

SE = /V(1/Na + 1/Ng) (19)

Then the ¢ statistics is the difference of the means divided
by its estimated standard error:

My —Mg
- SE

where M, and My are the means of groups A and B,
respectively, and where V, and Vg are the variances of
groups A and B, respectively. For this test, the number of
degrees of freedom is equal to the total number of points
minus 2, because two means are estimated.

df = (Na +Np) —2

t (20)

Finally, set up a threshold for significance (p <0.05,
e.g.), and look up the critical value ¢ in Table 10 (see
the section above on one sample ¢-test for the difference
between one- and two-tailed ¢-tests). If the calculated ¢

Table 11. Systolic Blood Pressure in Hg:mm Measured in 10 Patients Using Either a New Electronic Device or an Old

Manual Device

Patient 1 2 3 4 5 6 7 8 9 10
Electronic BP device 121 130 129 113 145 132 110 116 125 155
Manual BP device 115 131 127 111 140 131 111 111 121 150
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Table 12. Heart Rate in Beats per Second of Control and Test Patients Suffering from Heart Failure

HF patients 78 81 88 76
Control patients 80 71 68 80

93 112 83 96
95 67 85 69 85 77

value is > t.it, there is a statistically significant difference
between the two groups (the null hypothesis Hy is rejected).

For example, to test if patients diagnosed with heart
failure have similar (hypothesis Hy) or higher (hypothesis
H,) heart rates than control patients, 15 readings are
performed at rest for these two groups of patients A and
B of matched age, sex, and ethnicity. Heart rate is reported
in beating per minutes in Table 12.

After testing for normality (see for how to test for
normality at the beginning of this section), it is ensured
that standard deviations for the two data samples are
similar (SD4=11.5 and SDp=9.1). To calculate the
t-value, it is necessary to compute the mean heart rate
for each group. For patients suffering from heart failure,
M4 =88.4, and for control patients, Mg = 77.7(variances
are V,=140.3 and Vg =82.9). Thus the pooled variance
estimate is V=108, the standard error of the mean is 4.93
and the ¢ value is equal to

8841777
T 493

At 5% significance level for 16 degrees of freedom
(10 heart failure patients plus 8 control patients minus
2), terit1o 1s equal to 2.12. Since ¢ > 2.12, the data support
the fact that patients with heart failure have higher
heart rate than controls (hypothesis H, cannot be
rejected).

=2.17

One-Way ANOVA for Unmatched Samples. One-way
ANOVA is used to test the hypothesis that two or more
samples are drawn from the same distribution of values
and have the same mean and variance. Unpaired student ¢-
test is a particular case of one-way ANOVA applied to two
data samples. As for ¢-test, ANOVA test applies to contin-
uous or noncontinuous data that have a distribution that is
not significantly different from normal. Sample sizes
should be similar (with less than twofold difference) for
all sample groups and, if n< 30, variances should also be
similar (less than twofold difference). If the test is used in
other circumstances, the test outcome will lead to erro-
neous conclusions. The basis of ANOVA is the F (Fisher)
variable, which combines the unbiased variance between
sample groups (VipterGroup) and the variance within sample
groups (VwithinGroup)-

F— VinterGroup 21)
VwithinGroup
For several data samples A, B, C, ... of the same size,

intergroup variance is defined as

VinterGroup =
N (Ma)*+ Np(Mp)®+Nc(Mc)®+ - - — Np(Mg)?

Ng -1
(22)

where M, Mg, and M are the means of sample A, B, C, ...
and N, N, Ng, ... are the number of values in samples A,
B, C, ... Mg is the average of all values from all sample
groups and Ng is the number of samples. The within
sample group variance is defined as

VwithinGroup =
(Na — 1)(SDa)* + (Ng — 1)(SDg)? + (N — 1)(SD¢)® + - - -
Nt —Ng

(23)

where SDj, SDg, SDg, ... are the standard deviations of
group A, B, C, ... and Ny represents the total number of
observations (for all data sample pooled together). Degrees
of freedom for the numerator of F' and the denominator of F
are defined as

df numerator = N G — 1
df denominator — Nr—-N G

Note that each variance in Egs. 22 and 23 is divided by
the appropriate degrees of freedom to give unbiased esti-
mate of population variance (assuming the null hypothesis
Hj is true). As for other inference tests, the computed F'
value is tested against critical F values (Table 13) obtained
from the tail of null-hypothesis F distribution (Fig. 4, right
panel).

For example, a clinician planning to purchase equip-
ment for electroencephalography compares the signal to
noise ratio for three sets of electroencephalographic equip-
ment. For each system that has been made available to
him, he records 10 new patients performing standard
psychophysical tasks and measures the signal to back-
ground noise ratio of the encephalographic equipment
(Table 14).

After testing for normality, we must ensure that stan-
dard deviations are similar (i.e., no twofold differences).
Standard deviation for Brand A is equal to SDy=1.11;
Brand B: SDg =0.75; Brand C: SDc=0.94. After calculat-
ing Vintergroup:0-4f4 and VwinthinGroup:0-89, F may be
calculated using Eq. 21

0.44
F= 089" 0.49

The degrees of freedom for the numerator is
Afpumerator =Ng — 1 =2. The degrees of freedom for the
denominator iS  dfjenominator =30 —3=27. Reading
F..iy=2.95 in Table 13, we may conclude that there is no
significant difference (since F'< 2.95) in terms of signal/
noise ratio between the three sets of EEG equipments
(accept hypothesis Hy).

One-Way ANOVA for Matched Samples. One-way
ANOVA may also be used to compare paired sample
groups. In fact, since for matched samples, one may
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Table 13. The F Distribution of Critical Values at p =0.05 for ANOVA tests®

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 30 40 60 100 00
3 10.13 955 9.28 9.12 9.01 894 889 885 881 879 874 870 866 862 859 857 855 8.54
4 7.71 694 659 639 626 6.16 6.09 6.04 600 596 591 586 580 575 572 569 566 5.63
5 6.61 579 541 519 505 495 4.88 4.82 4.77 474 468 462 456 450 446 443 441 4.36
6 599 514 476 453 439 428 421 415 410 4.06 400 394 387 381 377 374 3.71 3.67
7 559 474 435 4.12 397 3.87 3.79 3.73 368 364 357 3561 344 338 334 330 327 3.23
8 532 446 407 384 369 358 350 344 339 335 328 322 315 3.08 3.04 3.01 297 293
9 5.12 426 386 3.63 348 337 329 323 318 3.14 3.07 301 294 286 283 279 276 271
10 496 410 371 348 333 322 314 3.07 3.02 298 291 285 277 270 266 262 259 254
11 4.84 398 359 336 320 3.09 3.01 295 290 285 279 272 265 257 253 249 246 241
12 475 389 349 326 311 3.00 291 285 280 275 269 262 254 247 243 238 235 2.30
13 467 381 341 318 3.03 292 283 277 271 267 260 253 246 238 234 230 226 221
14 460 374 334 311 296 285 276 270 265 260 253 246 239 231 227 222 219 213
15 454 368 329 3.06 290 279 271 264 259 254 248 240 233 225 220 216 2.12 2.07
16 449 363 324 301 285 274 266 259 254 249 242 235 228 219 215 211 207 201
17 445 359 320 296 281 270 261 255 249 245 238 231 223 215 210 2.06 2.02 1.96
18 441 355 3.16 293 277 266 258 251 246 241 234 227 219 211 206 202 198 1.92
19 438 352 313 290 274 263 254 248 242 238 231 223 216 207 203 198 194 188
20 435 349 310 287 271 260 251 245 239 235 228 220 212 204 199 195 191 184
22 430 344 305 282 266 255 246 240 234 230 223 215 207 198 194 189 185 1.78
24 426 340 3.01 278 262 251 242 236 230 225 218 211 203 194 189 184 180 1.73
26 423 337 298 274 259 247 239 232 227 222 215 207 199 190 185 180 1.76 1.69
28 420 334 295 271 256 245 236 229 224 219 212 204 196 187 182 1.77 1.73 1.66
30 417 332 292 269 253 242 233 227 221 216 209 201 193 184 179 174 170 1.62
35 412 327 287 264 249 237 229 222 216 211 204 196 188 179 174 168 1.63 1.56
40 4.08 323 284 261 245 234 225 218 212 208 200 192 184 174 169 164 159 151
45 4.06 320 281 258 242 231 222 215 210 205 197 189 181 171 166 160 1.55 1.47
50 4.03 318 279 256 240 229 220 213 207 203 195 187 178 169 163 158 152 1.44
60 4.00 315 276 253 237 225 217 210 204 199 192 184 175 165 159 153 148 1.39
70 398 313 274 250 235 223 214 207 202 197 189 181 172 162 157 150 145 1.35
80 396 311 272 249 233 221 213 206 200 195 188 179 170 160 154 148 143 1.33

100 3.94 309 270 246 231 219 210 203 197 193 185 177 168 157 152 145 139 128
200 3.89 304 265 242 226 214 206 198 193 188 180 1.72 162 152 146 139 132 1.19
500 3.86 3.01 262 239 223 212 203 196 190 185 177 169 159 148 142 135 128 1.12
1000 3.85 3.00 261 238 222 211 202 195 189 184 176 168 158 147 141 133 126 1.08

00 3.84 300 261 237 221 210 201 194 188 183 175 167 157 146 140 132 125 1.03

“To use this table, read the value at the intersection of the numerator’s degrees of freedom (df1) and the denominator’s degrees of freedom (df2). If your
calculated F value is larger than the one you read in the table, the test you performed is significant (see text for details).

analyses either the rows or the columns of a table, the denominator are now defined as
formula given here may be used both for rows or columns,
and are usually associated with two-way ANOVA. The dfnumerator = Nr —1=Ng — 1
formula for the F' (Fisher) variable is now equal to dfgenominator = (Ng — 1)(Ng — 1)
VinterGroup Using the same example as shown in Table 14, and now
F= " Veror (24) assuming that the data samples are paired (EEG systems
were tested with the same patients), the intersubject var-
The variance due to error or chance is defined as iance Verrort = 1.04 can be computed, and
S iale — M — My — M)
Verror == / (25) F = 7044 =042
(Nr = 1)(N¢ — 1) 1.04
where x;, are all the elements in the array, M; are the row The degrees of freedom for the numerator is
means, M ;, are the column means, M is the global array dfpumerator =Ng — 1 =2. The degrees of freedom for the
mean, N¢ is the number of columns, and Ni the number of denominator is  dfgenominator = Vg — 1DNg—1)=(3 —-1)
rows. The degrees of freedom for the numerator and (10-1)=18. For a test at 5%; significance, reading
Table 14. Signal/Noise Ratio for 10 Patients and for Three Brands of EEG Systems
Brand A 1.87 3.88 2.68 1.19 0.93 0.38 2.69 1.8 0.39 1.62
Brand B 2.48 1.71 3.05 1.58 1.7 3 0.47 2.11 2.18 2.22

Brand C 2.29 1.49 2.52 1.26 3.71 2.14 2.33 2.79 2.61 0.29




256 STATISTICAL METHODS

Table 15. Example of Table for a Two-Factor Experiment

Protocol 1
Brand A 6 8 8
10 8 2
10 6 2
Brand B 2 2 10
6 10 10
6 2 6
Brand C 6 0 4
6 4 4
4 8 8

Protocol 2 Protocol 3
1 0 2 1 4 4
2 0 1 4 2 2
1 3 3 3 5 0
4 9 8 3 3 6
5 5 9 5 4 2
3 7 7 3 5 6
5 3 2 6 6 8
1 1 1 6 0 10
3 3 2 4 8 6

F..;;=3.55in Table 13, it can be concluded that there is no
significant difference (since F' < 3.55) in terms of signal to
noise ratio between the three sets of EEG equipments.

Note that one could argue that instead of using ANOVA
analysis, ¢-tests could be performed between each pair of
samples. Although this is possible, the ANOVA test is more
sensitive than a series of paired ¢-tests because it processes
all data samples simultaneously.

Two-Way ANOVA for Two-Factor Experiments. This
type of test is being used for experiments with two factors
or two attributes. In the example above, to test the relia-
bility of the EEG equipment, the clinician might want to
perform three experimental protocols and measure the
signal to noise ratio in each of these protocols. The two
factors are now the three sets of EEG equipment and the
three protocols as shown in Table 15.

In each of the cells of Table 15, the clinician recorded
nine values. In the case of only one value per cell, the
analysis would be similar to the one-way ANOVA (row and
column data may be analyzed separately using one-way
ANOVAs for matched samples). However, if several
values are recorded for each cell (several subjects, e.g.),
one must use the repeated measures two-way ANOVA test.
This test is especially interesting because it is possible to
test for interaction between variables. Hypothesis H,
would be that there is no significant relationship between
brands and type of protocol and Hypothesis H; would be
that there is indeed such a relationship. Running a
repeated measures two-way ANOVA test under any soft-
ware will return 3 p-values: the first value is for significant
differences between rows; the second value is for signifi-
cant differences between columns; the last p-value is for
the interaction between columns and rows. In the case of
Table 15, the p-value for the columns (protocol) is 0.0004
indicating a significant difference between protocols. As
observed in Table 15, the values for the first protocol are
indeed higher than the values for other protocols. The p-
value for the different rows (device brand) is not significant
(p =0.22). The p-value for the interaction between brand
and protocol is 0.0006. In fact, it appears that the device of
brand B returns higher values for protocol 2 than other
brands, and that the device of brand C returns higher
values for protocol 3 than other brands.

Experimental design and ANOVA in its many varia-
tions is perhaps the most important statistical methodol-
ogy for experimenters, and the literature is immense.
Extreme care should be taken when choosing an ANOVA

test. For example, there are different ways to treat multi-
factor ANOVASs analytically when the number of observa-
tions is unequal among the treatment combinations (called
unbalanced designs). A nontechnical discussion is the
classic Planning of Experiments by Cox (6). Other general
introductions are Refs. (1,7-12).

Regression and Correlation. Regressions and correla-
tions aim at determining relationship between variables.
We may wish to determine if there is a significant correla-
tion between independent and dependent variables, the
independent variable being set by the experimenter, and
the dependent variable being measured. For example, to
test the reliability of a device, an experimenter may
change the temperature of the room where the device is
being tested (independent variable), and see if this change
affects measures returned by the tested device (depen-
dant variable). Regression and correlation can also be
used to estimate the relationship between two (or more)
dependent variables.

The first step in determining the relation between two
variables is to plot values of one variable versus values of
the other variable. This is usually called a scatterplot
(Fig. 5). From the scatterplot it is often possible to visua-
lize a smooth curve that approximates the data. If it is a
straight line, then the least-squares regression method
may be used. Otherwise, other curve fitting procedures
may be used. It is sometimes useful to plot scatterplots of
transformed variables (e.g., log transformation of values
the in first variable versus values of the second variable).

The method of least-squares computes the best linear
regression between two variables. Specifically, for two
variables X and Y, the data consist of n pairs (xq,
Y1),- - (X, ¥). For all values of X and Y, we wish to find
the parameter ¢ and b such that

Y=aX+b (26)

Assuming the jittering of points along the straight line
is normally distributed, parameters a and b may be
obtained using the formula

o = N owyi — Qox) (i)

NY a2 — (Xa;)? @0

(28)

b=y (Tri-aXw)
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Figure 5. A typical scatterplot with the least-square line drawn

through the data points. The 72 value as well as the best fit eq-

uation is indicated on the diagram. The ¢-value is equal to 9.24 and

indicate a sigdnificant relationship between X and Y (at p =0.05,
for 22 degrees of freedom, #..;; =2.07).

To draw the linear regression line, y®* values may be
calculated using Eq. 44 for all values of X. A sample-based
measure of the strength of the linear association between
the X and Y variables is the sample correlation coefficient
(also known as the Pearson correlation coefficient) defined

by

Y8~ My)?
Yy — My)?

r may also be expressed using the original variables X and
Y.

B \/explained-variation 1
N total-variation

(29)

_cov(X)Y) % i (i — My)(yi — My)
5Dz 5Dy \/% >t (i *MX)Z\/% Sy — My)?
(30)

where Mx and My (SDx and SDy) are the mean (the
standard deviation) for X and Y, respectively, and cov(X,Y)
is the covariance between X and Y (the numerator on the
right of Eq. 30 is equal to cov(X,Y) and the denominator is
equal to SDx*SDy). Necessarily —1<r<1. Positive
(respectively negative) values of r indicate that large
values (respectively small values) of X are associated with
large values (respectively, small values) of Y. Values of r
near 0 indicate little or no linear association. Interpreta-
tion must be done with care because there are many
reasons for the presence or absence of a correlation. Also,
comparing r values may be misleading as a value of r=0.6
does not mean that the linear relationship is twice as
strong as 7 =0.3. On the other hand, r2, called the sample
coefficient of determination, represents the proportion of
the total variation in the sample values of Y that can be
“explained” by a linear relationship as in Eq. 26. Thus
r?=(0.3)>=0.09 versus r*=(0.6)>=0.36 indicates a 9%
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versus 36% accountability for total variability by the
proposed linear relationship.

To test if the linear correlation between the two vari-
ables is significant, different tests may be used. The null
hypothesis H, states that there is no relationship between
the two variables. A ¢-test (with degrees of freedom equal to
N — 2) may be used if the expected population correlation
coefficient between variable X and Y is 0 and if we expect
the correlation coefficient to be normally distributed when
random samples of X and Y are drawn. The variable ¢ is
defined as

rvN —
¢ T (31)

More details for determining if correlation coefficients
are significant or to compare between correlation coeffi-
cients may be found in Spiegel and Stepens (2).

As shown in Fig. 5, most regression computer packages
will output scatterplots, and correlation coefficients. Resi-
duals plots (not shown here) indicate if the distribution of
distance between estimated and actual values of Y. A
histogram of these residuals should be normally distribu-
ted (computing the parameter a, b, and the coefficient of
correlation r requires that these residuals are normally
distributed with mean 0 and a constant standard deviation
irrespective of the X values).

A comprehensive presentation of regression methods
for linear and nonlinear regression is given in Refs. 2,7, 13.

\V]

Nonparametric Testing

Elementary tests mentioned in the previous section
require that the distribution of values in the population
be normally distributed. In practice, this assumption may
not hold so statisticians have devised tests that are less
dependent of population distribution. Nonparametric or
distribution-free statistical methods generally are not con-
cerned with inferences about parameters of distributions
and assume little or no knowledge about the distributions
of the underlying populations. Their primary advantage is
that they are subjected to less restrictive assumptions than
their parametric counterparts. Moreover, the data need not
be quantitative (data values may indicate ranks on an
ordinal scale). However, a disadvantage of nonparametric
methods is that that they may not utilize all the informa-
tion in a sample, consequently requiring a larger sample
than the parametric version to attain the same Type II
error (see error types).

The x? goodness-of-fit tests previously mentioned is an
example of a nonparametric test. Other nonparametric
tests make various hypotheses for medians (or means of
a symmetric distribution) and differences in location and/
or variability of two populations. There are also tests for
randomness, independence, and association among ran-
dom variables. Relatively elementary texts that give a
fairly broad and complete coverage of nonparametric meth-
ods are Refs. 14 and 15.

Compare Sample Distribution to a Hypothetical Distribu-
tion. As for binomial and discrete data, a x* goodness-of-
fit test may be performed. For continuous data, a x2
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Table 16. Heart Rate Variability for 10 Patients While Their Pacemaker Is Switched On or Off, and Calculation of Signed

Rank for Wilcoxon Test

Patient 1 2 3 4 5 6 7 8 9 10 Sum

Pacemaker off 0.15 0.32 0.25 1.1 0.82 0.83 0.94 0.42 0.48 0.21

Pacemaker on 0.12 0.19 0.28 0.56 0.37 0.52 0.24 0.73 0.81 0.13

difference 0.03 0.13 —0.03 0.54 0.45 0.31 0.70 —0.51 —-0.43 0.08

abs difference 0.03 0.13 0.03 0.54 0.45 0.31 0.70 0.51 0.43 0.08

Rank of abs difference 1.5 4 1.5 9 7 5 10 8 6 3

Signed rank 1.5 4 -1.5 9 7 5 10 -9 -6 3 23

goodness-of-fit test may be used on the frequency distribu- In fact,

tion (histogram) of the data compared to a hypothetical W

distribution. Z=—= (32)
SDw

Sign Test and Wilcoxon Test for Paired Samples. As for
binomial and discrete data, a sign test allows the compar-
ison of paired samples (see the beginning of the section for a
definition of paired and unpaired samples). A sign test
simply involves pair-wise comparisons of measures
between the two sample data sets (see sign test for binomial
and discrete data). A variation of this test is called the
Wilcoxon test, which takes into account the signed rank of
the difference between each pair (instead of using all the
signs). This is best illustrated using an example. To test if a
pacemaker device has any effect on heart rate variability
(defined as the standard deviation of heart beat intervals in
seconds), 10 patients’ heart rate variability are measured
while the pacemaker was either switched on or off
(Table 16).

The Wilcoxon test begins by taking the difference in
heart rate variability between the two conditions for each
patient (forth row of Table 16). If a difference is equal to 0 it
is eliminated from further consideration, since it provides
no useful information. The second step consists of taking
the absolutes of the differences, which is accomplished
simply by removing all the positive and negative signs
(fifth row of Table 16), then ranking these absolute differ-
ences from lowest to highest, with tied ranks included
where appropriate. Tied rank means that if two values
are equal they are first-ordered randomly and then
assigned their average rank (see the first and third col-
umns of the sixth row in Table 16). Finally, reattach to each
rank the positive or negative sign that was removed from
the difference in the transition from row four to row five,
and sum up these values. In our case, W=23 and
the number of values used in this sum is 10 (degrees of
freedom).

If two sets of sample values from the same distribution
(which verify hypothesis H that the two samples belong to
the same distribution) were to drawn repeatedly and W
values were calculated, it would be realized that the
distribution (histogram) of W values is close to normal.

may be defined, where z is normally distributed with mean
0 and variance 1, and SDyy is the standard deviation of W,
which can be shown to be equal to

SDy — \/N(N + 12;(2N +1) 33)

For N =10 values, SDw=19.6, so 2=23/19.6 =1.17. As
mentioned earlier, the ¢-distribution is equal to the normal
distribution for infinite degrees of freedom. Looking in the
last row of the ¢-table (Table 10), for a significant threshold
at p=0.05 (two-tailed), z.iy=1.64 is obtained. Since
z<1.64, hypothesis H, cannot be rejected. Although it
seems that heart rate variability is higher when the
pacemaker is switched on, the difference did not reach
significance.

Mann-Whiney U Test for Unpaired Samples. The Mann—
Whitney U test is similar to the Wilcoxon test. Once more,
this test will be illustrated using an example. To compare
sensitivity of two hearing aids, the minimum sound a
patient can hear using each brand is measured (in dB)
and reported in Table 17, where 10 different patients tested
each prosthetic device (unpaired samples).

To perform a Mann—Whitney test, first combine all
values in an array and assign a rank from 1 to 20 to all
these values, assigning tied ranks where appropriate (see
Wilcoxon test). The rank for each value is indicated in
Table 18.

Then, sum up the ranks for each brand, where R, = 80 is
the sum for brand A and Rg = 130 is the sum for brand B. A
significant difference between the two rank sums implies a
significant difference between the two samples. Calculate
the U statistic to test the difference between the ranks:

NA(Na+1)
2

Note that the formula above is symmetrical with respect
to A and B. In the hearing aid example, Ny=10 and

U = NpNg + —Rp (34)

Table 17. Patient Maximal Sensitivity (in dB) for Two Brands of Hearing Aids

Brand A 0.1 -1 4.1 2.4
Brand B 2.7 3.1 5.2 2.1

-2.3 3.8 0.9 1.4 0.4 1.2
4.7 1.5 -1.2 3.7 2.8 3.1




Table 18. Rank of Measures for Table 17
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Brand A 4 3 18 11
Brand B 12 14.5 20 10
Ny =10, so
10(10 +1
U:10*10+g—80:75

There is no table for U values. Instead, as for the
Wilcoxon test, the table for z values is used because of a
property of the U distribution. When calculating the U
value repeatedly on samples known not to be statistically
different (e.g., two data samples drawn from the responses
of the same device), then it can be shown that the repeated
U values (U1, U2, U3, ...) have a Gaussian distribution
with mean My and standard deviation SDy defined as

MIF% (35)
NaNg(Na+ Np + 1
SDU:\/ alVi( q; B+1) (36)

This means that the U distribution can be normalized
and that

z=—gr— (37

is normally distributed with mean 0 and variance 1.

In the example above, My=10"10/2=50 and
SDy=13.2, so z=23.78. Looking up the last row of the ¢-
table (Table 10) for a significance level of 5%, we read
Zerit = 1.64. Since z > 1.64, hypothesis Hy can be rejected
and it can be concluded that one hearing aid performs
better than the other one. Looking at the mean or median
for each brand, or for this simple example simply at
Table 17, brand A clearly allows patients to hear sounds
of smaller amplitudes than brand B. Note that the calcula-
tions above are usually not necessary since most statistical
software will return the value of U along with its signifi-
cance level.

Kruskal-Wallis Test for Unmatched Samples. The Krus-
kal-Wallis H test is a generalization of the Mann—Whitney
U test to more than two samples (e.g., three brands A, B,
and C of sample sizes N, Ny, Ng, . . . with the total number
of samples equal to N). As for the Mann—Whitney test,
values from all distributions are sorted and once the sum of
the rank for each sample is calculated R4, Ry, R, ... the
value of H is given by

12 Ry Rp Rc
H=yw+1) (N Ng ' Ng

It can be shown that, after collecting repeated measures

of H from several samples from the same population (ver-
ifying the hypothesis H, that they originate from the same
population), the histogram of H values is very close to a x>
distribution with degrees of freedom equal to the number of
groups minus one (so the x2 table may be used for H). Thus,

+) —3(N+1) (38

to use the Kruskal-Wallis test, first calculate H, then
compute the degrees of freedom (number of groups minus
one), and look up the x? critical value in Table 7. If the
calculated H value is larger than the critical value, reject
hypothesis H,,.

Friedman Test for Matched Samples. Suppose it is
wished to determine if three spectroscopy machines A,
B, and C returns the same hematocrit density (density
of blood cells in a blood sample). We test the three machines
using 20 blood samples (the same blood sample is used for
all machines). Since preliminary analysis shows that the
readings are not normally distributed, nonparametric test
will have to used. To do so, for each blood sample, rank the
machines (from 1 to 3) and compute the total rank for each
machine T's, T, and T'c. The parameter T, being the sum
of all the ranks, the squares deviate SS is equal to

(Ta)* + (Tg)* + (Tc)*  (Tan)®

55 = Ng NgN

(39)

where Ng is the number of groups and N is the number of
samples in each group. As for the Kruskal-Wallis test, we
may use the x? distribution with degrees of freedom equal
to df=Ng— 1. In the Friedman test, simply refer to this
value as x2

2 SS
" Ng(Ng +1)/12

If the calculated x value is larger than the critical value
for the specified degrees of freedom, reject hypothesis Hy,.

X (40)

The Spearman’S Rank Correlation Test. Rank methods
may also be used to determine the correlation between two
variables. Instead of using exact variable values, their
ranks may be used. For two sample A and B of the same
size, corresponding to two variables X and Y (e.g., lifespans
and prices of a family of devices), rank each sample value
from 1 to N separately for A and B. Then calculate the
difference D, Do, D3, ... between the sorted rank for A and
B and compute

~ 6((D1)* + (Dy)® + (D3)* +- )
N(N2-1)

If rgis close to 0, there is no correlation between the two
variables, whereas if it is close to 1 or —1, there is a strong
correlation between the two variables. To test if rg is
significantly different from 0, the same ¢-test as for the
Pearson correlation coefficient may be used (replacing r by
rs and using the same degrees of freedom df=N — 2).

rg =1 (41)

Resampling Methods

Resampling methods help provide confidence intervals for
parameters in situations where these are difficult or impos-
sible to derive analytically. Resampling methods also help
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perform statistical inference without assuming a known
probability distribution for the data. The bootstrap method
consists of drawing random subsamples and the randomi-
zation method consists of shuffling data samples.

Bootstrap Method. The bootstrap method is the most
recently developed method to estimate errors and other
statistics. It is not primarily aimed at performing inference
although it may be used to do so, since it provides con-
fidence intervals for the measure of interest. The term
“bootstrap” derives from the phrase “to pull oneself up
by one’s bootstrap” (Adventures of Baron Munchausen,
by Rudolph Erich Raspe). Suppose we have a data sample
and an estimator (e.g., mean). The basic idea involves
sampling with replacement to produce random samples
of size N from the original data sample (of size larger than
N). Each of these samples is known as a bootstrap sample
and provides an estimate of the parameter of interest.
Repeating the sampling a large number of times provides
information on the variability of the estimator and help
define confidence limits. There are N to the power of N, N%,
possible samples, called the ideal bootstrap samples. It is
important to emphasis that subsamples are drawn with
replacement: for example, for an empirical distribution
composed of 2 values (5 and 8), the bootstrap samples
are (5,8), (5,5), (8,8), and (8,5) (note that there are 22=4
of them). Getting all ideal bootstrap samples becomes
unrealistic as N becomes larger, so the Monte Carlo
approach (which consists of random draws) is used. The
sampling is said to be balanced if each sample value is
drawn the same number of times. For each bootstrap
sample, let us suppose that the mean is calculated. The
standard deviation of the bootstrap distribution for the
mean correspond to the standard error (Eq. 19) and may
be used in parametrical ¢-test to compute the ¢ value
(Eq. 20), and perform inference testing (assuming normal-
ity of the distribution of course). However, this mixture of
bootstrap and parametric ¢-test is relatively unconven-
tional, and it is better to estimate the bootstrap distribution
of ¢t-values as explained below.

To perform a statistical inference test using bootstrap,
first state a null hypothesis Hy. Null hypotheses for resam-
pling tests are usually vague because there may be many
reasons (based on the shape of the distribution) why two
samples may differ (whereas when performing a para-
metric ¢-test, the nonnull hypothesis states clearly that
the means are nonequal). Moreover, bootstrap statistics
use the implicit assumption that data samples are repre-
sentative of the underlying population and in fact do as if
the data samples were the population itself. Therefore it is
not possible to draw direct conclusions about the under-
lying population either.

In the case of the heart rate study of Table 12, for
example, where comparing a measure (i.e., heart rate)
for patients suffering from heart failure (sample A) and
control subjects (sample B), the null hypothesis would be
“patient suffering from heart failure have abnormal heart
rate”. One way to test this hypothesis is to perform a
bootstrap ¢-test. Two bootstrap samples are first drawn
from the pooled distribution of A and B: sample A’ and B’ of
the same size as A and B, respectively. The ¢- value is then

Bootstrap #-distribution
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Figure 6. Bootstrap ¢-distribution for Table 12 (top) and rando-
mized ¢-distribution for Table 12 (bottom). Since the actual ¢-value
obtained from the original samples in Table 12 (¢ =2.17) belong to
the rightmost 2.5% value in both the bootstrap and the randomized
distribution (the 2.5% limit being indicated by a vertical line), it
may be considered significant at 5%.

computed using the two bootstrap samples asin Eq. 16. The
operation is repeated m times to obtain the distribution of ¢-
values for the null hypothesis. Note that, even if a ¢- value,
is computed it is not assumed normality for the data
samples since the distribution of #-values for the null
hypothesis is estimated using bootstrap samples. The
actual ¢-value is calculated for the original data samples
A and B and tested against the bootstrap ¢-distribution. If it
lies in the lower 2.5% or upper 2.5% tails, then the boot-
strap test may be considered to be significant at the 5%;
level of significance. In Fig. 6 (top), 10,000 bootstrap
t-values were accumulated for the two samples in
Table 12. Since the original ¢-value for Table 12 is equal
to 2.17 (see the ¢-test section) and since it lies in the upper
2.5% of the bootstrap ¢-value distribution, it may be con-
cluded that the data support the hypothesis that heart rate
is affected in patients suffering from heart failure at the 5%
significance level.

There are other ways to test for significance using boot-
strap, such as the bootstrap-percentile method, or the
bootstrap-bca method (see Ref. 16 for a comprehensive
reference). In general, it should be remembered that boot-
strap methods are designed primarily for estimating char-
acteristics of data samples, not for performing inference
tests. Resampling methods specializing in statistical infer-
ence are called randomization methods and are describe
below.

Randomization Methods. For the purpose of performing
paired or unpaired comparisons, randomization methods
consist of random permutations of data. Randomization
methods are also often called permutation methods or
surrogate methods. Specifying the null H, hypothesis is



the same as for the bootstrap and involves a vague for-
mulation about the result of the experiment, such as
“patient suffering from heart failure have abnormal heart
rate” or “the drug treatment does not have an effect on
blood pressure”.

Randomizing the data is straightforward. Using the
same example as for the bootstrap distribution with two
unpaired samples A and B of sizes N5 and Ng, a randomi-
zation method consists of pooling the data of A and B
together (into C), then randomly drawing from C (without
replacement) two groups A’ and B’ that have the same size
as A and B, respectively (17). Then, compute the estimator
(e.g., t-value) for each randomized pair of samples. Repeat
this procedure a large number of times to obtain the
distribution of the estimator (e.g., ¢-value) for the null
hypothesis. Significance is assessed as for the bootstrap
t-test. For example, in Fig. 6 (bottom), 10,000 randomized
t-values have been accumulated for the two samples in
Table 12. Note that irregularities in the distribution are
due to the fact that we are randomizing a relatively small
number of values. As for the bootstrap, since the original
t-value (t = 2.17) lies in the upper 2.5% of the randomized ¢-
values, it may be concluded that the data support the
hypothesis that heart rate is affected in patients suffering
from heart failure at the 5% significance level. It is reas-
suring to notice that the upper 5% significance threshold z-
value for the bootstrap (fei=2.13), the randomized
(terit=2.11), and the normal distribution (f.=2.12) are
all similar.

For paired comparisons, the principle is slightly differ-
ent since we are now randomizing not the sample values
but the pairs. For example, for the data of Table 11, one-
half of the pairs are selected randomly then shuffled (the
value for the first device is now attributed to the second
device and vice versa) and the paired ¢-test value is recal-
culated (Eq. 17). This procedure is repeated many times. To
assess significance, as in the previous paragraph, the
original ¢-value computed using the nonrandomized sam-
ples is compared against the distribution of randomized
t-value.
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This procedure may be generalized to compare an arbi-
trary number of samples. For example, to compare several
unpaired sample, data sample values may be randomized
among groups and one-way ANOVA values may be calcu-
lated repeatedly. The ANOVA value for the nonrandomized
groups is then compared against this ANOVA randomized
distribution. Web Ref. 18 provides a clear introduction to
resampling methods.

MULTIVARIATE METHODS

Previously the probability distributions involving one vari-
able were discussed, but in many situations there are two
or perhaps many interdependent variables, for example,
height, weight, daily caloric intake, genetic strain. Data
samples involving several variables are called multivari-
ate. Many multivariate analytical methods involve infer-
ence for the parameters (means, variances, and correlation
coefficients) based on multivariate normal distribution.
One such method is known as discriminant analysis and
is concerned with the problem of distinguishing between
two or more populations on the basis of observations of a
multivariate nature. Principal components analysis, clus-
ter, and factor analysis seek to determine relatively few out
of possibly many variables that will serve to explain the
variability or the interrelationships in the variables. Prin-
cipal component analysis (PCA) would specifically make
each successive component account for as much as possible
of the remaining variability uncorrelated with previously
determined components. In Fig. 7, data points from two
variables are represented. Coordinates of data points on
the abscissa axis correspond to values of the first variable
and coordinates on the ordinate axis correspond to values
of the second variable. The PCA is able to find a first
principal axis (labeled one) that accounts for most of the
variance of the data. The second principal axis (labeled
two) has to be perpendicular to the first principal axis and
accounts for the remaining of the variance.

Recent progresses in signal processing and inform-
ation theory have seen the development of blind source
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Figure 7. Illustration of PCA and ICA algorithms. The PCA finds axis with maximum variance. By
contrast in ICA, the projection of data point on ICA axis is maximally independent.
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separation methods, which attempt to find a coordinate
frame onto which the data projections have minimal over-
lap. For example, if two sources of sounds (e.g., a conversa-
tion and a CD player) are recorded simultaneously in the
same room on two microphones, the sound signal from the
two sources are mixed on both microphones. Coordinates of
data points in Fig. 7 could represent the signal recorded
from the two microphones. Separating the two sound
sources from the microphone signal is called blind source
separation. Independent component analysis (ICA) is a
family of linear blind source separation methods. The core
mathematical concept of ICA is to minimize the mutual
information among the data projections. PCA components
are orthogonal as shown in Fig. 7, which is usually not a
realistic assumption for biophysical data. To find biologi-
cally plausible sources, PCA must be followed by an axis
rotation procedure, and ICA can be viewed as a powerful
rotation method. The ICA seeks to find axes for which the
projection of data is maximally nonnormal (i.e., contains
the maximum amount of information). It uses the property
of the central limit theorem in statistics, stateing that any
linear mixture of two or more source activities is more
normal that the original source activities, so, by finding
axes that maximize nonnormality, source separation may
be achieved. As can be seen in Fig. 7, ICA is free to adapt to
the actual projection patterns of source generators, if their
activity time courses are (near) independent of one
another. Performing ICA decompositions is most appro-
priate when sources are linearly mixed in the recorded
signal, without differential time delays.

The ICA is being applied to various biomedical signal
processing problems that include performing speech and
noise separation (19), decomposing functional resonance
imaging data (20), and separating brain area activities and
artifacts mixed in electroencephalography scalp sensors
21).

Texts that give broad coverage of multivariate analysis
are (22-24).

CLINICAL TRIALS

A clinical trial is not a method per se, but is a term applied
to any form of planned experiments that involves human
patients. The purpose of a clinical trial is to evaluate and
verify the efficacy and safety of a new treatment or sets of
treatments for a given medical condition. Although most of
the analytical methods employed for clinical trials are the
same as in other contexts, there is a special effort to avoid
bias, which leads to some unique designs. Another distin-
guishing characteristic of clinical trials is the constraint
imposed by studying living patients and the often difficult
ethical considerations that must be addressed.

Double Blind. The usual method to avoid bias in
experimental designs is the radom allocation of experi-
mental subjects to treatments, but this will generally not
suffice in clinical trials. A major potential source of bias is
when subjects or evaluators in a trial know which treat-
ment (e.g., placebo or active) is being received. In double-
blind trials, neither the subject nor the evaluators are

aware of which treatment is being received. Sometimes
ethical or practical considerations make double-blinding
infeasible, and sometimes partial blinding, for example,
independent blinded evaluators only, may be sufficient to
reduce bias in treatment comparison.

Within Patient Studies versus Across Patient Studies. Most
clinical trials are conducted as parallel studies in which
two or more treatments are evaluated concurrently in
separate groups of patients. As many researchers remain
reluctant to assign patients randomly to new or standard
treatments, current patients on the new treatment may be
compared with data external to the study containing
patients who had received standard treatments. Such an
approach invites severe bias, since there is no assurance
that treatment and control groups do not differ with
respect to some factors other than the treatment itself.
In crossover studies, each patient receives in succession
two or more treatments. When feasible, such within-
patient studies require smaller sample sizes than
between-patient studies to achieve the same level of
significance.

Lifetime Variables. Some clinical studies are conducted
as life data analysis and survival studies, and require
specific statistical tools. In such studies, a variable repre-
sents the time to the occurrence of some event of interest,
and is called a lifetime variable. In the engineering context,
a life test consists of monitoring the operation of a sample of
devices and to observe causes of and times to failure for all
or some of the devices. In the clinical context, a survival
study may involve observing cause of death (and time from
entry to the study until death occurs) for some potentially
fatal or, in the case of animal studies, induced disease.
Alternatively, the event of interest may be time to relapse
or time to remission for some diseases or conditions. The
purpose of life tests or survival studies is to estimate or to
compare lifetime or survival between different treatment

groups.

Statistical Test for Lifetime Variables. Since a lifetime
variable must be positive (number of remissions, e.g.), the
normal distribution is not usually a suitable model. The
normal-based methods of multiple regression and analysis
of variance cannot be used in the usual manner and in
general requisite mathematical and computational meth-
ods are much less tractable than normal-based methods.
Consequently, a nonparametric, partially parametric, or
nonnormal distributional analytic approach is taken. Data
is usually visualized using Kaplan—Meier survival curves
where censored patients (patients that have left the study)
are explicitly indicated on the curve. Comparing between
unpaired groups usually involve a log-rank test or a Man-
tel-Haenszel test. Conditional proportional hazards
regression may be used to compare between two or more
paired groups. Finally, Cox proportional hazard regression
may be used to compare between more than two unpaired
groups and perform regression analysis.

Censoring. As mentioned above, a further complicating
factor for survival studies is censoring. Under censoring,



exact lifetimes are known only for a portion of the
experimental units, the remainder known only to exceed
certain censoring times. Censoring is usually a practical
necessity and must be preplanned. For example, a life test
on a random sample of 100 devices that has median time-
to-failure of 2500 h will likely take over a year to complete if
the tests were to continue until all devices fail. Instead, the
test might be terminated at some predetermined time (e.g.,
1000 h), or immediately upon achieving some predeter-
mined number of failures (e.g., 30). These are called Type I
and Type II censoring, respectively, and are the simplest to
deal with. A distinguishing characteristic of survival stu-
dies involving human patients is that censoring times are
often random. For example, suppose patients with a cer-
tain cancer are undergoing different chemotherapy treat-
ments. Patients may enter the study in a random
manner and patients may survive the termination time
of the study or may die due to causes unrelated to the
cancer. There are probability models that incorporate these
data and lead to appropriate statistical inferential techni-
ques. For example, some techniques assess the effective-
ness of different treatments by comparing estimated mean
survival times with the effect of unrelated causes of death
removed. Other methods used for dealing with censoring
will not be discussed. It is sufficient to say that the special
problems of statistical inference in the presence of censor-
ing necessitate the use of large sample approximations
and computer- aided numerical solutions. Some of these
methods incorporate strong assumptions that users should
be aware of.

Extensive treatment of methods for censoring and the
analysis of survival data is given in Refs. 25-27. Nontech-
nical discussions of clinical trials and the special statistical
treatments they require are given by Pocock (28) and
Shapiro (29).

STATISTICAL COMPUTING AND SOFTWARE

Standardized computer programs aiming at performing a
variety of statistical analyses were developed through the
1960s at several universities and became widely available
in the 1970s. There is now a large number of them and the
one to use will depend on the users expertise in statistics
and field of research. For infrequent usage on small data
samples and testing of simple hypothesis (x2, t-test,
ANOVA), MS Excel, which is usually already installed
on many computer desktops, may be sufficient. Note the
availability of extra statistical functions when one selects
the Analysis Toolpack add-in (installed but inactive by
default). However, MS Excel is not a statistical software
per se, so to go beyond exploratory analysis stages it is
better to rely on professional statistical software.

The best known and most comprehensive of these, now
all under privately managed companies, are the Statistical
Package for the Social Sciences (www.spss.com), the Sta-
tistical Analysis System (www.sas.com), and JMP
(www.,jmp.com). As its name suggests, SPSS, was devel-
oped primarily for use by social scientists and is relatively
easy to learn by individuals with limited statistical and
computer backgrounds. The SPSS graphical interface is
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organized as tabular spreadsheets similar to MS Excel. The
programs comprising SPSS, their output format, and
the examples in the manuals retain a social science flavor.
The SAS has evolved into a widely utilized and extremely
flexible package that is generally regarded to be more
statistically sophisticated and complete than SPSS. JMP,
also developed by the SAS institute, is a user-friendly
graphical interface that sequentially guides the user
through all stages of the experimental design and data
analysis.

Apart from the graphical packages mentioned above,
most other statistical softwares rely on command line
calls, where users call functions from a prompt (note that
most of these softwares also include menus). The free R
software (www.r-project.org) offers powerful functions
contributed by leading statisticians in the world. Because
it is an open source project, it is used by many scientists
and its extensive libraries are probably the place to look for
rare statistical procedures. The Biomedical Programs
(BMDP) (www.statsol.ie) contains a large variety of ele-
mentary and advanced statistical procedures. The pro-
grams are widely applicable, but some are particularly
appropriate in biomedical contexts, such as repeated mea-
sures ANOVA designs (see ANOVA). The S-plus software
is also very popular (www.insightful.com) and very similar
to R. It is based on the S language developed at AT-T.
Finally, a widely used package in academia, as well as in
industry is a package called MINITAB (www.minitab.-
com), which is one of the most user-friendly command line
software.

There are many smaller, less comprehensive statistical
analyses packages available for computers. These range
from packages that perform elementary, mostly descriptive
analyses, to some that are rather sophisticated. For boot-
strap and surrogate statistics, SAS software is preferred
among graphical software, although it is possible to pro-
gram bootstrap and surrogate data routines in SPSS. The R
software contains the majority of such user-contributed
routines and S-Plus also contains a few of them. Finally,
MATLAB (www.mathworks.com), an interpreted language
widely used in engineering, also has a large number of
user-contributed bootstrap and surrogate statistics rou-
tines available.

Caution against the ignorant use of computerized sta-
tistical analyses cannot be overemphasized. In planning
studies, the methods of analysis and the constraint they
impose on experimental designs should be taken into con-
sideration in advance. If not, much work and data collec-
tion efforts could be wasted. Worse still, misleading and
even meaningless results are often given undeserved
weight merely because they represent the voluminous out-
put of computer programs. How often do we hear that “a
computer analysis shows....”, but such programs can be
totally inappropriate. For example, the mathematical
methods underlying repeated-measures ANOVA incorpo-
rate restrictive assumptions on the normality of the data
and the experimental design for appropriate randomiza-
tion of events. Although these considerations are often
ignored, researchers should systematically assess the
degree to which test-related assumptions are satisfied.
These facts notwithstanding, computer-aided data
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management and analysis can be of great benefit if used
properly and wisely.

REFERENCES USED

This list is not meant to be comprehensive. For the naive
reader, a basic introduction to statistics with a plethora of
exercises is given in the Schaum’s outline series on sta-
tistics (2). For the nonnaive reader in statistics, a more
technical yet still accessible reference is Ref. 30. Other
texts dealing with general statistical methods, particu-
larly regression and analysis of variance are Refs. 31 and
32. Comprehensive web references are Refs. 18, 33,
and 34.

Statistical books have also been written for specific
research topics. For example, see Ref. 35 for a beginner’s
reference in designing biology experiments and Refs. 6, 8—
10 for more detailed references. As already mentioned, see
Refs. 28, 29, 36, and 37 for clinical trials. Finally, a recent
development in statistics is statistical process control that
deals with optimizing production and quality in the indus-
try (38).
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