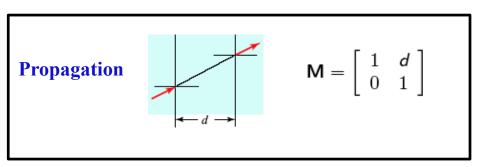
MICRO-561

Biomicroscopy I

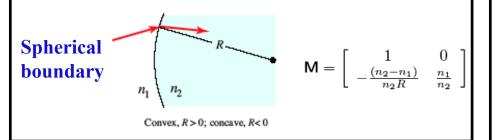
Syllabus (tentative)

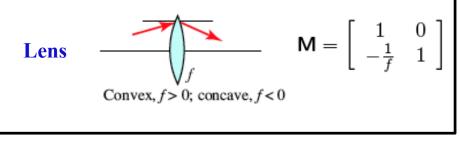
Lecture 1	Introduction & Ray Optics-1
Lecture 2	Ray Optics-2 & Matrix Optics-1
Lecture 3	Matrix Optics-2
Lecture 4	Matrix Optics-3 & Microscopy Design-1
Lecture 5	Microscopy Design-2
Lecture 6	Microscopy Design-3
Lecture 7	Resolution-1
Lecture 8	Resolution-2
Lecture 9	Resolution-3 & Contrast
Lecture 10	Fluorescence-1
Lecture 11	Fluorescence-2
Lecture 12	Fluorescence-3, Sources, Filters
Lecture 13	Detectors
Lecture 14	Bio-application Examples

Reminder: Summary of matrix optics for basic functions & components

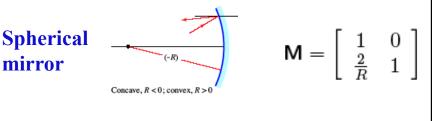


Planar boundary
$$M = \begin{bmatrix} 1 & 0 \\ 0 & \frac{n_1}{n_2} \end{bmatrix}$$





Planar mirror
$$\theta_1$$
 $M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$



Example: Consecutive Lenses

- Suppose we have two thin lenses right next to each other with no space in between.
- How does it behave?

When light enters this system, it experiences:

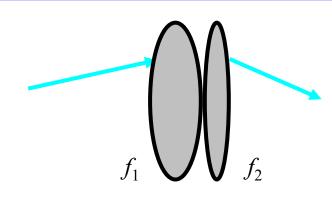
- Initially, 1st lens with focal length of f₁
- Then, 2nd lens with focal length of f₂

$$M_{1} = M_{thin lens with f_{1}}$$

$$M_{1} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix}$$

$$M_2 = M_{thin\ lens\ with\ f_2}$$

$$M_2 = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_2} & 1 \end{bmatrix}$$



$$M_{total} = M_2 \times M_1$$

$$M_{total} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_2} & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_1} & 1 \end{bmatrix}$$

$$M_{total} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_1} - \frac{1}{f_2} & 1 \end{bmatrix}$$

$$\frac{1}{f_{total}} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$\frac{1}{f_{total}} = \frac{1}{f_1} + \frac{1}{f_2}$$
 $M_{total} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_{total}} & 1 \end{bmatrix}$

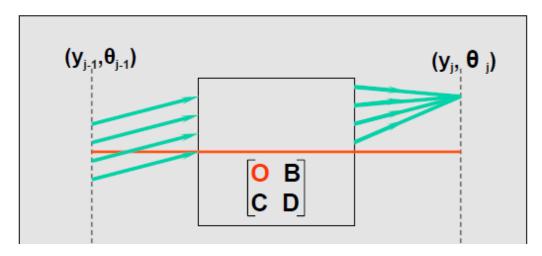
System Properties for "A=0"

$$\begin{bmatrix} y_j \\ \theta_j \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} * \begin{bmatrix} y_{j-1} \\ \theta_{j-1} \end{bmatrix}$$

If
$$A=0 \rightarrow y_j = 0. y_{j-1} + B. \theta_{j-1}$$

Under this condition the equation is **independent of positions** (y_{i-1})

 \rightarrow It means all possible rays entering the system from **different positions** but with same angle (θ_{i-1}) , will cross each other at the same point at the exit the system.



A=0 corresponds to FOCUSING

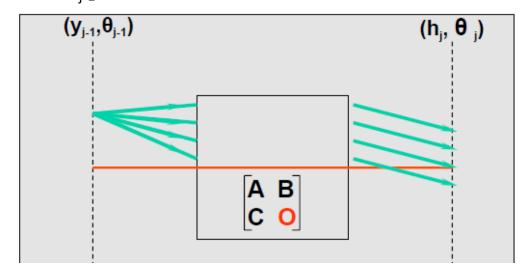
System Properties for "D=0"

$$\begin{bmatrix} y_j \\ \theta_j \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} * \begin{bmatrix} y_{j-1} \\ \theta_{j-1} \end{bmatrix}$$

If D=0
$$\rightarrow$$
 $\theta_i = C.y_{i-1} + 0.\theta_{i-1}$

Under this condition the equation is **independent of angle** (θ_{i-1})

 \rightarrow It means all possible rays entering the system from different angles but originated from the same position (y_{i-1}) , will exit the system with the same angle.



D=0 represents COLLIMATING

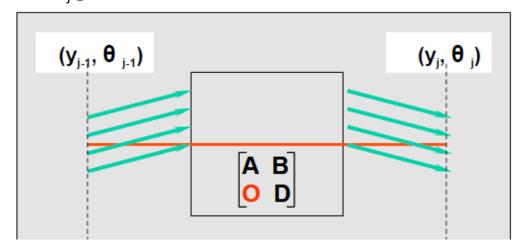
System Properties for "C=0"

$$\begin{bmatrix} y_j \\ \theta_j \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} * \begin{bmatrix} y_{j-1} \\ \theta_{j-1} \end{bmatrix}$$

If C=0
$$\rightarrow$$
 $\theta_j = 0. y_{j-1} + D. \theta_{j-1}$

Under this condition the equation is **independent of position** (y_{i-1}) .

 \rightarrow It means all possible rays entering the system from different entrance points but with same entrance angle (θ_{i-1}), will exit the system with the same exit angle.



C=0 corresponds to deviation

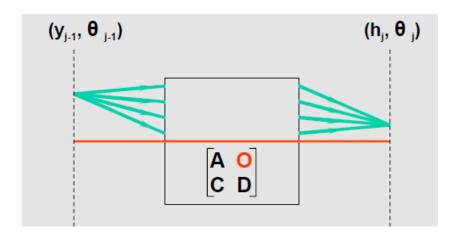
System Properties for "B=0"

$$\begin{bmatrix} y_j \\ \theta_j \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} * \begin{bmatrix} y_{j-1} \\ \theta_{j-1} \end{bmatrix}$$

If B=0
$$\rightarrow$$
 $y_j = A. y_{j-1} + 0. \theta_{j-1}$

Under this condition the equation is **independent of angle** (θ_{i-1})

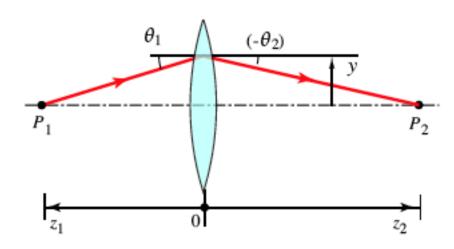
 \rightarrow It means all possible rays entering the system with different angles but from the same point (y_{i-1}) , will cross each other at the same point at the exit of the system.



B=0 corresponds to IMAGING condition
It means these two planes (indicated by dashed vertical line) are conjugate

How can we connect ray tracing & matrix representation?

RECALL THIN LENS EXAMPLE:



From Ray Tracing

Ray Deflection:

$$\theta_2 = \theta_1 - \frac{y}{f}, \qquad \qquad \frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \qquad \qquad \frac{1}{f} = \frac{1}{Z_{obj}} + \frac{1}{Z_{im}}$$

Imaging Condition:

$$\frac{1}{f} = \frac{1}{z_{obi}} + \frac{1}{z_{im}}$$

Magnification:

$$mag = \frac{z_{im}}{z_{obj}}$$

From Matrix Representation

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} y_{out} \\ \theta_{out} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} y_{in} \\ \theta_{in} \end{bmatrix}$$

Ray Deflection:
$$\theta_{out} = \theta_{in} - \frac{y_{in}}{f}$$

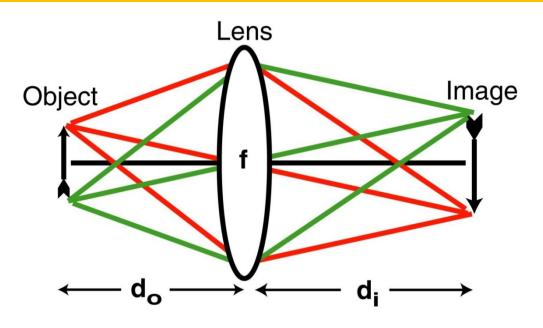
According to Matrix Representation:

An optical system forms an <u>image</u> of an object when "B = 0"

When
$$\mathbf{B} = \mathbf{0} \Rightarrow y_{out} = A y_{in}$$

$$\begin{bmatrix} y_{out} \\ \theta_{out} \end{bmatrix} = \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} \begin{bmatrix} y_{in} \\ \theta_{in} \end{bmatrix} = \begin{bmatrix} Ay_{in} \\ Cy_{in} + D\theta_{in} \end{bmatrix}$$

Independent of their angle, all rays from a point y_{in} arrive at the same point y_{out}



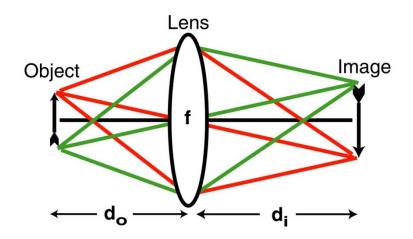
When
$$B = 0$$
, $y_{out} = A y_{in}$

A is the magnification.

$$\begin{bmatrix} A & 0 \\ C & D \end{bmatrix}$$
 this is called "conjugate" matrix \rightarrow it describes an "imaging" optical set-up

Example:

Find the conjugate matrix of an imaging system based on single thin-lens

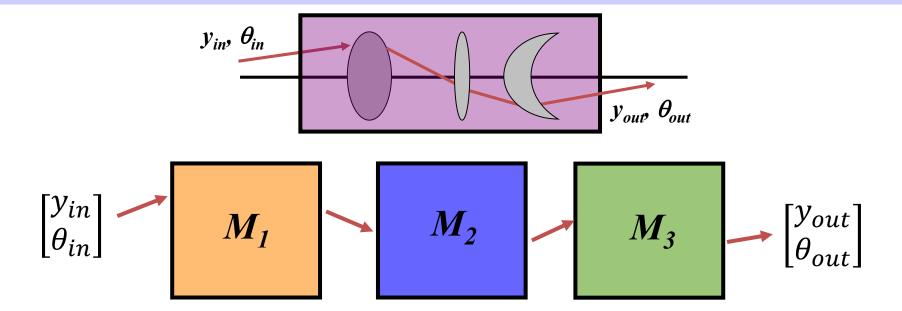


Q: How can we write the "conjugate matrix" of this one thin-lens imaging system?

From the object plane to the image plane, light rays:

- 1)**Propagate** over a distance of d_o
- 2) Then, encounter a thin lens of focal length f
- 3) Finally, **propagate** over a distance of d_i

Reminder: Cascaded Elements



we simply multiply ray matrices.

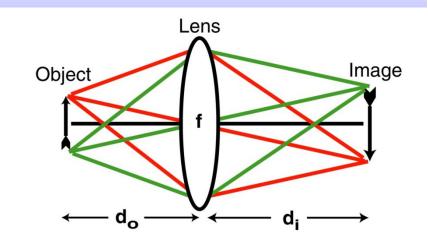
$$\begin{bmatrix} y_{out} \\ \theta_{out} \end{bmatrix} = M_3 \left\{ M_2 \left(M_1 \begin{bmatrix} y_{in} \\ \theta_{in} \end{bmatrix} \right) \right\} = M_3 M_2 M_1 \begin{bmatrix} y_{in} \\ \theta_{in} \end{bmatrix}$$

Notice the order !!

Example: Conjugate matrix for 1 thin lens imaging system

From the object plane to the image plane, light rays:

- 1)**Propagate** over a distance of d_o
- 2) Then, encounter a thin lens of focal length f
- 3) Finally, propagate over a distance of d_i



$$M_1 = \begin{bmatrix} 1 & d_o \\ 0 & 1 \end{bmatrix}$$

$$M_2 = \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix}$$

$$M_3 = \begin{bmatrix} 1 & d_i \\ 0 & 1 \end{bmatrix}$$

$$M_{system} = M_3 \times M_2 \times M_1$$

$$M_{system} = \begin{bmatrix} 1 & d_i \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \times \begin{bmatrix} 1 & d_o \\ 0 & 1 \end{bmatrix}$$

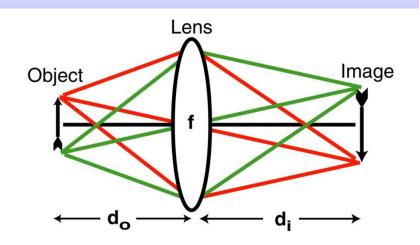
$$= \begin{bmatrix} 1 & d_i \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & d_o \\ -1/f & 1 - d_o/f \end{bmatrix}$$

$$= \begin{bmatrix} 1 - d_i / f & d_o + d_i - d_o d_i / f \\ -1 / f & 1 - d_o / f \end{bmatrix}$$

Example: Conjugate matrix for 1 thin lens imaging system

From the object plane to the image plane, light rays:

- 1)**Propagate** over a distance of d_o
- 2) Then, encounter a thin lens of focal length f
- 3) Finally, propagate over a distance of d_i



$$M_1 = \begin{bmatrix} 1 & d_o \\ 0 & 1 \end{bmatrix}$$

$$M_2 = \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix}$$

$$M_3 = \begin{bmatrix} 1 & d_i \\ 0 & 1 \end{bmatrix}$$

$$M_{system} = M_3 \times M_2 \times M_1$$

$$= \begin{bmatrix} 1 - d_i / f & d_o + d_i - d_o d_i / f \\ -1 / f & 1 - d_o / f \end{bmatrix}$$

For imaging, set *B* as $0 \rightarrow B = d_o + d_i - d_o d_i / f = 0$

It means, $d_o d_i \left[1/d_o + 1/d_i - 1/f \right] = 0$, and this happens only if :

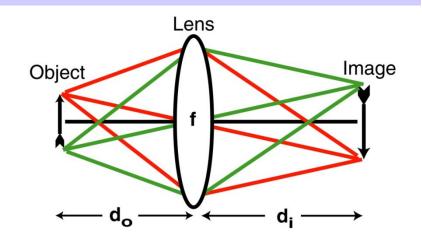
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

This is the imaging condition (a.k.a. Lens law)

Example: Conjugate matrix for 1 thin lens imaging system

From the object plane to the image plane, light rays:

- 1)**Propagate** over a distance of d_o
- 2) Then, encounter a thin lens of focal length f
- 3) Finally, **propagate** over a distance of d_i



At the imaging condition:

$$M_{system} = M_3 \times M_2 \times M_1$$

$$= \begin{bmatrix} 1 - d_i / f & 0 \\ -1 / f & 1 - d_o / f \end{bmatrix} \qquad \frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

If the imaging condition is satisfied then: $A = 1 - d_i / f$

$$A = 1 - d_i / f$$

$$= 1 - d_i \left[\frac{1}{d_o} + \frac{1}{d_i} \right]$$

$$= -\frac{d_i}{d_o}$$

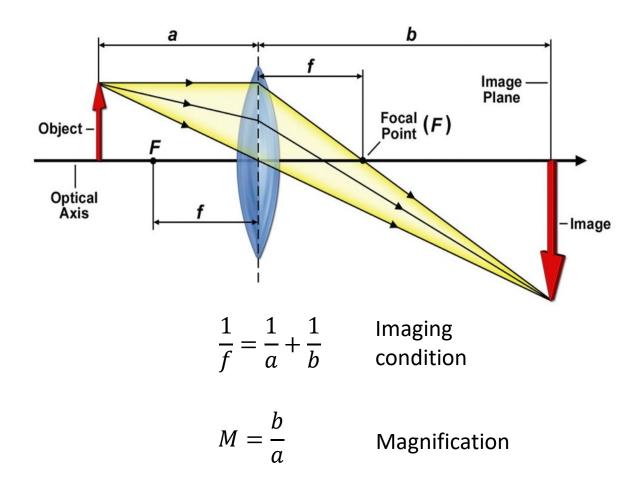
Magnification:

$$A = N$$

$$M = -\frac{d_i}{d_o}$$

How can we connect ray tracing & matrix representation?

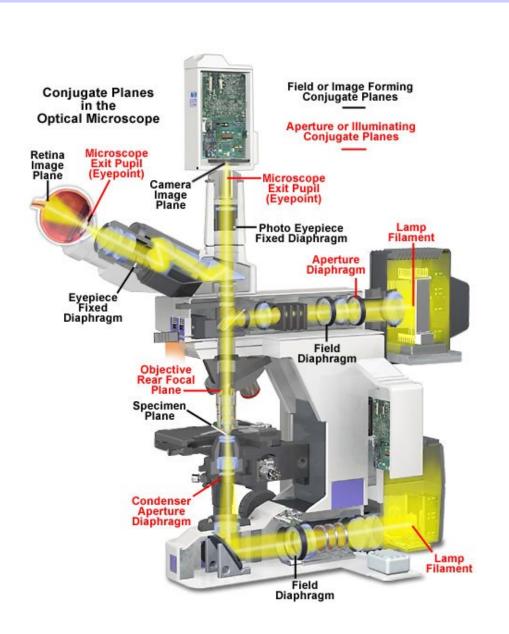
Recall the relevant relations/equations for the example of thin lens based on Ray Optics:



$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

Focal length (lens maker's formula)

Generalization: How to trace an image in an optical system?

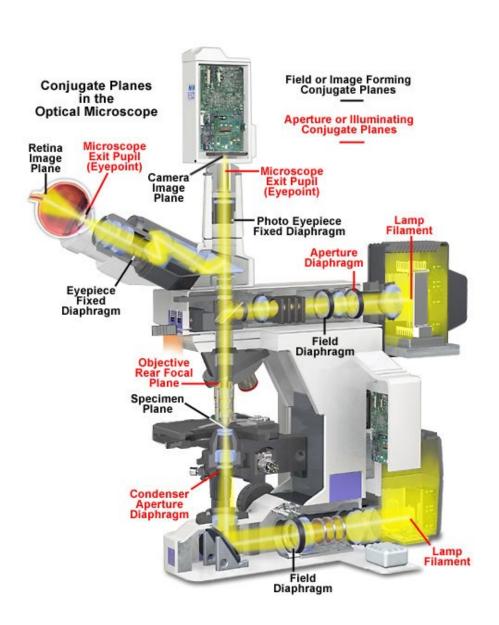


Optical systems (i.e. microscope) contain multiple lenses.

Q: What is the connection between matrix optics & ray tracing?

A: Use <u>cardinal planes</u>

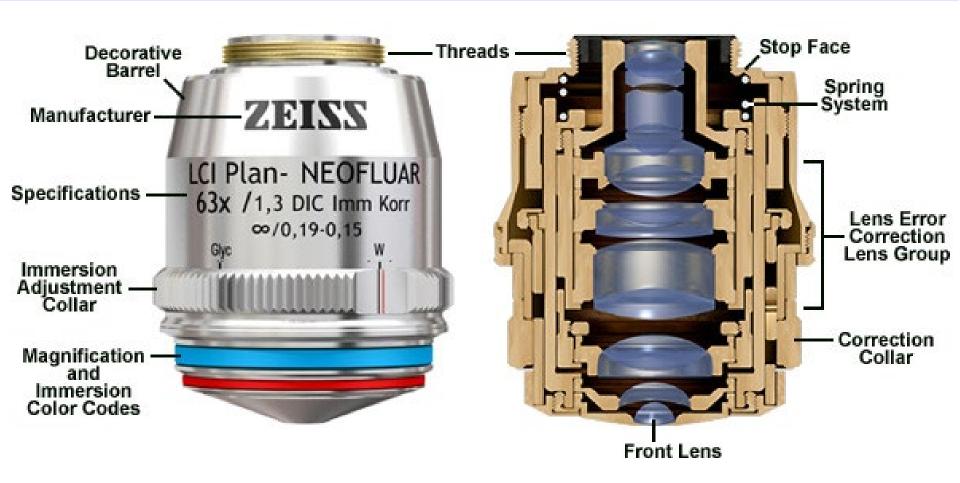
Microscope – An Optical System



Let's start with an important optical component:

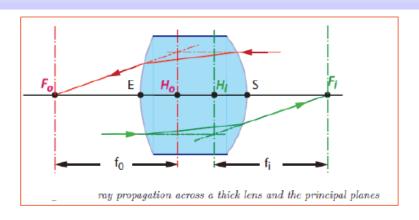
The Objective

Anatomy of the Microscope Objective Lens



- It is not a single (and thin) lens
- It contains multiple THICK lenses
- Effectively this is an optical system itself

Thick lens



A thick lens is an "optical system":

- Refraction at entrance & exit surfaces
- Propagation inside the lens

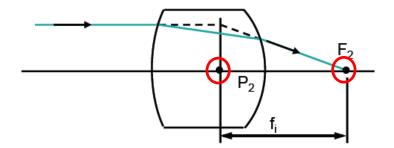
The thick lens can be simplified by representing that <u>as if</u> the refraction is happening at **the principal planes**:

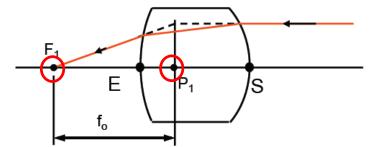
- 1) Two principal planes: H_o and $H_i \rightarrow virtual planes where the lens appears to bend the rays$
- 2) Two focal planes: \mathbf{F}_0 and \mathbf{F}_i

These are the FOUR CARDINAL PLANES.

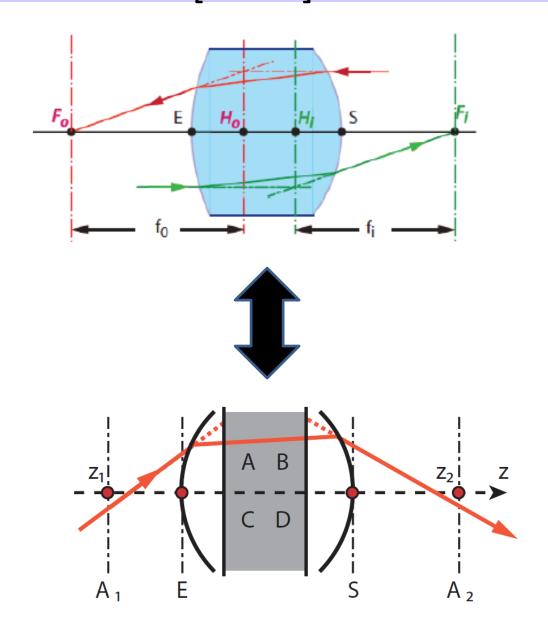
There are also FOUR CARDINAL POINTS:

- 1) Two principal points: P₁ and P₂ which are the intersection points of the principal planes with the optical axis.
- 2) Two focal points: F_1 and F_2 which are the intersection points of the focal planes with the optical axis.





The thick lens between planes E & S is represented with [ABCD] matrix.



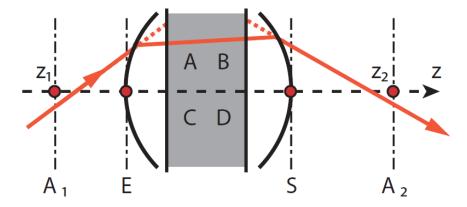
Generalization... beyond the thick lens case

Cardinal planes (two focal planes & two principal planes) are helpful concepts for ABCD analysis

→ They are not limited to thick lens and can be used for any optical system in general.

To generalize, one needs to first realize that a system between the planes E & S is described with [ABCD].

<u>Next</u>, for the imaging condition, we need to find transfer from plane A_1 to plane A_2 by considering propagations and [ABCD] of the system between planes E & S, as it will be analyzed in the next slides.



$$z_1 = \overline{E}\overline{A}_1$$

$$z_2 = \overline{S}\overline{A}_2$$

Some useful rules

- 1. Light is traveling from left to right
- 2. Directed distance
 - + if measured from reference plane to destination plane along propagation direction
 - if measured from reference plane to destination plane against propagation direction
- 3. Radius of curvature
 - + if center of curvature after surface
 - if center of curvature before surface

Here, plane E is the origin (reference)

Generalized analysis with [ABCD] matrix & principal planes

We use the following three steps to transfer from plane A_1 to plane A_2 :

- 1) Transfer from $A_1 \rightarrow E$ by propagation over $z_1 = T(A_1E)$
- 2) Transfer from $E \rightarrow S$ by [ABCD] optical system = T(ES)
- 3) Transfer from S \rightarrow A₂ by *propagation* over z₂ = T(SA₂)

$$z_1 = \overline{E}\overline{A}_1$$
 & $z_2 = \overline{S}\overline{A}_2$

$$T_{A_1E} = \begin{bmatrix} 1 & -z_1 \\ 0 & 1 \end{bmatrix}$$

$$T_{ES} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$T_{SA_2} = \begin{vmatrix} 1 & z_2 \\ 0 & 1 \end{vmatrix}$$

$$T(A_{1\rightarrow}A_{2}) = T(SA_{2}) \times T(ES) \times T(A_{1}E)$$

$$\begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} 1 & z_2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} 1 & -z_1 \\ 0 & 1 \end{bmatrix}$$

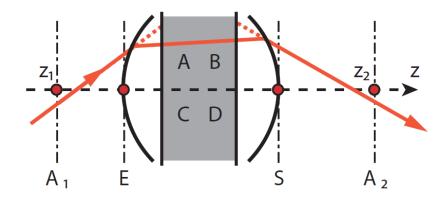
$$=\begin{bmatrix}1 & z_2 \\ 0 & 1\end{bmatrix} \times \begin{bmatrix}A & B-z_1A \\ C & D-z_1C\end{bmatrix}$$

$$=\begin{bmatrix}A+Cz_2 & -Az_1+B+z_2(-Cz_1+D)\\C & D-Cz_1\end{bmatrix}$$

Generalized analysis with [ABCD] matrix & principal planes

We use the following three steps to transfer from plane A_1 to plane A_2 :

- 1) Transfer from $A_1 \rightarrow E$ by propagation over $z_1 = T(A_1E)$
- 2) Transfer from $E \rightarrow S$ by [ABCD] optical system = T(ES)
- 3) Transfer from S \rightarrow A₂ by *propagation* over z₂ = T(SA₂)



$$T(A_{1\rightarrow}A_{2}) = T(SA_{2}) \times T(ES) \times T(A_{1}E)$$

$$\begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} 1 & z_2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} 1 & -z_1 \\ 0 & 1 \end{bmatrix}$$

$$T_{11} = A + Cz_2$$

 $T_{12} = -Az_1 + B + z_2(-Cz_1 + D)$
 $T_{21} = C$
 $T_{22} = D - Cz_1$

1st observation:

 T_{21} is independent of A_1 and A_2 Therefore, it is only a system property

Vergence
$$\mathbf{V} = -\mathbf{C}$$

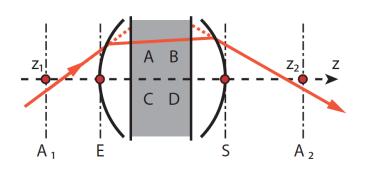
if V > 0 convergence or (+) system

if V < 0 divergence or (-) system

if V = 0 afocal system

Consider Imaging (Conjugation) Case:

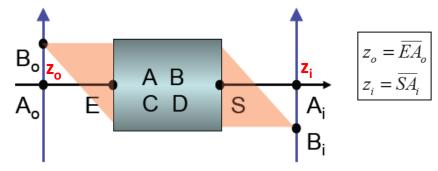
Transfer from plane A₁ to plane A₂



$$T(A_o A_i) = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A - V z_i & (-A z_o + B) + z_i (V z_o + D) \\ -V & D + V z_o \end{bmatrix}$$

Now, lets consider its application to an imaging case:



• The corresponding notation in the above figure is as follows:

$$z_1 = z_0$$

 $z_2 = z_i$
 $A_1 = (A_0, B_0, ...)$
 $A_2 = (A_i, B_i,)$

• It maps object points (A₀,B₀...) to image points (A_i,B_i...)

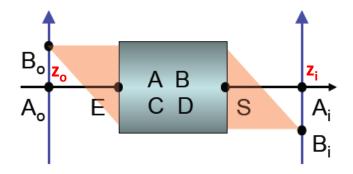
• If we define ray vectors as $\vec{X}_i \& \vec{X}_o$, we can write that:

$$\vec{X}_i = \mathbf{T}(A_o A_i) \cdot \vec{X}_o$$

$$\vec{X}_i = \begin{bmatrix} y_i \\ \theta_i \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ -V & T_{22} \end{bmatrix} \begin{bmatrix} y_o \\ \theta_o \end{bmatrix}$$

$$= \begin{bmatrix} T_{11} y_o + T_{12} \theta_o \\ -V y_o + T_{22} \theta_o \end{bmatrix}$$

Consider Imaging (Conjugation) Case:



• If we define ray vectors as $\vec{X}_i \& \vec{X}_o$, we can write that:

$$\vec{X}_i = \mathrm{T}(A_o A_i).\vec{X}_o$$

$$\vec{X}_i = \begin{bmatrix} y_i \\ \theta_i \end{bmatrix} = \begin{bmatrix} T_{11}y_o + T_{12}\theta_o \\ -Vy_o + T_{22}\theta_o \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ -V & T_{22} \end{bmatrix} \begin{bmatrix} y_o \\ \theta_o \end{bmatrix}$$

Imaging requires that:

$$T_{12} = 0$$

$$\vec{X}_i = \begin{bmatrix} y_i \\ \theta_i \end{bmatrix} = \begin{bmatrix} T_{11} y_o \\ -V y_o + T_{22} \theta_o \end{bmatrix}$$

$$T_{11} = M_t = y_i/y_o$$

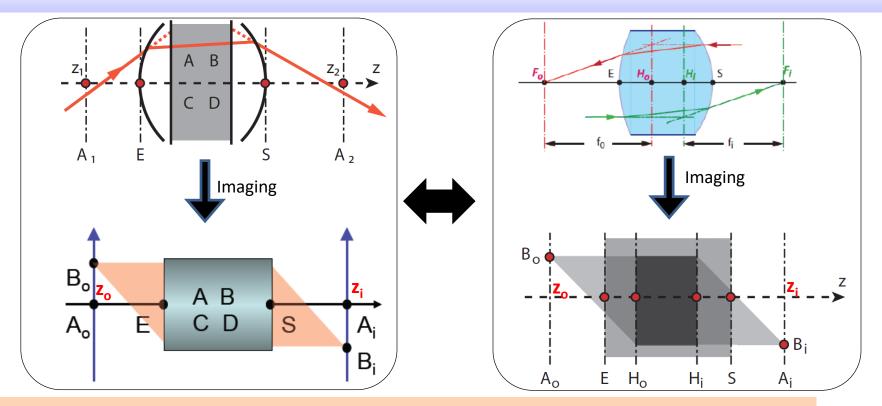
It corresponds to lateral magnification

$$T_{22} = M_{\alpha} = \theta_i/\theta_o$$

It corresponds to angular magnification

$$T(A_o A_i) = \begin{bmatrix} M_t & 0 \\ -V & M_\alpha \end{bmatrix}$$

Conjugated System: Connection to the **Principal Planes** (H_o & H_i)



The two principal planes (H_o and H_i) are conjugated:

- \rightarrow Object-image relation holds between the planes H_o and H_i with the condition that M_t=M_{\alpha}=1
- \rightarrow When we apply $T(A_oA_i)$ for $H(H_oH_i)$, then we get:

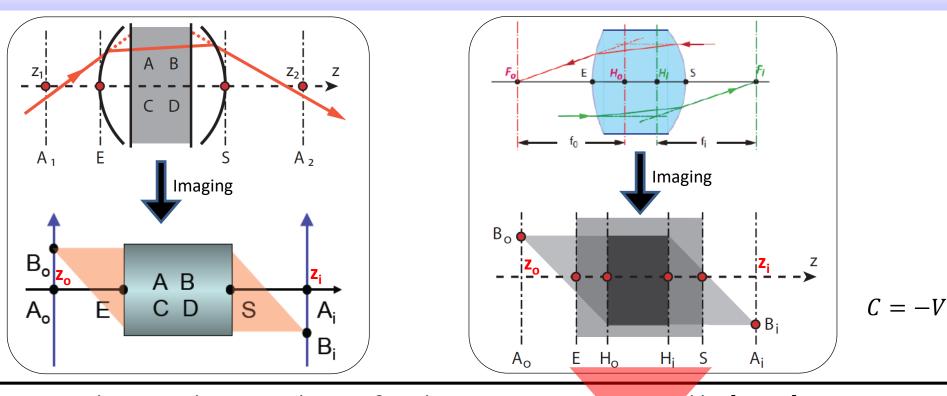
$$T(A_o A_i) = \begin{bmatrix} M_t & 0 \\ -V & M_\alpha \end{bmatrix}$$

In this case, $M = 1 \rightarrow$

Transfer matrix H between the principal planes H_o and H_i as:

$$H(H_oH_i) = \begin{bmatrix} 1 & 0 \\ -V & 1 \end{bmatrix}$$

Conjugated System: Connection to the **Principal Planes** (H_o & H_i)



For the region between planes E & S, the operation is represented by [ABCD]:

$$M_1 = M_{EH_o} = \begin{bmatrix} 1 & \overline{EH}_o \\ 0 & 1 \end{bmatrix}$$

$$M_2 = M_{H_oH_i} = \begin{bmatrix} 1 & 0 \\ -V & 1 \end{bmatrix}$$

$$M_3 = M_{H_iS} = \begin{bmatrix} 1 & \overline{H_iS} \\ 0 & 1 \end{bmatrix}$$

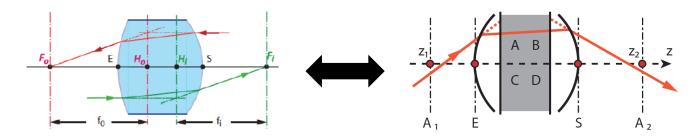
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ -V & D \end{bmatrix} = M_3 \times M_2 \times M_1$$

$$= \begin{bmatrix} 1 & \overline{H_i S} \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ -V & 1 \end{bmatrix} \times \begin{bmatrix} 1 & \overline{EH_o} \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & | \hat{} & -V & 1 | \hat{} & 0 & 1 \\ \end{bmatrix}$$

$$= \begin{bmatrix} 1 - V\overline{H_iS} & \overline{H_iS} + \overline{EH_o} - V\overline{EH_o}\overline{H_iS} \\ -V & 1 - V\overline{EH_o} \end{bmatrix}$$

Conjugated System: Object Principal Plane & Object Focal Plane



For the object side (indicated by the red line), the relevant components are Ho, Fo & fo

For finding the location of object principle plane (H_o) :

$$D = 1 - V\overline{E}\frac{H_o}{O} \Rightarrow \overline{E}\frac{H_o}{O} = \frac{1}{V}(1 - D)$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 - V\overline{H_iS} & \overline{H_iS} + \overline{EH_o} - V\overline{EH_oH_iS} \\ -V & 1 - V\overline{EH_o} \end{bmatrix}$$

Object principle plane:
$$H_o = \overline{EH_o} = \frac{1}{C}(D-1)$$

For finding the location of object focal plane (F_o) & object focal length (f_o) :

$$X_{in} = \begin{bmatrix} 0 \\ \theta \end{bmatrix} \qquad X_{out} = \begin{bmatrix} y_0 \\ 0 \end{bmatrix}$$

$$F_0 \qquad E \qquad H_0 \qquad H_i \qquad S$$

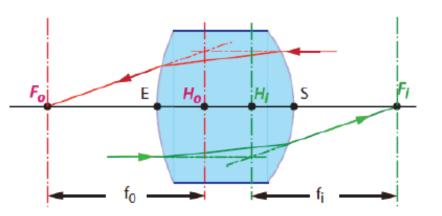
$$X_{out} = \begin{bmatrix} y_0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} y_0 \\ 0 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} 1 & \overline{F_o E} \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ \theta \end{bmatrix}$$

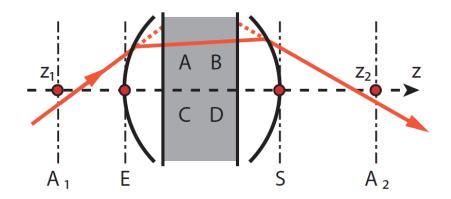
$$\begin{bmatrix} y_o \\ 0 \end{bmatrix} = \begin{bmatrix} \theta(B + \overline{F_oE}A) \\ \theta(D + \overline{F_oE}C) \end{bmatrix}$$
 This can hold only if: $D + C\overline{F_oE} = 0$

Object focal point: $F_o = \overline{EF_o} = D/C$

Object focal length:
$$f_o = \overline{H_o F_o} = \overline{H_o E} + \overline{E F_o} = -\frac{1}{C}(D-1) + \frac{D}{C} = +\frac{1}{C}$$

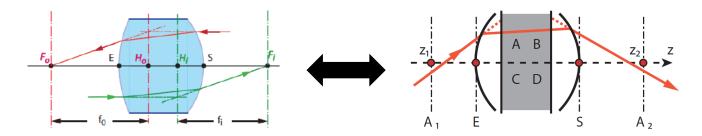
Summary: Cardinal Points & Planes for Object





Distances	Notation	Directed Distances	ABCD elements
Object Focal Point	F_{o}	$\overline{EF_o}$	D/C
Object Focal Length	f_{o}	$\overline{H_oF_o}$	1/ <i>C</i>
Object Principle Plane	H_o	$\overline{EH_o}$	(D-1)/C

Conjugated System: Image Principal Plane & Image Focal Plane



For the image side (indicated by the green line), the relevant terms are H_i, F_i & f_i

For finding the location of image principle plane (H_i) :

$$A = 1 - V\overline{H_iS} \Rightarrow \overline{H_iS} = \frac{1}{V}(1 - A)$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \underbrace{\begin{bmatrix} 1 - V\overline{H_iS} & \overline{H_iS} + \overline{EH_o} - V\overline{EH_oH_iS} \\ -V & 1 - V\overline{EH_o} \end{bmatrix}}_{\text{Image principle plane: } \boldsymbol{H_i} = \overline{SH_i} = \frac{1}{C}(1 - A)$$

Image principle plane:
$$H_i = \overline{SH_i} = \frac{1}{C}(1 - A)$$

For finding the location of image focal plane (F_i) & image focal length (f_i) :

$$X_{in} = \begin{bmatrix} y_i \\ 0 \end{bmatrix} \qquad \qquad \mathbf{f_i} \qquad X_{out} = \begin{bmatrix} 0 \\ \theta \end{bmatrix}$$

$$E \quad \mathbf{H_0} \qquad \mathbf{H_i} \quad \mathbf{S} \qquad \mathbf{F_i}$$

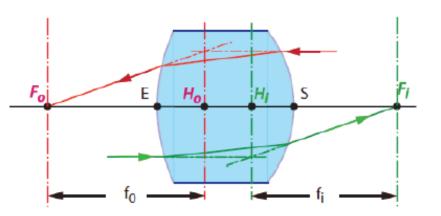
$$\begin{bmatrix}
X_{out} = \begin{bmatrix} 0 \\ \theta \end{bmatrix} & \begin{bmatrix} 0 \\ \theta \end{bmatrix} = \begin{bmatrix} 1 & \overline{SF_i} \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} y_i \\ 0 \end{bmatrix}$$

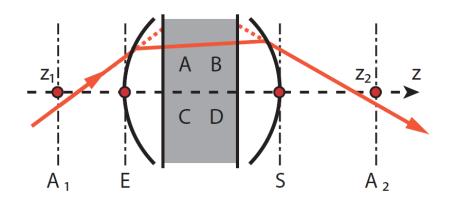
$$\begin{bmatrix} 0 \\ \theta \end{bmatrix} = \begin{bmatrix} (A + C\overline{SF_i})y_i \\ Cy_i \end{bmatrix}$$
 This can hold only: $A + C\overline{SF_i} = 0$

Image focal point: $F_i = \overline{SF_i} = -A/C$

Image focal length:
$$f_i = \overline{H_i F_i} = \overline{H_i S} + \overline{S F_i} = -\frac{1}{C}(1 - A) - \frac{A}{C} = -\frac{1}{C}$$

Summary: Cardinal Points & Planes for Image

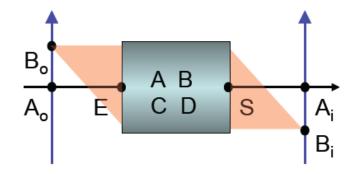


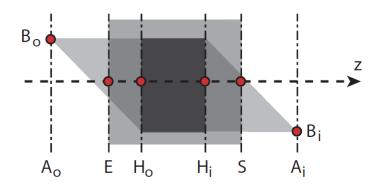


Distances	Notation	Directed Distances	ABCD elements
Image Focal Point	F_i	$\overline{SF_i}$	-A/C
Image Focal Length	f_i	$\overline{H_iF_i}$	-1/ <i>C</i>
Image Principle Plane	H_i	$\overline{SH_i}$	(1-A)/C

The analysis (and the table) is also valid for **generalized** optical systems

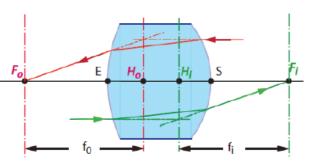
Cardinal points/planes can be used to find the image of the complex (i.e. cascaded) optical systems and the corresponding rays → This is an alternative to ray tracing method.

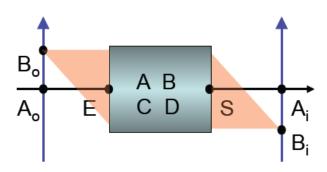


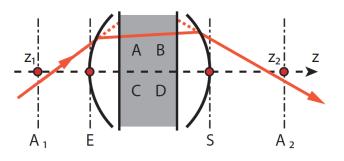


Distances	Notation	Directed Distances	ABCD elements
Object Focal Point	F_{o}	$\overline{EF_o}$	D/C
Object Focal Length	f_{o}	$\overline{H_oF_o}$	1/ <i>C</i>
Object Principle Plane	H_o	$\overline{EH_o}$	(D-1)/C
Image Focal Point	F_{i}	$\overline{SF_i}$	-A/C
Image Focal Length	f_i	$\overline{H_iF_i}$	-1/ <i>C</i>
Image Principle Plane	H_i	$\overline{SH_i}$	(1-A)/C

Example: Cardinal Points & Planes of a Thick lens







Lens thickness =
$$\overline{ES} = e$$

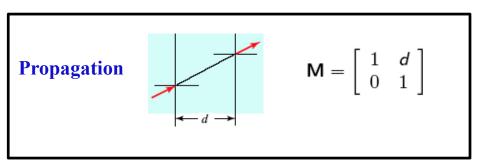
Lens index =
$$n$$
 Outside index =1

Opt. Power of 1st Surface
$$\Phi_1 = (n-1)/nR_1$$

Opt. Power of 2nd Surface
$$\Phi_2 = (1 - n)/R_2$$

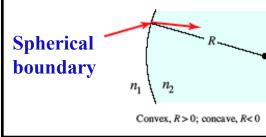
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = ?$$

Remember: Matrix optics description of basic functions & components

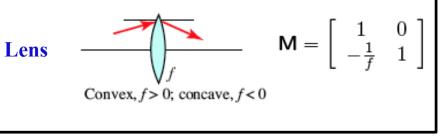


Planar
$$n_1$$
 n_2 $M = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix}$

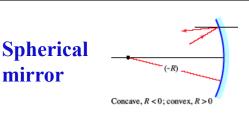
$$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & \frac{n_1}{n_2} \end{array} \right]$$



$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ -\frac{(n_2 - n_1)}{n_2 R} & \frac{n_1}{n_2} \end{bmatrix}$$



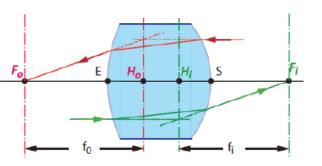
$$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

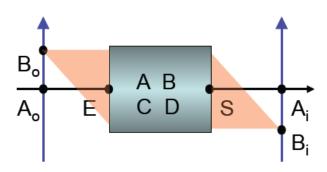


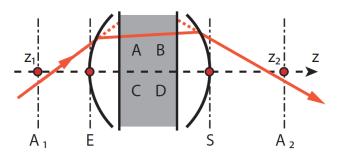
mirror

 $\mathbf{M} = \begin{bmatrix} 1 & 0 \\ \frac{2}{B} & 1 \end{bmatrix}$

Example: Cardinal Points & Planes of a Thick lens







Lens thickness =
$$\overline{ES} = e$$

Lens index =
$$n$$
 Outside index =1

Opt. Power of 1st Surface
$$\Phi_1 = (n-1)/nR_1$$

Opt. Power of 2nd Surface
$$\Phi_2 = (1 - n)/R_2$$

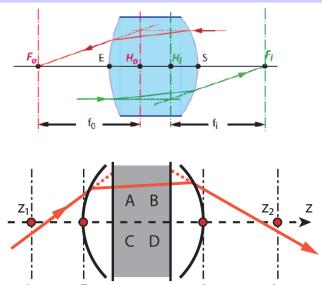
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 0 \\ -\Phi_2 & n \end{bmatrix} \times \begin{bmatrix} 1 & e \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ -\Phi_1 & 1/n \end{bmatrix}$$

$$= \begin{bmatrix} 1 - e\Phi_1 & e/n \\ -\Phi_{tot} & 1 - e\Phi_2/n \end{bmatrix}$$

$$\begin{split} \Phi_{tot} &= n\Phi_1 + \Phi_2 - e\Phi_1\Phi_2 \\ &= (n-1)(\frac{1}{R_1} - \frac{1}{R_2} + \frac{n-1}{n} \frac{e}{R_1R_2}) \end{split}$$

Example: Cardinal Points & Planes of a Thick lens



Distances:	Notation:	Directed Distances:	ABCD elements:
Object Focal Point	F_{o}	$\overline{EF_o}$	D/C
Object Focal Length	f_o	$\overline{H_o F_o}$	1/ <i>C</i>
Object Principle Plane	H_o	$\overline{EH_o}$	(D-1)/C
Image Focal Point	F_i	$\overline{SF_i}$	-A/C
Image Focal Length	f_i	$\overline{H_iF_i}$	- 1/ <i>C</i>
Image Principle Plane	H_i	$\overline{SH_i}$	(1-A)/C

$$A = 1 - e\Phi_1$$

$$B = e/n$$

$$C = -\Phi_{tot}$$

$$D = 1 - e\Phi_2/n$$

Object Focal Point Position

$$F_o = \overline{EF_o} = \frac{D}{C} = \frac{e\Phi_2}{n} - 1$$

Image Focal Point Position

$$F_{o} = \overline{EF_{o}} = \frac{D}{C} = \frac{e\Phi_{2}}{n} - 1$$

$$F_{i} = \overline{SF_{i}} = \frac{-A}{C} = \frac{e\Phi_{1} - 1}{\Phi_{tot}}$$

Object Principle Plane Position

$$H_o = \overline{EH_o} = \frac{1}{C}(D-1) = \frac{1}{-\Phi_{tot}} \left(1 - \frac{e\Phi_2}{n} - 1 \right) = \frac{e\Phi_1}{n\Phi_{tot}}$$

Object Focal & Image Focal Lengths

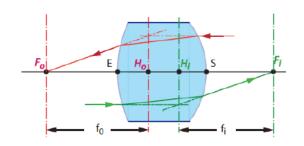
$$f_i = -f_o = -\frac{1}{C} = \frac{1}{\Phi_{tot}}$$

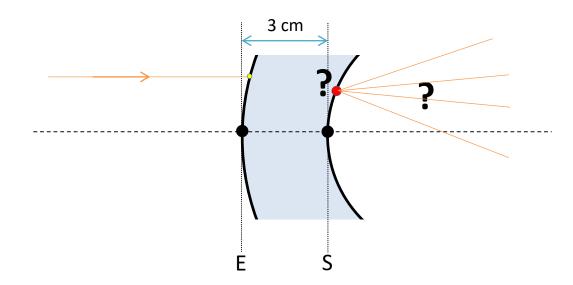
Image Principle Plane Position

$$H_i = \overline{SH_i} = \frac{1}{C}(1 - A) = \frac{1}{-\Phi_{tot}}(1 - 1 + e\Phi_1) = -\frac{e\Phi_1}{\Phi_{tot}}$$

Example: if we use ray tracing for a thick lens

Lens parameters	Num. value
1 st interface curvature (R ₁)	+5 cm
2 nd interface curvature (R ₂)	+2 cm
Central thickness, e	3 cm
Lens index (glass)	1.5





Can you determine the path of the ray after the thick lens?

This means, identifying:

- The point that the ray exits the lens?
- The exit angle?
- → Instead of ray optics, lets use the approach of cardinal points and planes!

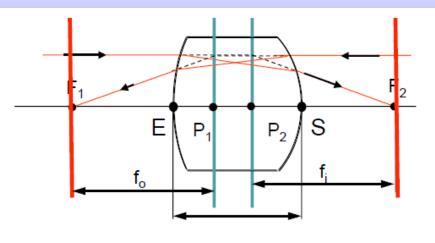
Example: if we use cardinal planes for a thick lens

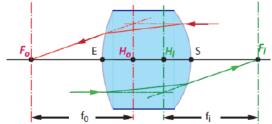
Lens thickness = $\overline{ES} = e$

Lens index = n Outside index =1

Optical Power of 1st curvature $\Phi_1 = (n-1)/nR_1$

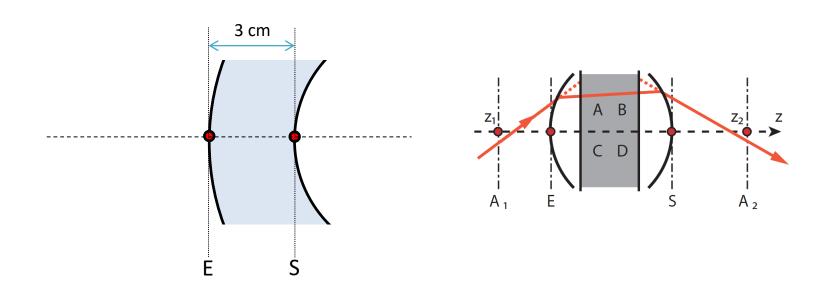
Optical Power of 2nd curvature $\Phi_2 = (1-n)/R_2$





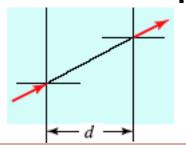
Example: Ray Tracing a Thick lens

Lens parameters	Num. value
1st interface curvature (R ₁)	+5 cm
2 nd interface curvature (R ₂)	+2 cm
Central thickness, e	3 cm
Lens index (glass)	1.5



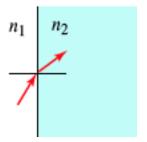
$$T(E \to S) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = T_{2nd \ spherical \ curvature} \times T_{propagation} \times T_{1st \ spherical \ curvature}$$

Reminder: Simple Optical Components



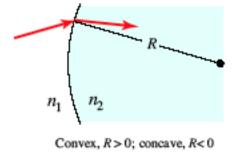
$$\mathbf{M} = \left[\begin{array}{cc} 1 & d \\ 0 & 1 \end{array} \right]$$

Planar boundary



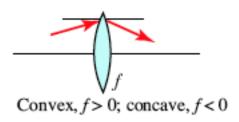
$$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & \frac{n_1}{n_2} \end{array} \right]$$

Spherical boundary



$$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ -\frac{(n_2 - n_1)}{n_2 R} & \frac{n_1}{n_2} \end{array} \right]$$

Thin Lens



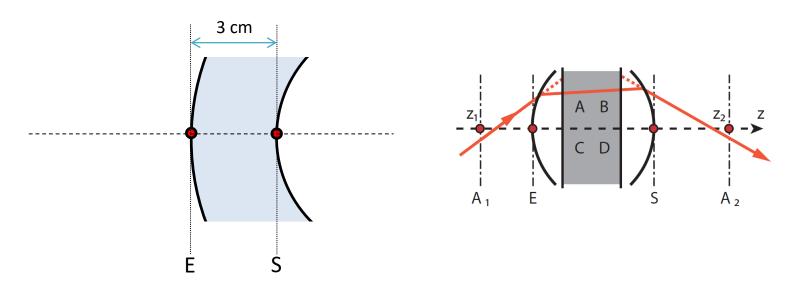
$$\mathbf{M} = \left[\begin{array}{cc} 1 & 0 \\ -\frac{1}{f} & 1 \end{array} \right]$$

Example: Ray Tracing Thick lens

Lens parameters	Num. value
1 st interface curvature (R ₁)	+5 cm
2 nd interface curvature (R ₂)	+2 cm
Central thickness, e	3 cm
Lens index (glass)	1.5

$$\Phi_1 = (n-1)/nR_1 = (1.5-1)/1.5x5 = 2/30$$

$$\Phi_2 = (1-n)/R_2 = (1-1.5)/2 = -1/4$$



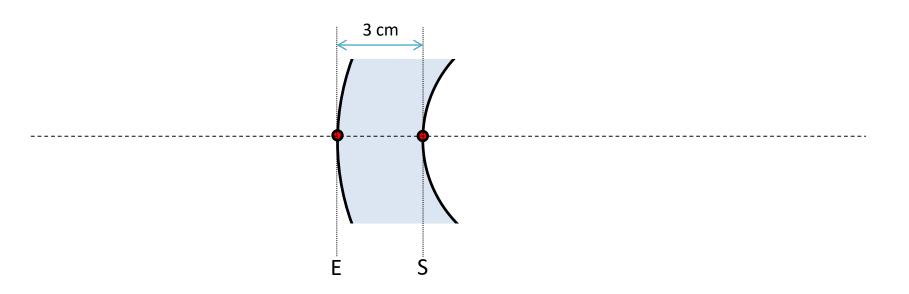
$$T(ES) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = T_{2nd \ spherical \ curvature} \times T_{propagation} \times T_{1st \ spherical \ curvature}$$
$$= \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\Phi_2 & n \end{bmatrix} \times \begin{bmatrix} 1 & e \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ -\Phi_1 & 1/n \end{bmatrix}$$

Example: Thick lens

Lens parameters	Num. value
1 st interface curvature (R ₁)	+5 cm
2 nd interface curvature (R ₂)	+2 cm
Central thickness, e	3 cm
Lens index (glass)	1.5

$$T(ES) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0.8 & 2 \\ 0.1 & 1.5 \end{bmatrix}$$

Distances	Notati on	Directed Distances	ABCD elements
Object Focal Point	F_o	$\overline{EF_o}$	D/C
Object Focal Length	f_o	$\overline{H_oF_o}$	1/ <i>C</i>
Object Principle Plane	H_o	$\overline{EH_o}$	(D-1)/C
Image Focal Point	F_i	$\overline{SF_i}$	-A/C
Image Focal Length	f_i	$\overline{H_iF_i}$	-1/ <i>C</i>
Image Principle Plane	H_i	$\overline{SH_i}$	(1-A)/C

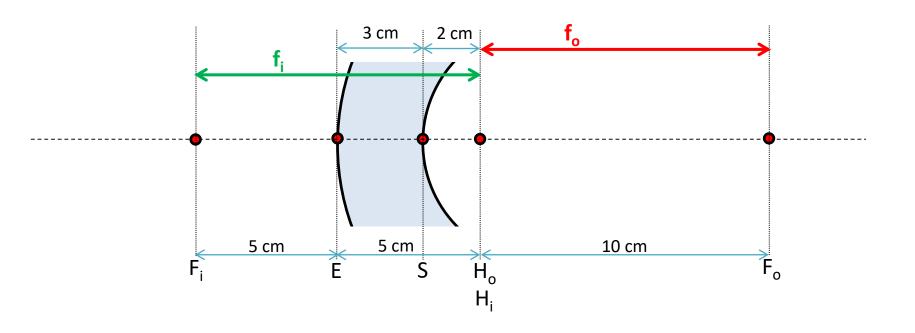


Example: Thick lens - Object Focal Length fo

Lens parameters	Num. value
1 st interface curvature (R ₁)	+5 cm
2 nd interface curvature (R ₂)	+2 cm
Central thickness, e	3 cm
Lens index (glass)	1.5

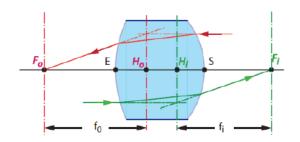
$$T(ES) = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0.8 & 2 \\ 0.1 & 1.5 \end{bmatrix}$$

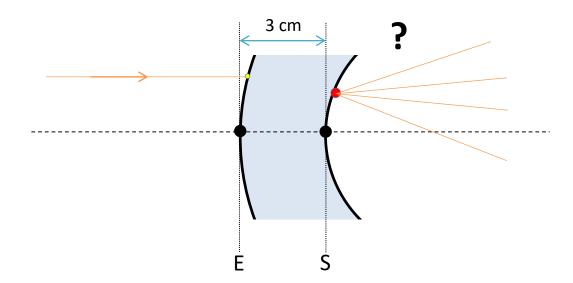
Distances	Notati on	Directed Distances	ABCD elements	Calculated Value
Object Focal Point	F_o	$\overline{EF_o}$	D/C	+15 cm
Object Focal Length	f_o	$\overline{H_oF_o}$	1/C	+10 cm
Object Principle Plane	H_o	$\overline{EH_o}$	(D-1)/C	+5 cm
Image Focal Point	F_i	$\overline{SF_i}$	-A/C	-8 cm
Image Focal Length	f_i	$\overline{H_iF_i}$	-1/ <i>C</i>	-10 cm
Image Principle Plane	H_i	$\overline{SH_i}$	(1-A)/C	+2 cm



Remember the question:

Lens parameters	Num. value
1st interface curvature (R ₁)	+5 cm
2 nd interface curvature (R ₂)	+2 cm
Central thickness, e	3 cm
Lens index (glass)	1.5

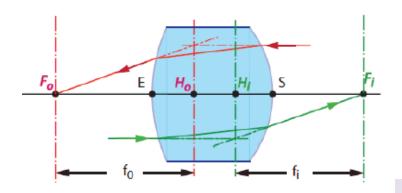




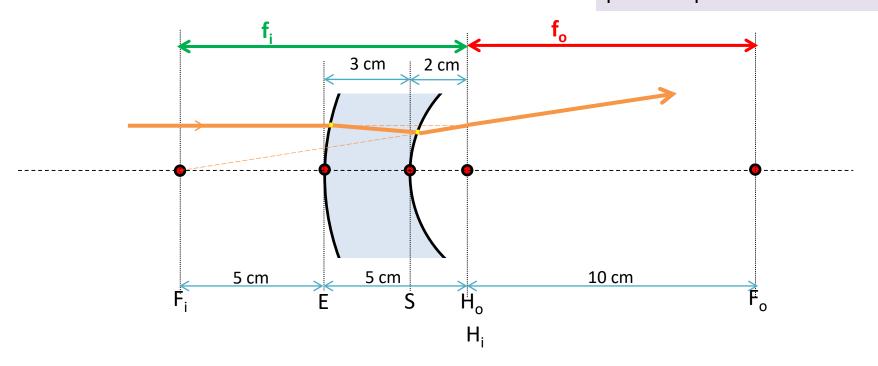
Can you determine the path of the ray after the thick lens? This means, finding:

- the point that the ray exits the lens?
- the exit angle?

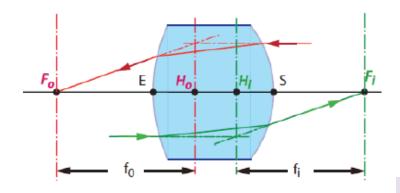
Thick lens example: ray tracing with cardinal planes



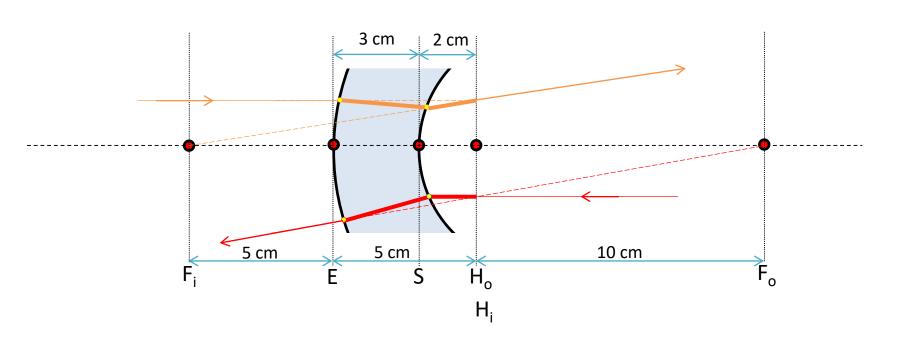
Ray tracing is simpler to implement with the cardinal points & planes:



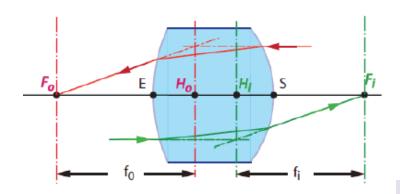
Thick Lens Example: Ray Tracing with Cardinal Points



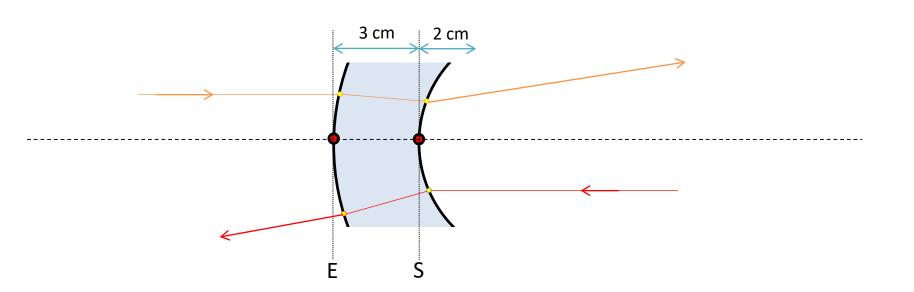
Ray tracing is simpler to implement with the cardinal points & planes:



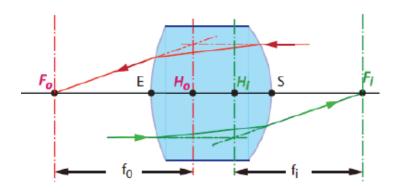
Thick Lens Example Summary: Ray Tracing With Cardinal Points



Ray tracing is simpler to implement with the cardinal points & planes.



Example summary: Thick lens



Cardinal plane(s)

- ulletPrincipal planes $oldsymbol{\mathsf{H}}_{\mathsf{o}}$, $oldsymbol{\mathsf{H}}_{\mathsf{i}}$
- ·Not always inside the thick lens
- •The refraction happens at the virtual/fictious principal plane
- •Always magnification M = 1 between principal planes
- •Focal plane(s) ${m F}_{{m 0}}$, ${m F}_{i}$
- ·Common point for rays parallel to axis

