Biomicroscopy I - Solutions Exercise Sheet 9

November 12, 2024

1 Fourier transform with a lens

- A. The mathematical representation of the input function f(x) of the apertures in the object plane:
 - i. $f_i(x) = \text{rect}\left(\frac{x}{a}\right)$
 - ii. $f_{ii}(x) = f_1(x+b) + f_1(x-b) = \operatorname{rect}\left(\frac{x+b}{a}\right) + \operatorname{rect}\left(\frac{x-b}{a}\right)$

iii.
$$f_3(x) = f_1(x) + f_1(x+b) + f_1(x-b) = \operatorname{rect}\left(\frac{x}{a}\right) + \operatorname{rect}\left(\frac{x+b}{a}\right) + \operatorname{rect}\left(\frac{x-b}{a}\right)$$

- B. The image formated at Fourier plane is a Fourier transform of an entry object. Reminder:
 - The Fourier transform is a linear operator:

$$\mathcal{F}\{f(x) + g(x)\} = \mathcal{F}\{f(x)\} + \mathcal{F}\{g(x)\}\$$

• The Fourier transform of the rectangular function rect is:

$$f(x) = \operatorname{rect}\left(\frac{x}{a}\right) \iff F(p_x) = a \cdot \operatorname{sinc}(ap_x),$$

where

$$\operatorname{sinc}(p_x) = \frac{\sin(\pi p_x)}{\pi p_x}$$

• Translation property of the Fourier transform:

$$f(x-x_0) \stackrel{\mathcal{F}}{\Longleftrightarrow} e^{-i2\pi p_x x_0} \cdot F(p_x)$$

• The definition of cos(z) for complex numbers:

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

Therefore, the Fourier transforms of the appertures would be:

i.

$$F_1(p_x) = a \cdot \operatorname{sinc}(ap_x)$$

ii.

$$F_2(p_x) = a \cdot \operatorname{sinc}(ap_x)e^{i2\pi p_x b} + a \cdot \operatorname{sinc}(ap_x)e^{-i2\pi p_x b}$$
$$= 2a \cdot \operatorname{sinc}(ap_x) \cdot \cos(2\pi p_x b)$$

iii.

$$F_3(p_x) = a \cdot \operatorname{sinc}(ap_x) + a \cdot \operatorname{sinc}(ap_x)e^{i2\pi p_x b} + a \cdot \operatorname{sinc}(ap_x)e^{-i2\pi p_x b}$$
$$= a \cdot \operatorname{sinc}(ap_x) \cdot (1 + 2\cos(2\pi p_x b))$$

The images formed at the Fourier plane of the lens for a=1 and b=2 are shown below in Figure 1.

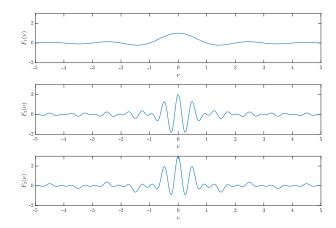


Figure 1: Images of the appertures formed in the Fourier plane.

2 Resolution in 4f scheme

In order to define the resolution of the system (or the minimum distance between two monochromatic sources) we will use Rayleigh d_{min}^R and Abbe d_{min}^A criteria:

$$d_{min}^R = 0.61 \cdot \frac{\lambda}{\mathrm{NA}} = 0.61 \cdot \frac{\lambda}{n \sin \alpha}; \qquad d_{min}^A = 0.5 \cdot \frac{\lambda}{\mathrm{NA}} = 0.5 \cdot \frac{\lambda}{n \sin \alpha},$$

where α is the half-angle of the total angular opening of radiation coming from the source.

A. In the presented 4f-scheme the numerical aperture is defined by the height of lenses:

NA =
$$n \sin \alpha = n \cdot \frac{(h_1/2)}{\sqrt{(h_1/2)^2 + f^2}} \approx 0.3$$

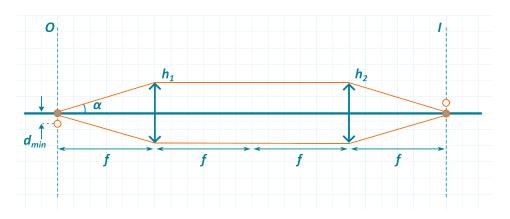


Figure 2: The 4f scheme consisting of two thin lenses with marginal rays (in orange) defining the angular opening of the system.

Therefore, the resulting resolution for both criteria could be found:

$$d_{min}^R = 0.61 \cdot \frac{\lambda}{\text{NA}} = 1220 \text{ nm} = 1.22 \ \mu\text{m}; \qquad d_{min}^A = 0.5 \cdot \frac{\lambda}{\text{NA}} = 1000 \text{ nm} = 1 \ \mu\text{m}.$$

B. When the refractive index of the lenses change from n to \tilde{n} , the numerical aperture changes as $\tilde{NA} = \frac{\tilde{n}}{n} NA$. In this case, n = 1, so $\tilde{NA} = \tilde{n} NA = 0.45$. The resulting resolution then

increases as well (the distance between the resolved sources is smaller):

$$\tilde{d}^R_{min} = 0.61 \cdot \frac{\lambda}{\tilde{\text{NA}}} \approx 813 \text{ nm}; \qquad \tilde{d}^A_{min} = 0.5 \cdot \frac{\lambda}{\tilde{\text{NA}}} \approx 667 \text{ nm}.$$

For changing wavelength $\tilde{\lambda}$ you can directly insert its value in the resolution limit criteria and also increase the resolution by decreasing wavelength:

$$\tilde{d}_{min}^R = 0.61 \cdot \frac{\tilde{\lambda}}{\text{NA}} \approx 976 \text{ nm}; \qquad \tilde{d}_{min}^A = 0.5 \cdot \frac{\tilde{\lambda}}{\text{NA}} \approx 800 \text{ nm}.$$

C. Since the full height $h'_2 = 12$ cm $> h_1$ then the total angular opening should not be influenced by changing this lens to a bigger one and, therefore, the resolution stays the same.

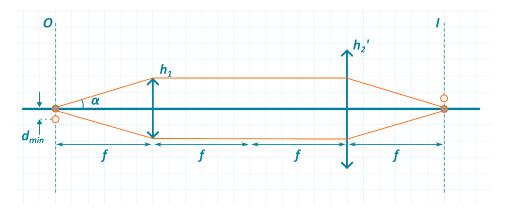


Figure 3: The 4f scheme consisting of two thin lenses. The second lens has larger height then the first.

In second case, the full-height $h_2'' = 4$ cm $< h_1$ and, therefore, the angular opening is now defined by the second lens:

$$NA'' = n \sin \alpha'' = n \cdot \frac{(h_2/2)}{\sqrt{(h_2/2)^2 + f^2}} \approx 0.205$$

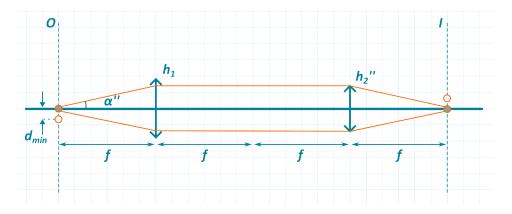


Figure 4: The 4f scheme consisting of two thin lenses. The second lens has smaller height then the first.

And corresponding resolution is therefore:

$$d_{min}^R = 0.61 \cdot \frac{\lambda}{\text{NA''}} \approx 1.785 \ \mu\text{m}; \qquad d_{min}^A = 0.5 \cdot \frac{\lambda}{\text{NA''}} \approx 1.463 \ \mu\text{m}.$$

3 Resolution of a human eye

A. A beam of a laser light focused with a lens of focal length f, is propagating through a circular aperture of diameter D. The beam can be approximated by a plane wave. Therefore, its intensity after the propagation through the lens at the plane at a distance of one focal length f is calculated as:

$$I(x,y) = I_0 \left[\frac{2J_1\left(\frac{\pi D\rho}{\lambda f}\right)}{\frac{\pi D\rho}{\lambda f}} \right]^2$$
 where $\rho = \sqrt{x^2 + y^2}$

 I_0 is the peak intensity and J_1 is a Bessel function of the first kind. From this formula, the diffraction limited spot size is measured at the radius where this function becomes zero. The radius value is then:

$$\rho = 1.22 \cdot \frac{\lambda \cdot f}{D}$$

which is given by the Rayleigh's Criteria. Using this, we can compute the diameter of the diffraction limited spot:

Spot diameter
$$= 2\rho_s = 2.44 \frac{\lambda f}{D} = 2.44 \frac{500 \text{ nm} \times 20 \text{ mm}}{2 \text{ mm}} = 12.2 \mu\text{m}$$

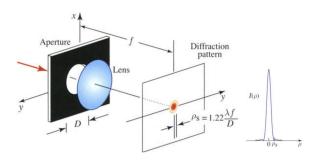


Figure 5: Diffraction pattern at focal length f after a lens with circular aperture.

B. For a square shaped aperture on a lens with focal length f, the intensity on the plane at the distance of one focal length f can be calculated from the propagation through the rectangular aperture:

$$I(x,y) = I_0 \operatorname{sinc}^2 \frac{D_x x}{\lambda f} \operatorname{sinc}^2 \frac{D_y y}{\lambda f}$$

where D_x and D_y are the aperture width and height, respectively; and $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$. For a square aperture, D_x is equal to D_y . The spot size from this equation is measured at the point where this function becomes zero for the first time. This corresponds to:

$$x_0 = \frac{\lambda f}{D}$$

which gives the half size of the spot along x-axis. The diameter of the diffraction limited spot will be:

$$2x_0 = 2\frac{\lambda f}{D} = 2 \cdot \frac{500 \text{ nm} \cdot 20 \text{ mm}}{2 \text{ mm}} = 10\mu\text{m}$$
 along the x-axis

4

For the y-axis, the spot diameter is the same $(10\mu\text{m})$, since the aperture is square. Since the feature size is smaller for this case, we would have had better resolution in case we had a square iris. Well... We should enjoy what we are given!

P.S. Please do not try to focus a laser beam on the back focal plane of your eye:)