Biomicroscopy I - Solutions Exercise Sheet 10

November 19, 2024

1 Energy and wavelength of a photon

A. $E = \frac{1.24 \text{eV} \cdot 1 \mu \text{m}}{1 \mu \text{m}} = 1.24 \text{eV}$

B. $E_{red} = \frac{1.24 \text{eV} \cdot 1 \mu \text{m}}{0.65 \mu \text{m}} = 1.9 \text{eV}$

C. $E_{2.48\mu\text{m}} = \frac{1.24\text{eV} \cdot 1\mu\text{m}}{2.48\mu\text{m}} = 0.5\text{eV}$

D. $\lambda_{2eV} = \frac{1.24eV \cdot 1\mu m}{2eV} = 620nm$

E. $\lambda_{3.1 eV} = \frac{1.24 eV \cdot 1 \mu m}{3.1 eV} = 400 nm \rightarrow Violet$

2 Fluorescence as a three-stage process

- A. (i)
- B. (iii)
- C. (i)
- D. No, the molecule cannot be excited with orange light:

$$E_{orange} = \frac{1.24 \text{eV} \cdot 1\mu\text{m}}{0.59\mu\text{m}} = 2.1016 \text{eV} < 2.17 < 2.61$$

E. Yes, the molecule can be excited with violet light:

$$E_{violet} = \frac{1.24 \text{eV} \cdot 1 \mu \text{m}}{0.4 \mu \text{m}} = 3.1 \text{eV} > 2.61$$

F. Emission occurs at the transition $E_1 \to E_0$. Therefore, the energy $E_{emitted}$ of the emitted light will be

$$E_{emitted} = E_1 - E_0 = 2.17 \text{eV}$$

The corresponding wavelength $\lambda_{emitted}$ is then

$$\lambda_{emitted} = \frac{1.24 \text{eV} \cdot 1\mu\text{m}}{2.17 \text{eV}} = 571 \text{nm}$$

and thus, the corresponding colour is yellow.

G.
$$E_{lost} = E_2 - E_1 = 2.61 - 2.17 = 0.44 \text{eV}.$$

3 Fluorescence lifetime and decay rates

A.
$$\tau_r = \frac{1}{k_r} = 1.43 \text{ns}$$

B.
$$\tau_{nr} = \frac{1}{k_{nr}} = 3.3 \text{ns}$$

C.
$$k = k_r + k_{nr} = 10^9 \text{s}^{-1}$$

D.
$$\tau = \frac{1}{k} = 1$$
ns

E.
$$Q = \frac{k_r}{k_r + k_{nr}} = 0.7 (70\%)$$