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Reminder: Summary of matrix optics for basic functions & components



f1 f2

• Suppose we have two thin lenses right next to 
each other with no space in between.

• How does it behave?

Two consecutive lenses act as one 
lens whose focal length is computed 
by the “resistive sum” 

Example: Consecutive Lenses

When light enters this system, it experiences:

1) Initially, 1st lens with focal length of f1
2) Then, 2nd lens with focal length of f2

𝑀𝑀2 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓2

𝑀𝑀2 =
1 0

−
1
𝑓𝑓2

1

𝑀𝑀1 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓1

𝑀𝑀1 =
1 0

−
1
𝑓𝑓1

1
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

1 0

−
1
𝑓𝑓2

1 ×
1 0

−
1
𝑓𝑓1

1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1 0

−
1
𝑓𝑓1
−

1
𝑓𝑓2

1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1 0

−
1

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
1

1
𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
1
𝑓𝑓1

+
1
𝑓𝑓2

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀2 × 𝑀𝑀1



System Properties for “A=0”

Under this condition the equation is independent of positions (yj-1)

𝑦𝑦𝑗𝑗 = 0.𝑦𝑦𝑗𝑗−1 + 𝐵𝐵.𝜃𝜃𝑗𝑗−1If A=0  

A=0 corresponds to FOCUSING

It means all possible rays entering the system from different positions but with same 
angle (θj-1), will cross each other at the same point at the exit the system.



System Properties for “D=0”

𝜃𝜃𝑗𝑗 = 𝐶𝐶.𝑦𝑦𝑗𝑗−1 + 0.𝜃𝜃𝑗𝑗−1If D=0  

D=0 represents COLLIMATING

Under this condition the equation is independent of angle (θj-1) 

It means all possible rays entering the system from different angles but originated from 
the same position (yj-1), will exit the system with the same angle.



System Properties for “C=0”

Under this condition the equation is independent of position (yj-1).

𝜃𝜃𝑗𝑗 = 0.𝑦𝑦𝑗𝑗−1 + 𝐷𝐷.𝜃𝜃𝑗𝑗−1If C=0  

C=0 corresponds to deviation

It means all possible rays entering the system from different entrance points but with 
same entrance angle (θj-1), will exit the system with the same exit angle. 



System Properties for “B=0”

𝑦𝑦𝑗𝑗 = 𝐴𝐴.𝑦𝑦𝑗𝑗−1 + 0.𝜃𝜃𝑗𝑗−1If B=0  

B=0 corresponds to IMAGING condition
It means these two planes (indicated by dashed vertical line) are conjugate

Under this condition the equation is independent of angle (θj-1) 

 It means all possible rays entering the system with different angles but from the same 
point (yj-1), will cross each other at the same point at the exit of the system. 



RECALL THIN LENS EXAMPLE:

How can we connect ray tracing & matrix representation?

Ray Deflection : Focal length: Imaging Condition: Magnification:

1
𝑓𝑓 =

1
𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜

+
1
𝑧𝑧𝑖𝑖𝑖𝑖

mag = 𝑧𝑧𝑖𝑖𝑖𝑖
𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜

From Ray Tracing

From Matrix Representation

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 1 0

−1/𝑓𝑓 1
𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜃𝜃𝑖𝑖𝑖𝑖 −
𝑦𝑦𝑖𝑖𝑖𝑖
𝑓𝑓

Ray Deflection :



When B = 0

yout = A yinWhen B = 0, 

A is the magnification.

According to Matrix Representation:
An optical system forms an image of an object when “B = 0”

𝐴𝐴 0
𝐶𝐶 𝐷𝐷  this is called “conjugate” matrix  it describes an “imaging” optical set-up 

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴 0

𝐶𝐶 𝐷𝐷
𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑦𝑦𝑖𝑖𝑖𝑖

𝐶𝐶𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖

Independent of their angle, all rays from a point yin arrive at the same point yout

yout = A yin



From the object plane to the image plane, light rays :
1)Propagate over a distance of do
2) Then, encounter a thin lens of focal length f
3) Finally, propagate over a distance of di

Example:
Find the conjugate matrix of an imaging system based on 

single thin-lens

Q: How can we write the “conjugate matrix” of this one thin-lens imaging system?



we simply multiply ray matrices.

M1 M3M2

Reminder: Cascaded Elements
yin, θin

yout, θout

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀3 𝑀𝑀2 𝑀𝑀1

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑀𝑀3𝑀𝑀2𝑀𝑀1

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

Notice the order !!



Example: Conjugate matrix for 1 thin lens imaging system

From the object plane to the image plane, light rays :
1)Propagate over a distance of do

2) Then, encounter a thin lens of focal length f
3) Finally, propagate over a distance of di

2

1 0
1/ 1

M
f

 
=  − 

3

1
0 1

id
M  

=  
 

11
1/ 1 /0 1

oi

o

dd
f d f

  
= ×    − −   

1 / /
1/ 1 /

i o i o i

o

d f d d d d f
f d f

− + − 
=  − − 

1

1
0 1

od
M  

=  
 

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑀𝑀3 × 𝑀𝑀2 × 𝑀𝑀1

1 1 0 1
0 1 1/ 1 0 1

i o
system

d d
M

f
     

= × ×     −     



Example: Conjugate matrix for 1 thin lens imaging system

From the object plane to the image plane, light rays :
1)Propagate over a distance of do

2) Then, encounter a thin lens of focal length f
3) Finally, propagate over a distance of di

1

1
0 1

od
M  

=  
 

2

1 0
1/ 1

M
f

 
=  − 

3

1
0 1

id
M  

=  
 

1 / /
1/ 1 /

i o i o i

o

d f d d d d f
f d f

− + − 
=  − − 

[ ]1/ 1/ 1/ 0o i o id d d d f+ − =It means, , and this happens only if :

1 1 1

o id d f
+ = This is the imaging condition 

(a.k.a. Lens law)

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑀𝑀3 × 𝑀𝑀2 × 𝑀𝑀1

/ 0o i o iB d d d d f= + − =For imaging, set B as 0 



Example: Conjugate matrix for 1 thin lens imaging system

From the object plane to the image plane, light rays :
1)Propagate over a distance of do

2) Then, encounter a thin lens of focal length f
3) Finally, propagate over a distance of di

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑀𝑀3 × 𝑀𝑀2 × 𝑀𝑀1

1 / 0
1/ 1 /

i

o

d f
f d f

− 
=  − − 

1 1 1

o id d f
+ =

At the imaging condition:

If the imaging condition is satisfied then: 1 /iA d f= −

1 11 i
o i

d
d d
 

= − + 
 

i

o

d
d

= −
i

o

dM
d

= −

Magnification:
𝐴𝐴 = 𝑀𝑀



1
𝑓𝑓 =

1
𝑎𝑎 +

1
𝑏𝑏

𝑀𝑀 =
𝑏𝑏
𝑎𝑎

Imaging 
condition

Magnification

Focal length (lens maker’s formula)

How can we connect ray tracing & matrix representation?
Recall the relevant relations/equations for the example of thin lens based on Ray Optics:



Generalization: How to trace an image in an optical system?

Optical systems (i.e. 
microscope) contain multiple 
lenses.

Q: What is the connection 
between matrix  optics & ray 
tracing?

A: Use cardinal planes



Let’s start with an important 
optical component:

• The Objective

Microscope – An Optical System



Anatomy of the Microscope Objective Lens

• It is not a single (and thin) lens
• It contains multiple THICK lenses
• Effectively this is an optical system itself



Thick lens

A thick lens is an “optical system”:
- Refraction at entrance & exit surfaces
- Propagation inside the lens

The thick lens can be simplified by representing that as if the refraction is happening at the principal planes:

There are also FOUR CARDINAL POINTS:

2)  Two focal planes: Fo and Fi

These are the FOUR CARDINAL PLANES.

1) Two principal planes:  Ho and  Hi   virtual planes where the lens appears to bend the rays

1) Two principal points: P1 and P2
which are the intersection points of the principal planes with the optical axis.

2) Two focal points: F1 and F2
which are the intersection points of the focal planes with the optical axis.



The thick lens between planes E & S is represented 
with [ABCD] matrix. 



Generalization… beyond the thick lens case
Cardinal planes (two focal planes & two principal planes) are helpful concepts for ABCD analysis
 They are not limited to thick lens and can be used for any optical system in general.

To generalize, one needs to first realize that a system between the planes E & S is described with [ABCD].

Here, plane E is the origin (reference)

after

Next, for the imaging condition, we need to find transfer from plane A1 to plane A2 by considering 
propagations and [ABCD] of the system between planes E & S, as  it will be analyzed in the next slides.



Generalized analysis with [ABCD] matrix & principal planes
We use the following three steps to transfer 
from plane A1 to plane A2 :

1) Transfer from A1E by propagation over z1 = T(A1E)
2) Transfer from ES by  [ABCD] optical system = T(ES)
3) Transfer from S A2 by propagation over z2 = T(SA2)

ES

A B
T

C D
 

=  
 

𝑇𝑇(𝐴𝐴1→𝐴𝐴2) = 𝑇𝑇(𝑆𝑆𝐴𝐴2) × 𝑇𝑇(𝐸𝐸𝐸𝐸) × 𝑇𝑇(𝐴𝐴1𝐸𝐸)

𝑇𝑇11 𝑇𝑇12
𝑇𝑇21 𝑇𝑇22

= 1 𝑧𝑧2
0 1 × 𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷 × 1 −𝑧𝑧1
0 1

1

11
0 1A E

z
T

− 
=  
 

2

21
0 1SA

z
T  

=  
 

&

= 1 𝑧𝑧2
0 1 × 𝐴𝐴 𝐵𝐵 − 𝑧𝑧1𝐴𝐴

𝐶𝐶 𝐷𝐷 − 𝑧𝑧1𝐶𝐶

= 𝐴𝐴 + 𝐶𝐶𝑧𝑧2 −𝐴𝐴𝑧𝑧1 + 𝐵𝐵 + 𝑧𝑧2(−𝐶𝐶𝑧𝑧1 + 𝐷𝐷)
𝐶𝐶 𝐷𝐷 − 𝐶𝐶𝑧𝑧1



Generalized analysis with [ABCD] matrix & principal planes
We use the following three steps to transfer 
from plane A1 to plane A2 :

1) Transfer from A1E by propagation over z1 = T(A1E)
2) Transfer from ES by  [ABCD] optical system = T(ES)
3) Transfer from S A2 by propagation over z2 = T(SA2)

𝑇𝑇(𝐴𝐴1→𝐴𝐴2) = 𝑇𝑇(𝑆𝑆𝐴𝐴2) × 𝑇𝑇(𝐸𝐸𝐸𝐸) × 𝑇𝑇(𝐴𝐴1𝐸𝐸)

𝑇𝑇11 𝑇𝑇12
𝑇𝑇21 𝑇𝑇22

= 1 𝑧𝑧2
0 1 × 𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷 × 1 −𝑧𝑧1
0 1

𝑇𝑇11 = 𝐴𝐴 + 𝐶𝐶𝑧𝑧2
𝑇𝑇12 = −𝐴𝐴𝑧𝑧1 + 𝐵𝐵 + 𝑧𝑧2(−𝐶𝐶𝑧𝑧1 + 𝐷𝐷)
𝑇𝑇21 = 𝐶𝐶
𝑇𝑇22 = 𝐷𝐷 − 𝐶𝐶𝑧𝑧1

1st observation:

𝑇𝑇21 is independent of A1 and A2 

Therefore, it is only a system property

Vergence 𝐕𝐕 = −𝑪𝑪



Consider Imaging (Conjugation) Case:
Transfer from plane A1 to plane A2

T(𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖) = 𝑇𝑇11 𝑇𝑇12
𝑇𝑇21 𝑇𝑇22

zo zi

Now, lets consider its application to an imaging case:

• The corresponding notation in the above figure is as follows:
z1 = zo
z2 = zi
A1 = (Ao, Bo, …) 
A2 = (Ai, Bi, ….)

• It maps object points (Ao,Bo...) to image points (Ai,Bi...)
= 𝐴𝐴 − 𝑉𝑉𝑧𝑧𝑖𝑖 (−𝐴𝐴𝑧𝑧𝑜𝑜 + 𝐵𝐵) + 𝑧𝑧𝑖𝑖(𝑉𝑉𝑧𝑧𝑜𝑜 + 𝐷𝐷)

−𝑉𝑉 𝐷𝐷 + 𝑉𝑉𝑧𝑧𝑜𝑜

• If we define ray vectors as                  , we can write that:

𝑋𝑋𝑖𝑖 = T 𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖 .𝑋𝑋𝑜𝑜

𝑋𝑋𝑖𝑖 =
𝑦𝑦𝑖𝑖
𝜃𝜃𝑖𝑖 = 𝑇𝑇11 𝑇𝑇12

−𝑉𝑉 𝑇𝑇22
𝑦𝑦𝑜𝑜
𝜃𝜃𝑜𝑜

𝑋𝑋𝑖𝑖 & 𝑋𝑋𝑜𝑜

= 𝑇𝑇11𝑦𝑦𝑜𝑜 + 𝑇𝑇12𝜃𝜃𝑜𝑜
−𝑉𝑉𝑦𝑦𝑜𝑜 + 𝑇𝑇22𝜃𝜃𝑜𝑜



Imaging requires that: 

𝑇𝑇12 = 0

𝑋𝑋𝑖𝑖 =
𝑦𝑦𝑖𝑖
𝜃𝜃𝑖𝑖 =

𝑇𝑇11𝑦𝑦𝑜𝑜
−𝑉𝑉𝑦𝑦𝑜𝑜 + 𝑇𝑇22𝜃𝜃𝑜𝑜

T(𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖) = 𝑀𝑀𝑡𝑡 0
−𝑉𝑉 𝑀𝑀𝛼𝛼

• If we define ray vectors as                  , we can write that:

𝑋𝑋𝑖𝑖 = T 𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖 .𝑋𝑋𝑜𝑜

𝑋𝑋𝑖𝑖 =
𝑦𝑦𝑖𝑖
𝜃𝜃𝑖𝑖 = 𝑇𝑇11𝑦𝑦𝑜𝑜 + 𝑇𝑇12𝜃𝜃𝑜𝑜

−𝑉𝑉𝑦𝑦𝑜𝑜 + 𝑇𝑇22𝜃𝜃𝑜𝑜
= 𝑇𝑇11 𝑇𝑇12

−𝑉𝑉 𝑇𝑇22
𝑦𝑦𝑜𝑜
𝜃𝜃𝑜𝑜

𝑋𝑋𝑖𝑖 & 𝑋𝑋𝑜𝑜

zo zi

It corresponds to 
lateral magnification

𝑇𝑇11 = 𝑀𝑀𝑡𝑡 = ⁄𝑦𝑦𝑖𝑖 𝑦𝑦𝑜𝑜

It corresponds to 
angular magnification

𝑇𝑇22 = 𝑀𝑀𝛼𝛼 = ⁄𝜃𝜃𝑖𝑖 𝜃𝜃𝑜𝑜

Consider Imaging (Conjugation) Case:



zo zi

The two principal planes (Ho and Hi) are conjugated:
Object-image relation holds between the planes Ho and Hi with the condition that Mt=Mα=1

Imaging

zo zi

Imaging

𝑇𝑇ransfer matrix 𝐻𝐻 between the principal planes 𝐻𝐻𝑜𝑜 and 𝐻𝐻𝑖𝑖 as:

When we apply T 𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖 for H 𝐻𝐻𝑜𝑜𝐻𝐻𝑖𝑖 , then we get:

Conjugated System: Connection to the Principal Planes (Ho & Hi )

T(𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖) = 𝑀𝑀𝑡𝑡 0
−𝑉𝑉 𝑀𝑀𝛼𝛼

Recall:

In this case, M = 1 



zo zi
zo zi

𝐶𝐶 = −𝑉𝑉

Imaging Imaging

A A B
C D V D

B   
=   −   

11 1
10 1 0 1
0i oH S E

V
H    

= × ×    −    
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For the region between planes E & S, the operation is represented by [ABCD]:

Conjugated System: Connection to the Principal Planes (Ho & Hi )



Conjugated System: Object Principal Plane & Object Focal Plane

For the object side (indicated by the red line), the relevant components are Ho, Fo & fo

𝐷𝐷 = 1 − 𝑉𝑉𝐸𝐸𝐻𝐻𝑜𝑜 ⇒ 𝐸𝐸𝐻𝐻𝑜𝑜 =
1
𝑉𝑉

1 − 𝐷𝐷

𝑯𝑯𝒐𝒐 = 𝐸𝐸𝐻𝐻𝑜𝑜 =
1
𝐶𝐶

(𝐷𝐷 − 1)Object principle plane:

𝒇𝒇𝒐𝒐 = 𝑯𝑯𝒐𝒐𝑭𝑭𝒐𝒐 = 𝑯𝑯𝒐𝒐𝑬𝑬 + 𝑬𝑬𝑭𝑭𝒐𝒐Object focal length: = −
1
𝐶𝐶
𝐷𝐷 − 1 +

𝐷𝐷
𝐶𝐶

= +
1
𝐶𝐶

𝑦𝑦𝑜𝑜
0 = 𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷 × 1 𝐹𝐹𝑜𝑜𝐸𝐸
0 1

× 0
𝜃𝜃

𝑭𝑭𝒐𝒐 = 𝐸𝐸𝐹𝐹𝑜𝑜 = 𝐷𝐷/𝐶𝐶Object focal point:

𝑦𝑦𝑜𝑜
0 = 𝜃𝜃(𝐵𝐵 + 𝐹𝐹𝑜𝑜𝐸𝐸𝐴𝐴)

𝜃𝜃(𝐷𝐷 + 𝐹𝐹𝑜𝑜𝐸𝐸𝐶𝐶)
𝐷𝐷 + 𝐶𝐶𝐹𝐹𝑜𝑜𝐸𝐸 = 0This can hold only if:

1

1
i i o o i

o

VA HH S H S E V EH

V

H SB

EHC D V

 − 
=   

− −    

+ −

For finding the location of object principle plane (Ho):

0

0out

y
X  

=  
 

0
inX

θ
 

=  
 

Ho HiE SFo

fo

For finding the location of object focal plane (Fo) & object focal length (fo):



Summary: Cardinal Points & Planes for Object

Distances Notation Directed Distances ABCD elements

Object Focal Point 𝐹𝐹𝑜𝑜 𝐸𝐸𝐹𝐹𝑜𝑜 𝐷𝐷/𝐶𝐶
Object Focal Length 𝑓𝑓𝑜𝑜 𝐻𝐻𝑜𝑜𝐹𝐹𝑜𝑜 ⁄1 𝐶𝐶
Object Principle Plane 𝐻𝐻𝑜𝑜 𝐸𝐸𝐻𝐻𝑜𝑜 ⁄(𝐷𝐷 − 1) 𝐶𝐶

Image Focal Point 𝐹𝐹𝑖𝑖 𝑆𝑆𝐹𝐹𝑖𝑖 −𝐴𝐴/𝐶𝐶
Image Focal Length 𝑓𝑓𝑖𝑖 𝐻𝐻𝑖𝑖𝐹𝐹𝑖𝑖 − ⁄1 𝐶𝐶
Image Principle Plane 𝑯𝑯𝒊𝒊 𝑆𝑆𝐻𝐻𝑖𝑖 ⁄(1 − 𝐴𝐴) 𝐶𝐶



Conjugated System: Image Principal Plane & Image Focal Plane

𝒇𝒇𝒊𝒊 = 𝑯𝑯𝒊𝒊𝑭𝑭𝒊𝒊 = 𝑯𝑯𝒊𝒊𝑺𝑺 + 𝑺𝑺𝑭𝑭𝒊𝒊Image focal length: = −
1
𝐶𝐶

1 − 𝐴𝐴 −
𝐴𝐴
𝐶𝐶

= −
1
𝐶𝐶

𝑭𝑭𝒊𝒊 = 𝑆𝑆𝐹𝐹𝑖𝑖 = −𝐴𝐴/𝐶𝐶Image focal point:

0
𝜃𝜃 = 1 𝑆𝑆𝐹𝐹𝑖𝑖

0 1
× 𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷 × 𝑦𝑦𝑖𝑖
0

For the image side (indicated by the green line), the relevant terms are Hi, Fi & fi

𝐴𝐴 = 1 − 𝑉𝑉𝐻𝐻𝑖𝑖𝑆𝑆 ⇒ 𝐻𝐻𝑖𝑖𝑆𝑆 =
1
𝑉𝑉

1 − 𝐴𝐴

𝑯𝑯𝒊𝒊 = 𝑆𝑆𝐻𝐻𝑖𝑖 =
1
𝐶𝐶

(1 − 𝐴𝐴)Image principle plane:

0
𝜃𝜃 = (𝐴𝐴 + 𝐶𝐶𝑆𝑆𝐹𝐹𝑖𝑖)𝑦𝑦𝑖𝑖

𝐶𝐶𝐶𝐶𝑖𝑖
This can hold only: 𝐴𝐴 + 𝐶𝐶𝑆𝑆𝐹𝐹𝑖𝑖 = 0

1

1
i i o o i

o

VA HH S H S E V EH

V

H SB

EHC D V

 − 
=   

− −    

+ −

For finding the location of image principle plane (Hi):

fi

Ho HiE S Fi

0
outX

θ
 

=  
 0

i
in

y
X  

=  
 

For finding the location of image focal plane (Fi) & image focal length (fi):



Summary: Cardinal Points & Planes for Image

Distances Notation Directed Distances ABCD elements

Image Focal Point 𝐹𝐹𝑖𝑖 𝑆𝑆𝐹𝐹𝑖𝑖 −𝐴𝐴/𝐶𝐶
Image Focal Length 𝑓𝑓𝑖𝑖 𝐻𝐻𝑖𝑖𝐹𝐹𝑖𝑖 − ⁄1 𝐶𝐶
Image Principle Plane 𝐻𝐻𝑖𝑖 𝑆𝑆𝐻𝐻𝑖𝑖 ⁄(1 − 𝐴𝐴) 𝐶𝐶



The analysis (and the table) is also valid for generalized optical systems

Distances Notation Directed Distances ABCD elements

Object Focal Point 𝐹𝐹𝑜𝑜 𝐸𝐸𝐹𝐹𝑜𝑜 𝐷𝐷/𝐶𝐶
Object Focal Length 𝑓𝑓𝑜𝑜 𝐻𝐻𝑜𝑜𝐹𝐹𝑜𝑜 ⁄1 𝐶𝐶
Object Principle Plane 𝐻𝐻𝑜𝑜 𝐸𝐸𝐻𝐻𝑜𝑜 ⁄(𝐷𝐷 − 1) 𝐶𝐶

Image Focal Point 𝐹𝐹𝑖𝑖 𝑆𝑆𝐹𝐹𝑖𝑖 −𝐴𝐴/𝐶𝐶
Image Focal Length 𝑓𝑓𝑖𝑖 𝐻𝐻𝑖𝑖𝐹𝐹𝑖𝑖 − ⁄1 𝐶𝐶
Image Principle Plane 𝐻𝐻𝑖𝑖 𝑆𝑆𝐻𝐻𝑖𝑖 ⁄(1 − 𝐴𝐴) 𝐶𝐶

Cardinal points/planes can be used to find the image of the complex (i.e. cascaded) optical systems 
and the corresponding rays  This is an alternative to ray tracing method.



Example: Cardinal Points & Planes of a Thick lens
Lens thickness = 𝐸𝐸𝐸𝐸 = 𝑒𝑒

Lens index = 𝑛𝑛

Opt. Power of 1st Surface Φ1 = ⁄(𝑛𝑛 − 1) 𝑛𝑛𝑅𝑅1
Opt. Power of 2nd Surface Φ2 = ⁄(1 − 𝑛𝑛) 𝑅𝑅2

Outside index =1

𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷 = ?



Propagation

Planar
boundary

Spherical
boundary Lens

Spherical
mirror

Planar
mirror

Remember: Matrix optics description of basic functions & components



Example: Cardinal Points & Planes of a Thick lens
Lens thickness = 𝐸𝐸𝐸𝐸 = 𝑒𝑒

Lens index = 𝑛𝑛

Opt. Power of 1st Surface Φ1 = ⁄(𝑛𝑛 − 1) 𝑛𝑛𝑅𝑅1
Opt. Power of 2nd Surface Φ2 = ⁄(1 − 𝑛𝑛) 𝑅𝑅2

Outside index =1

= 1 0
−Φ2 𝑛𝑛 × 1 𝑒𝑒

0 1 × 1 0
−Φ1 1/𝑛𝑛

= 1 − 𝑒𝑒Φ1 𝑒𝑒/𝑛𝑛
−Φ𝑡𝑡𝑡𝑡𝑡𝑡 1 − 𝑒𝑒Φ2/𝑛𝑛

Φ𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑛𝑛Φ1 + Φ2 − 𝑒𝑒Φ1Φ2

= (n − 1)(
1
𝑅𝑅1
−

1
𝑅𝑅2

+
𝑛𝑛 − 1
𝑛𝑛

𝑒𝑒
𝑅𝑅1𝑅𝑅2

)

𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷 =



Example: Cardinal Points & Planes of a Thick lens
Distances: Notation: Directed Distances: ABCD elements:

Object Focal Point 𝐹𝐹𝑜𝑜 𝐸𝐸𝐹𝐹𝑜𝑜 𝐷𝐷/𝐶𝐶

Object Focal Length 𝑓𝑓𝑜𝑜 𝐻𝐻𝑜𝑜𝐹𝐹𝑜𝑜 ⁄1 𝐶𝐶

Object Principle Plane 𝐻𝐻𝑜𝑜 𝐸𝐸𝐻𝐻𝑜𝑜 ⁄(𝐷𝐷 − 1) 𝐶𝐶

Image Focal Point 𝐹𝐹𝑖𝑖 𝑆𝑆𝐹𝐹𝑖𝑖 −𝐴𝐴/𝐶𝐶

Image Focal Length 𝑓𝑓𝑖𝑖 𝐻𝐻𝑖𝑖𝐹𝐹𝑖𝑖 − ⁄1 𝐶𝐶

Image Principle Plane 𝐻𝐻𝑖𝑖 𝑆𝑆𝐻𝐻𝑖𝑖 ⁄(1 − 𝐴𝐴) 𝐶𝐶

𝐴𝐴 = 1 − 𝑒𝑒Φ1

𝐶𝐶 = −Φ𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷 = 1 − 𝑒𝑒Φ2/𝑛𝑛

𝐵𝐵 = 𝑒𝑒/𝑛𝑛

𝐻𝐻𝑖𝑖 = 𝑆𝑆𝐻𝐻𝑖𝑖 =
1
𝐶𝐶

1 − 𝐴𝐴 =
1

−Φ𝑡𝑡𝑡𝑡𝑡𝑡
1 − 1 + 𝑒𝑒Φ1 = −

𝑒𝑒Φ1

Φ𝑡𝑡𝑡𝑡𝑡𝑡

Image Principle Plane Position

𝐻𝐻𝑜𝑜 = 𝐸𝐸𝐻𝐻𝑜𝑜 =
1
𝐶𝐶
𝐷𝐷 − 1 =

1
−Φ𝑡𝑡𝑡𝑡𝑡𝑡

1 −
𝑒𝑒Φ2

𝑛𝑛
− 1 =

𝑒𝑒Φ1

𝑛𝑛Φ𝑡𝑡𝑡𝑡𝑡𝑡

Object Principle Plane Position

Object Focal & Image Focal Lengths

𝑓𝑓𝑖𝑖 = −𝑓𝑓𝑜𝑜 = −
1
𝐶𝐶 =

1
Φ𝑡𝑡𝑡𝑡𝑡𝑡

𝐹𝐹𝑖𝑖 = 𝑆𝑆𝐹𝐹𝑖𝑖 =
−𝐴𝐴
𝐶𝐶

=
𝑒𝑒Φ1 − 1
Φ𝑡𝑡𝑡𝑡𝑡𝑡

Image Focal Point Position

𝐹𝐹𝑜𝑜 = 𝐸𝐸𝐹𝐹𝑜𝑜 =
𝐷𝐷
𝐶𝐶

=
𝑒𝑒Φ2
𝑛𝑛 − 1
Φ𝑡𝑡𝑡𝑡𝑡𝑡

Object Focal Point Position



E S

3 cm

Lens parameters Num. value

1st interface curvature (R1) +5 cm

2nd interface curvature (R2) +2 cm

Central thickness, e 3 cm

Lens index (glass) 1.5

Example: if we use ray tracing for a thick lens

 Instead of ray optics, lets use the approach of cardinal points and planes!

Can you determine the path of the ray after the thick lens?

?

- The point that the ray exits the lens?
- The exit angle?

?

This means, identifying:



Example: if we use cardinal planes for a thick lens

Lens thickness = 𝐸𝐸𝐸𝐸 = 𝑒𝑒

Lens index = n

Optical Power of 1st curvature Φ1 = ⁄(𝑛𝑛 − 1) 𝑛𝑛𝑅𝑅1

Optical Power of 2nd curvature Φ2 = ⁄(1 − 𝑛𝑛) 𝑅𝑅2

Outside index =1



E S

3 cm

Lens parameters Num. value

1st interface curvature (R1) +5 cm

2nd interface curvature (R2) +2 cm

Central thickness, e 3 cm

Lens index (glass) 1.5

𝑇𝑇 𝐸𝐸 → 𝑆𝑆 = 𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷 = 𝑇𝑇2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝× 𝑇𝑇1𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Example: Ray Tracing a Thick lens



Reminder: Simple Optical Components 
Propagation

Planar
boundary

Spherical
boundary

Thin Lens



E S

3 cm

Lens parameters Num. value

1st interface curvature (R1) +5 cm

2nd interface curvature (R2) +2 cm

Central thickness, e 3 cm

Lens index (glass) 1.5

= 𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷 = 1 0

−Φ2 𝑛𝑛 × 1 𝑒𝑒
0 1 × 1 0

−Φ1 1/𝑛𝑛 = 1 0
1/4 1.5 × 1 3

0 1 × 1 0
−2/30 1/1.5 = 0.8 2

0.1 1.5

Φ1 = ⁄(𝑛𝑛 − 1) 𝑛𝑛𝑅𝑅1 = ⁄(1.5 − 1) 1.5𝑥𝑥5 = ⁄2 30

Φ2 = ⁄(1 − 𝑛𝑛) 𝑅𝑅2 = ⁄(1 − 1.5) 2 = −1/4

Example: Ray Tracing Thick lens

𝑇𝑇 𝐸𝐸𝐸𝐸 = 𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷 = 𝑇𝑇2𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝× 𝑇𝑇1𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



P

E S

3 cm

Lens parameters Num. value

1st interface curvature (R1) +5 cm

2nd interface curvature (R2) +2 cm

Central thickness, e 3 cm

Lens index (glass) 1.5

𝑇𝑇 𝐸𝐸𝐸𝐸 = 𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷 = 0.8 2

0.1 1.5

Distances Notati
on

Directed
Distances

ABCD 
elements

Calculated 
Value

Object Focal Point 𝐹𝐹𝑜𝑜 𝐸𝐸𝐹𝐹𝑜𝑜 𝐷𝐷/𝐶𝐶 +15 cm

Object Focal Length 𝑓𝑓𝑜𝑜 𝐻𝐻𝑜𝑜𝐹𝐹𝑜𝑜 ⁄1 𝐶𝐶 +10 cm

Object Principle Plane 𝐻𝐻𝑜𝑜 𝐸𝐸𝐻𝐻𝑜𝑜 ⁄(𝐷𝐷 − 1) 𝐶𝐶 +5 cm

Image Focal Point 𝐹𝐹𝑖𝑖 𝑆𝑆𝐹𝐹𝑖𝑖 −𝐴𝐴/𝐶𝐶 -8 cm

Image Focal Length 𝑓𝑓𝑖𝑖 𝐻𝐻𝑖𝑖𝐹𝐹𝑖𝑖 − ⁄1 𝐶𝐶 -10 cm

Image Principle Plane 𝐻𝐻𝑖𝑖 𝑆𝑆𝐻𝐻𝑖𝑖 ⁄(1 − 𝐴𝐴) 𝐶𝐶 +2 cm

Example: Thick lens



E S

3 cm

Ho

2 cm

5 cm
Fo

10 cm
Fi

5 cm

Lens parameters Num. value

1st interface curvature (R1) +5 cm

2nd interface curvature (R2) +2 cm

Central thickness, e 3 cm

Lens index (glass) 1.5

𝑇𝑇 𝐸𝐸𝐸𝐸 = 𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷 = 0.8 2

0.1 1.5

Distances Notati
on

Directed
Distances

ABCD 
elements

Calculated 
Value

Object Focal Point 𝐹𝐹𝑜𝑜 𝐸𝐸𝐹𝐹𝑜𝑜 𝐷𝐷/𝐶𝐶 +15 cm

Object Focal Length 𝑓𝑓𝑜𝑜 𝐻𝐻𝑜𝑜𝐹𝐹𝑜𝑜 ⁄1 𝐶𝐶 +10 cm

Object Principle Plane 𝐻𝐻𝑜𝑜 𝐸𝐸𝐻𝐻𝑜𝑜 ⁄(𝐷𝐷 − 1) 𝐶𝐶 +5 cm

Image Focal Point 𝐹𝐹𝑖𝑖 𝑆𝑆𝐹𝐹𝑖𝑖 −𝐴𝐴/𝐶𝐶 -8 cm

Image Focal Length 𝑓𝑓𝑖𝑖 𝐻𝐻𝑖𝑖𝐹𝐹𝑖𝑖 − ⁄1 𝐶𝐶 -10 cm

Image Principle Plane 𝐻𝐻𝑖𝑖 𝑆𝑆𝐻𝐻𝑖𝑖 ⁄(1 − 𝐴𝐴) 𝐶𝐶 +2 cm

Example: Thick lens  Object Focal Length fo

Hi

fo
fi



E S

3 cm

Lens parameters Num. value

1st interface curvature (R1) +5 cm

2nd interface curvature (R2) +2 cm

Central thickness, e 3 cm

Lens index (glass) 1.5

Remember the question:

?

Can you determine the path of the ray after the thick lens?

- the point that the ray exits the lens?
- the exit angle?

This means, finding :
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3 cm 2 cm

5 cm5 cm 10 cm

Thick lens example: ray tracing with cardinal planes

Hi

Ray tracing is simpler to 
implement with the cardinal 
points & planes:

fofi
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3 cm 2 cm

5 cm5 cm 10 cm

Thick Lens Example: Ray Tracing with Cardinal Points

Hi

Ray tracing is simpler to 
implement with the cardinal 
points & planes:



E S

3 cm 2 cm

Ray tracing is simpler to 
implement with the cardinal 
points & planes.

Thick Lens Example Summary: Ray Tracing With Cardinal Points
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3 cm 2 cm

5 cm5 cm 10 cm

Example summary: Thick lens
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