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Reminder: Summary of matrix optics for basic functions & components
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Example: Consecutive Lenses

» Suppose we have two thin lenses right next to
each other with no space in between.

« How does it behave?

When light enters this system, it experiences:
1) Initially, 18t lens with focal length of f,
2) Then, 2" |ens with focal length of f,

My = Mipin tens with fi My = Mihin 1ens with f,
1 0 1 0

Ml = _l 1 M2 = _l 1
f f2

Two consecutive lenses act as one
lens whose focal length is computed

by the “resistive sum” = ftotal

/
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System Properties for “A=0"

V; A B] Via
6. C D] 6.

J u Jj-1

Under this condition the equation is independent of positions (y; ;)

=2t means all possible rays entering the system from different positions but with same
angle (0, ,), will cross each other at the same point at the exit the system.

(¥;.4,614) (v;,8)

oo

A=0 corresponds to FOCUSING




System Properties for “D=0"

Vil |4 B,V
t.?. C D

If D=0 =» 9] = C'yj—l + 0. 0]'_1
Under this condition the equation is independent of angle (6, ,)

=>» It means all possible rays entering the system from different angles but originated from
the same position (y; ), will exit the system with the same angle.

(Yj-1|!Bj-1) (h;, .B i)

D=0 represents COLLIMATING



System Properties for “C=0"

vi| [4 Bl |y,
0. C D] |6

_ J-1

fc=0 2 6; =0.y;_1+D.6;_4
Under this condition the equation is independent of position (y; ,).

=>» It means all possible rays entering the system from different entrance points but with
same entrance angle (0, ), will exit the system with the same exit angle.

\7 0..) 2 8)

C=0 corresponds to deviation



System Properties for “B=0"

v | [4 BT[r
C D] |9

fB=0 & yj=Ayj_1+0.6,_,

Under this condition the equation is independent of angle (6, ,)

=>» It means all possible rays entering the system with different angles but from the same
point (y; ;), will cross each other at the same point at the exit of the system.

(YH ) e j-1 )

(h,8)

<
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B=0 corresponds to IMAGING condition
It means these two planes (indicated by dashed vertical line) are conjugate



How can we connect ray tracing & matrix representation?

RECALL THIN LENS EXAMPLE:

From Ray Tracing

Ray Deflection : Focal length: Imaging Condition: Magnification:
By =0, 4 iz{” L}(L L) 1= 1 _|_i mag:ZZim'
f f I Ha f Z, bj Z obj
From Matrix Representation
) 0 Ray Deflection : _
= [ -7 1 } O i IRV | 3 B




According to Matrix Representation:
An optical system forms an image of an object when “B = 0"

WhenB=09 yout:Ayin

Hout B C D Hin -

yout]_ A o] ym]_ AYin
Cyin‘l'DHin

Independent of their angle, all rays from a point y, arrive at the same pointy,

Lens

Obiject Image

When B =0, y,, =4y,

A is the

«—d

o i

'2 g] =>» this is called “conjugate” matrix = it describes an “imaging” optical set-up




Example:
Find the conjugate matrix of an imaging system based on
single thin-lens

Lens

Object Image

dg > < d; >

Q: How can we write the “conjugate matrix” of this one thin-lens imaging system?

From the object plane to the image plane, light rays :
1)Propagate over a distance of d,

2) Then, encounter a thin lens of focal length f

3) Finally, propagate over a distance of d,



Reminder: Cascaded Elements

y in Hm/ I ﬁ
L
y our Hout

yin / y
ol | M, \./ My | (5]

we simply multiply ray matrices.

) = Mo 4 (s[5 ])) = Mo g

Notice the order !

yut




Example: Conjugate matrix for 1 thin lens imaging system

Lens
From the object plane to the image plane, light rays : Object Image
1)Propagate over a distance of d,
2) Then, encounter a thin lens of focal length f
3) Finally, propagate over a distance of d,
«—d, « d —

Msystem = M3 X My X M,

1/ f

1 d, 1 0] [1 d
M — ZX X (0]
w=lo Vs e T
> 1 a][ 1 d
{0 1}( VU 1-d,/f

_F—dl./f d +d —dd | f

1-d,/ f }



Example: Conjugate matrix for 1 thin lens imaging system

Lens
From the object plane to the image plane, light rays : Object Image
1)Propagate over a distance of d,
2) Then, encounter a thin lens of focal length f
3) Finally, propagate over a distance of d,
«—d « d —

1 d

o

Msystem:MBXMZXMl
F d/f|d,+d~dd, f]}

—l/f/ 1-d | f

For imaging, set Bas0=» B=d +d,—dd./f=0

It means, d d, [l/d +1/d, —l/f] , and this happens only if :

1 n 1 _ 1 This is the imaging condition
d d f (a.k.a. Lens law)




Example: Conjugate matrix for 1 thin lens imaging system

Lens
From the object plane to the image plane, light rays :
. Object Image
1)Propagate over a distance of d,
2) Then, encounter a thin lens of focal length f
3) Finally, propagate over a distance of d,
«—d, « d —>
At the imaging condition:
Msystem = M3 X My X M,
I-d./f 0 111
| =1 1-d ) f d, d, f
If the imaging condition is satisfied then: A=1-d,/ f ™ Magnification:
A=M
| 1
d d ;
_ 4 M == dl

o



How can we connect ray tracing & matrix representation?

Recall the relevant relations/equations for the example of thin lens based on Ray Optics:

Object -

Optical
Axis

—Image

1 1 N 1 Imaging
f a b condition
b
M = p Magnification

1 |
) Focal length (lens maker’s formula)




Generalization: How to trace an image in an optical system?

Field or Image Forming

Conjugate Planes C e Conjugate Planes

in the
Optical Microscope

Aperture or llluminating
Conjugate Planes

Retina  Microscope
Image Exit Pupil
Plane (Eyepoint)

1 Microscope
| Exit Pupil

= (Eyepoint)

Photo Eyepiece Lamp
_ . Fixed Diaphragm Filament

Aperture
Diaphragm

Objective
Rear Focal
Plane

Specimen
Plane

Condenser
Aperture
Diaphragm

Lamp
Filament

Diaphragm

Optical systems (i.e.
microscope) contain multiple
lenses.

Q: What is the connection
between matrix optics & ray
tracing?

A: Use cardinal planes




Microscope — An Optical System

Field or Image Forming
Conjugate Planes

Conjugate Planes w IR
in the B

Ypdieal Mieroscons Aperture or llluminating

Conjugate Planes

ks
A 1?—'“ Microscope
Li Exit Pupil

—

Retina  Microscope
Image Exit Pupil

Plane (Eyepoint)

Camera

'ﬁ:ﬁ: {Eyepoint)
i LPhotn Eyepiece Lamp
. Fixed Diaphragm Filament
’ Aperture

Diaphragm

Objective
Rear Focal
Plane

Specimen
Plane

Condenser
Aperture
Diaphragm

' . Lamp
~_— _Filament

Diaphragm

Let’s start with an important
optical component:

 The Objective



Anatomy of the Microscope Objective Lens

DeEnrative -— fstnp Face
arre
— Spring
Manufacturer i Syatem
- —
Specifications —
- ] Lens Error
— i ; — Correction
T Lens Group
Immersion . .
Adjustment —
ollar - ]
= X[ — Correction
Magnification ﬁ Collar
anﬂ | —
Immersion — 'f'
Color Codes -5

Front Lens

* |tis not a single (and thin) lens
* |t contains multiple THICK lenses
» Effectively this is an optical system itself



Thick lens

| — |
FOL,/f"E: ”ol l”* 5 .|L A thick lens is an “optical system”:
| PR - Refraction at entrance & exit surfaces
! . = ! ) o
| ~] | - Propagation inside the lens
! all fﬂ I-I i" f| -I
ray propagalion across a thick lens and the principal planes

The thick lens can be simplified by representing that as if the refraction is happening at the principal planes:

1) Two principal planes: H, and H, =» virtual planes where the lens appears to bend the rays
2) Two focal planes: F, and F;
These are the FOUR CARDINAL PLANES.

There are also FOUR CARDINAL POINTS:
1) Two principal points: P, and P,
which are the intersection points of the principal planes with the optical axis.

2) Two focal points: F; and F,
which are the intersection points of the focal planes with the optical axis.

F 3




The thick lens between planes E & S is represented
with [ABCD] matrix.

A B

CcC D




Generalization... beyond the thick lens case

Cardinal planes (two focal planes & two principal planes) are helpful concepts for ABCD analysis
=» They are not limited to thick lens and can be used for any optical system in general.

To generalize, one needs to first realize that a system between the planes E & S is described with [ABCD].

Next, for the imaging condition, we need to find transfer from plane A, to plane A, by considering
propagations and [ABCD] of the system between planes E & S, as it will be analyzed in the next slides.

Some useful rules

A B

c D

1. Light is traveling from left to right
2. Directed distance
if measured from reference plane
to destination plane
along propagation direction

if measured from reference plane
to destination plane
against propagation direction
3. Radius of curvature
P + if center of curvature
pa—— A after surface
1 - if center of curvature
_ before surface

Here, plane E is the origin (reference)



Generalized analysis with [ABCD] matrix & principal planes

We use the following three steps to transfer
from plane A, to plane A, :

1) Transfer from A;=>E by propagation over z, =

T(AE)

2) Transfer from E—>S by [ABCD] optical system = T(ES)

3) Transfer from S=> A, by propagation over z, =

Tl 1
T2 1

T(SA,)

T22

. [A+CZZ

T12] 1 Zz]

A B

cD

T(A,,A,) = T(SA,) X T(ES) X T(AE)

plxly 7]

1 ZZ] [A B —z,A

C

C D_Z]_C

—AZ1 + B + Zz(—CZ]_ + D)]
D - CZ]_



Generalized analysis with [ABCD] matrix & principal planes

We use the following three steps to transfer
from plane A, to plane A, :

A B

cD

1) Transfer from A;=>E by propagation over z, = T(AE)
2) Transfer from E%S by [ABCD] optical system = T(ES)
3) Transfer from S=> A, by propagation over z, = T(SA,)

\ 1%t observation:
T(A1LA,) =T(SA,) XT(ES) X T(ALE)
T, isindependent of A, and A,

Tiq TlZ] ll Z, [A B] o ll —Z; Therefore, it is only a system property
Ty Ty ¢ D 0 1

T.1=4A+Cz > Vergence V= —C

T12 = —A21 + B + Zy (_Czl + D) if V>0 convergence or (+) system

T21 =C if V<0 divergence or (-) system

If V=0 afocal system




Consider Imaging (Conjugation) Case:

Transfer from plane

| I 1
' v ‘0'

A, to plane A,

A B

c D

..'E |
'
'

T T
T(Aoa) = [ 12|

TZ 1 TZ 2

. [A - VZi
N -V

y yi
>

@
|
i i
|
A

(=Az,+B)+z;(Vz, + D)
D+Vz,

Now, lets consider its application to an imaging case:

z, =FA
0|z, Z, _
— z,. =S4
A, A
[ ] Bi
The corresponding notation in the above figure is as follows:
z,=1,
z,=z
A = (A, B, ...)
A,= (A B, ...)

It maps object points (A,,B,...) to image points (A,B;...)

« If we define ray vectors as X; & X, we can write that:

X; = T(AoAi)-Xo

=BT R
l ‘91' __V Tzz ‘90
(T11Y0 + T120,
__VYO + T2290




Consider Imaging (Conjugation) Case:

* If we define ray vectors as )_()l- & )?0, we can write that:
Xi = T(AoAi)-Xo

Fa lyl'] _ [Tn)’o + T12‘90] _ [Tn T12] lyO]
. —Vyo + T220, —V  Ta21160

Y

M
-V

] i Ti1 =M =yi/Yo
Imaging requires that:
It corresponds to
_ lateral magnification
12 =0 - T(Ao4;) =
7 = l)’i] _ T11Yo T,, =M, = 6,;/8,
' 0; —Vyo + 1220,

It corresponds to

angular magnification




Conjugated System: Connection to the Principal Planes (H, & H.)

z
___.ZJ'.__)

i

i
¢B;
A

|
./
The two principal planes (H, and H;) are conjugated:
=» Object-image relation holds between the planes H, and H, with the condition that M;=M =1

= When we apply T(A4,4;) for H(H,H;), then we get:
—
Recall: e

M, O Transfer matrix H between the principal planes H, and H; as:
T(AOAL') — -V M

_/

1 0
In this case, M =1 = H(H"H"):l -V 1 }




Conjugated System: Connection to the Principal Planes (H, & H.)

Y

! A B

//! — | \\
Oi"// E: Hoé éHJ :S I’
| L
| AR |
| L |
e fo —mi f ;
l Imaging
! - — !
Bo® . !
| i
_45__ __46__5
| ! | C=-V
| : ®B;
| |
\ A, E

For the region between planes E & S, the operation is represented by [ABCD]:

1 EH,
M1:MEH,, =
0 1
1 0]
MZZMHOH = 1

|

{2 3]

=M, xM,xM,

1 HS| [1 0] [1 EH,
= X X
o T e T
|1-VHS HS+EH,-VEH,HS
-V 1-VEH,




Conjugated System: Object Principal Plane & Object Focal Plane

} —t— : I ! !

| ' ' | H A B Y :
Foi’_///g; Hoi iHJ =5 ,..fi - e e o A S Zz.! _)Z

| 0 cCD |

! —— l i i

| 17 ! i i

[ fo —=i i i ——] S A,

For the object side (indicated by the red line), the relevant componentsareH_, F, & f,

For finding the location of object principle plane (H,): D=1-VEH, > EH, = %(1 —D)

1
Object principle plane: H, =EH, =—=(D — 1)

{A B}{l—VHiS HiS+EH—VEH0Hl.S}
C

For finding the location of object focal plane (F,) & object focal length (f,):
Yol _[A B 1 FE l 0
[O]_C D]Xlo 1 X[e]

[yo] _ 9B+ EA) This can hold only if: D + CF,E = 0
0 6(D + F,EC)

Object focal point: F, = EF, =D/C

1 D 1
Object focal length: fo=H,F,=H,E+EF, = _E(D - 1) -|-E — +E




Summary: Cardinal Points & Planes for Object

A B

cD

|
|
L

|
|
|
-

Object Focal Point
Object Focal Length

S
5
ol ©

1/C
0 (D—l)/C

Object Principle Plane

2
A



Conjugated System: Image Principal Plane & Image Focal Plane

| | | |

| | s i

| | .
2 !y s e

| ! C D i

| | i i

| | | i

' - S A,

For the image side (indicated by the green line), the relevant terms are H,, F, & f.

1
For finding the location of image principle plane (H,): A=1-VHS = HS = v (1-A)

{A B} HI.S+EHO—VEH0H,.S | oo olanes H— S = L1
= mage principie piane: . = , = — —
¢ D -V |-V EH, se princpie P ! i = ¢ ( )

For finding the location of image focal plane (F;) & image focal length (f)):

=H =[5 Tt BI<E

— o) _[(a+ Sy . S
—— - [9] = [ Cv. This can hold only: A + CSF; =
Image focal point: F; = SF, = —-A/C
E H, H S F; ) p .

Image focal length: f; = H;F; = H;S + SF; =_E(1_A)_E=_E




Summary: Cardinal Points & Planes for Image

Image Focal Point —A/C
Image Focal Length fl- Hl-Fi —-1/C
Image Principle Plane H; SH; (1-A4)/C




The analysis (and the table) is also valid for generalized optical systems

Cardinal points/planes can be used to find the image of the complex (i.e. cascaded) optical systems

and the corresponding rays = This is an alternative to ray tracing method.

Object Focal Point
Object Focal Length
Object Principle Plane

Image Focal Point
Image Focal Length

Image Principle Plane

1/c
(D -1/C
—A/C
~1/C
(1-4)/C



Example: Cardinal Points & Planes of a Thick lens

} — : Lens thickness= ES = e
Fol _//-/’: Ho! lH, 5 | : Lensindex=n  Outside index =1

: - i!_ - — : Opt. Power of 1%t Surface ®, = (n—1)/nR,
| L "] |
| fo —mi | fi - Opt. Power of 2" Surface @, = (1 —n)/R,
N A B] —9
I C D
BO
A, .Ai
B,

A B

Cc D




Remember: Matrix optics description of basic functions & components

Propagation M = L d
0 1
d
Planar nyp | nz 1 0
b M= n
oundary L 0 =
Spherical R — I” ~a 0
pherica T L 0 Lens M= L1
boundary M= { (na—m1) } U . f
n, ny no R na |"
Convex, f> 0; concave, f<()
Convex, 8> 0; concave, R«
Planar I~ Spherical
Bl DRV pheriesl |\ 10
z 0 1 mirror = 1

mirror - =
-

Concave, R =0; convex, 8 =0




Example: Cardinal Points & Planes of a Thick lens

| — l

| |
Foi _— E Haj iHi S i

A B

Cc D

Lens thickness= ES = e
Lens index =n Outside index =1

Opt. Power of 1* Surface @, = (n — 1)/nR;

Opt. Power of 2" Surface @, = (1 —n)/R,
[A B] _

C D
=0, w %[0 Tx[-a, 1l

_[1—edy e/n ]
- _q)tOt 1_eq)2/n

(DtOt = nq)l + CDZ — eCD1CD2

B ! 1 1+n—1 e
=D et TR




Example: Cardinal Points & Planes of a Thick lens

|
|
!
Ji Object Focal Point

|
: Object Focal Length fo H,F, 1/C
Object Principle Plane H, EH, (D-1)/C
| |
' I Image Focal Point F; SF; —A/C
A B nl z
-C- B' - - ’I ~>  Image Focal Length fi HF, —-1/C
: : Image Principle Plane H; SH; (1-4)/C
S A,
A1 o Object Focal Point Position | image Focal Point Position
= 1—e ed, _ _
F=FEF =—=-1___ [ L Sl
B=e/n 0 °T ¢ Dpor C Dot
C=-0 . .. A
tot Object Principle Plane Position
— ed ed
D=1-e®,/n H =FH,==(D —-1) = (1——2—1)= !
C — Dot n nD¢ot

Object Focal & Image Focal Lengths

1 1

fi:_foz_E:(DtOt

Image Principle Plane Position

1




Example: if we use ray tracing for a thick lens
Lens parameters | Num. value |

1stinterface curvature (R;) +5cm
2"dinterface curvature (R,) +2cm

Central thickness, e 3cm

Lens index (glass) 1.5

______________________________ (7
|

Can you determine the path of the ray after the thick lens?
This means, identifying:

- The point that the ray exits the lens?

- The exit angle?

=» Instead of ray optics, lets use the approach of cardinal points and planes!



Example: if we use cardinal planes for a thick lens
Lens thickness= ES = e -t_p . = d
Lensindex=n  Outside index =1 c P,]. 1 RN
Optical Power of 1%t curvature ®; = (n — 1)/nR;

fo -
Optical Power of 2" curvature @, = (1 —n)/R, ~ >




Example: Ray Tracing a Thick lens

Lens parameters m

1stinterface curvature (R;) +5cm

2" interface curvature (R,) +2cm

Central thickness, e 3cm
Lens index (glass) 1.5
3cm
A B
__________________________________________________ C D
E S
A B

T(E - S) = C D = Tan spherical curvature X Tp‘r‘opagottion>< Tlst spherical curvature




Reminder: Simple Optical Components

L
Propagation / d
- o 7]

s o —

Ry | M2
Planar
boundary 7i M = [ é y ]

R
Spherical T M — 1 0
boundary — | _nz—ni) my
oy M ng R g

Conves, 8= concave, B<0

H ;““ 1 0
Thin Lens V ; M = [ 1 :|

Convex, f> (; concave, f<0



Example: Ray Tracing Thick lens

ETETEENNTEETT o, = (- /nRy = (15— 1)/1.5x5 = 2/30

1stinterface curvature (R;) +5cm ®., = (1 _ n)/R _ (1 —1 5)/2 =—1/4
2 = 2 — . -

2"dinterface curvature (R,) +2cm

Central thickness, e 3cm
Lens index (glass) 1.5
3cm
A B
__________________________________________________ CD
E S
A B]_
T(ES) = [C D] - Tan spherical curvature X Tpropagation>< Tlst spherical curvature

1A Byl _[ 1 0 1 e 1 0
“lc D _[—QDZ n]x[o 1]X[—CI>1 1/n]



Example: Thick lens

Lens parameters m

1stinterface curvature (R;) +5cm

Object Focal Point

2" interface curvature (R,) +2cm

Central thickness, e 3cm Object Focal Length o Hofo 1/¢
Lens index (glass) 15 Object Principle Plane H, EH, (D-1)/C
Image Focal Point F; SF; —A/C
T(ES) = A B] _[08 2 ]
“lc pl lo1 15 Image Focal Length fi H;F; -1/C
Image Principle Plane H; SH; (1-4)/C
3cm




Example: Thick lens =» Object Focal Length f,

Lens parameters m

1stinterface curvature (R;) +5cm

_ Object Focal Point
2" interface curvature (R,) +2cm

Central thickness, e 3cm Object Focal Length o Hofo 1/¢
e T e 15 Object Principle Plane H, EH, (D-1)/C
Image Focal Point F; SF; —A/C
T(ES) = A B] _[08 2 ]
C D 01 1.5 Image Focal Length fi H;F; -1/C
Image Principle Plane H; SH; (1-4)/C
3cm : 2cm f,
f g
< | / / >
——————————————————————— R - R
5cm 5cm 10 cm
F E S H F

I

+15 cm
+10 cm

+5 cm

-8 cm
-10 cm

+2 cm



Remember the question:

!
Lens parameters m :

FO
1stinterface curvature (R;) +5cm —

2"dinterface curvature (R,) +2cm

Central thickness, e 3cm

Lens index (glass) 1.5

3cm

Can you determine the path of the ray after the thick lens?
This means, finding :

- the point that the ray exits the lens?

- the exit angle?



Thick lens example: ray tracing with cardinal planes

——+ !
I = o |

|
|
| |
o EL Hop i S ya
| |
|
|

|
|
l

Ray tracing is simpler to
implement with the cardinal
points & planes:

5cm 5cm 10 cm

I



Thick Lens Example: Ray Tracing with Cardinal Points

| . |
GL_.-*"; E‘ Hﬂ* *H.J -5 L
|
|
|

l | | __F'_,,.--""-“—F
. _.r""'-'-

| e

|

|

-

. —1 1
— g —= —; -

Ray tracing is simpler to
implement with the cardinal
points & planes:

3cm 2cm
——————————————————————— @ - @ . SECETETETEETETEEE T TR T TP EE TP PRt P e EEEr T T e r rrs
5cm 5cm 10 cm
F. E S H, Fo



Thick Lens Example Summary: Ray Tracing With Cardinal Points

| |
| |
| | |
ey s
| |
| |
| |

— f -]

Ray tracing is simpler to
implement with the cardinal
points & planes.

\
T




Example summary: Thick lens

| —_— |

T "
Fol — EL Mol I |S ya

| o

| =T |

| | T |

- fo - i— ] -

3cm

§2cm

10 cm

Cardinal plane(s)
-Principal planes H, , H;

*Not always inside the thick lens

*The refraction happens at the
virtual/fictious principal plane
-Always magnification M = 1
between principal planes

-Focal plane(s) F, , F;
Common point for rays parallel to axis
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