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Lecture 14 Bio-application Examples



INPUT:
OUTPUT:

Reminder: Double Slit (with no width) Experiment

x0 xo-xo

cos(2pnxx)x’

L

2xo

PS: Ignore slit width



Reminder: Diffraction by a “grating”

x

INPUT: OUTPUT:

𝑠𝑖𝑛𝜃𝑚 =
𝑚

𝑑

mth order:

𝑑 𝑠𝑖𝑛𝜃𝑚 = 𝑚 

Grating Equation:



Diffraction of a 1D single slit(aperture) with a width of “b”

INPUT:

z0

rect(z/b)

b
2

b
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http://micro.magnet.fsu.edu/primer/java/diffraction/basicdiffraction/index.html

OUTPUT: 

sinc(b)

, 2 , 3 ,...b p p p   

tan b b

for minima:

for maxima:

1st zero at 
“/b”

http://micro.magnet.fsu.edu/primer/java/diffraction/basicdiffraction/index.html
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Fourier Transform Pairs - Basic Functions



f (t) F(n)

Comb

n0 1t0 1

Gaussian

0 t n0

exp(-pt2) exp(-pn2)

Rectangular

n0t0
rect(t) sinc(v)

1
2

1
2-

Fourier Transform Pairs - Basic Functions

M

Multiple

Impulses

n0

t0

sin(Mpn)

sin(pn)



Fourier Transform 

Fourier Transform - Temporal

𝐹. 𝑇. 𝑓(𝑡) = 𝐹 𝑣 = න
−∞

+∞

𝑓 𝑡 𝑒−𝑖2𝜋𝑣𝑡𝑑𝑡

Inverse Fourier Transform𝐼. 𝐹. 𝑇. 𝐹(𝑣) = 𝑓 𝑡 = න
−∞

+∞

𝐹 𝑣 𝑒+𝑖2𝜋𝑡𝑑𝑣

For a temporal function of f(t):

n is called as temporal frequency and has units of 1/time

Example:  [n]=1/sec=hertz



Fourier Transform - Temporal

For a temporal function f(t), you may also encounter with the following F.T. formula:

𝐹. 𝑇. 𝑓(𝑡) = 𝐹 𝜔 = න
−∞

+∞

𝑓 𝑡 𝑒−𝑖𝜔𝑡𝑑𝑡

Here, w is called as angular frequency: 𝜔 = 2𝜋𝑣

Its units is radians/time , such as 2p/sec. 

𝐼. 𝐹. 𝑇. 𝐹(𝜔) = 𝑓 𝑡 =
1

2𝜋
න
−∞

+∞

𝐹 𝜔 𝑒+𝑖𝜔𝑡𝑑𝜔



Fourier Transform 

Fourier Transform - Spatial

𝐹. 𝑇. 𝑓(𝑥) = 𝐹 𝑝𝑥 = න
−∞

+∞

𝑓 𝑥 𝑒−𝑖2𝜋𝑝𝑥𝑥𝑑𝑥

Inverse Fourier Transform𝐼. 𝐹. 𝑇. 𝐹(𝑝𝑥) = 𝑓 𝑥 = න
−∞

+∞

𝐹 𝑝𝑥 𝑒+𝑖2𝜋𝑥𝑑𝑝𝑥

px is called spatial frequency and has units of [1/length]

For a spatial function of f(x):



Fourier Transform - Spatial

For a spatial function f(x), you may also encounter with the following F.T. formula :

𝐹. 𝑇. 𝑓(𝑥) = 𝐹 𝑘 = න
−∞

+∞

𝑓 𝑥 𝑒−𝑖𝑘𝑥𝑥𝑑𝑥

In optics, kx is called wave-number: 𝑘𝑥 = 2𝜋𝑝𝑥
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Examples: the Dirac delta function, d(t)

t
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w
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F.T
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-  - Fourier Transform:



( ) exp( ) exp( [0]) 1t i t dt id w w

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Examples: Fourier Transforms of d(t) and 1.

F.T
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 0 0. . exp( ) exp( ) exp( )F T i t i t i t dtw w w
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• The harmonic function exp(iw0t) is the basis of Fourier analysis.  

• It corresponds to a single frequency, w0.

exp(iw0t)

0
t

tRe

Im

0

Examples: Fourier transform of exp(iw0 t)

F.T.{exp(iw0t)}

0 w0

w
F.T
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Basic Examples: Fourier transform of cos(w0 t)

cos(w0t)

t
0 +w00-w0

w

0F.T.{cos( )}tw

F.T



Examples: 1D Fourier Transform - Spatial
Space Domain 
(i.e specimen plane)

Frequency Domain
(i.e. Fourier plane)

sinusoidal

Higher frequencySinusoidal:
smaller periodicity



Examples: Superposition Principle



Examples: 2D-Fourier Transform - Spatial

Space Domain 
(i.e. specimen plane)

Frequency Domain
(i.e. Fourier plane)

Periodic in x & y
frequency in x & y



Examples: 2D diffraction of a periodic “pattern”
Moving towards a real object (pattern):

http://www.msm.cam.ac.uk/doitpoms/tlplib/DD1-6/images/2d-Grat-dp.jpg


In Class: Experimental Set-up



f (t) F(n)

n0

Scaling

t0

f (t/t) |t |F(t n)

n0t0

Properties of the Fourier Transform

When you scale down a function in time/space domain, its F.T. will spread in the frequency domain



Example: Scaling of an 2D spatial object

Specimen Plane Fourier Plane

Relationship between the “object size” and the “frequency content”



Diffraction of a 2D-Rectangular Aperture

INPUT:

f(x,y) = rect(x/Dx) rect(y/Dy)
2 2( , ) sin sin
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OUTPUT:

• In this example Dy is smaller than Dx

• Thus, diffraction pattern spreads more (i.e. higher 
frequencies) along the y-axis compared to the x-axis. 

L

y

L

D


+

y

L

D


-

0

(0, )I y

y

( ,0)I x

x

L

D


+

x

L

D


-

0 x



Diffraction of a Circular Aperture

INPUT: f() = circ(/D)

 = sqrt (x2+y2)

L

AIRY RINGS

OUTPUT: 
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• Spreading of  (thus frequency) has 
inverse relation on the radius size (D)



f (t) F(n)

n0

Scaling

t0

f (t/t) |t |F(t n)

n0t0

Properties of the Fourier Transform

Translation f (t- t) F(n) exp(-i2pnt)

n0t0



Example: Superimpose Shifted Objects

Specimen
Plane

Fourier
Plane

If we assume a 1D case, then input function is:

f(x) = rect[(x-0)/Dx] + rect[(x-a)/Dx] + rect[(x+a)/Dx] 

0
-a

+a
F(n) = sinc(n) [1 + exp(-i2pna)+exp(+i2pna)]

The diffraction pattern at the far-field (Fourier plane) is proportional to the square of:



f (t) F(n)

n0

Scaling

t0

f (t/t) |t |F(t n)

n0t0

Properties of the Fourier Transform

Translation f (t- t) F(n) exp(-i2pnt)

n0t0

Modulation f (t) cos(2pnot)

F(n+no)/2 + F(n-no)/2 

n0 no-no



nx

ny

Example: Spatially Modulated 2D Object

f (x,y)
F(nx,ny)

F.T.

f (x,y) cos(2pn0xx

F.T.

F(nx-n0x,ny) + F(nx+n0x,ny)

nx

ny

+n0x-n0x

x

y

x

y



f (t) F(n)

n0

Scaling

t0

f (t/t) |t |F(t n)

n0t0

Properties of the Fourier Transform

Translation f (t- t) F(n) exp(-i2pnt)

n0t0

Modulation f (t) cos(2pnot)

F(n+no)/2 + F(n-no)/2 

n0 no-no

Convolution f (t) * g(t) F(n ) . G(n ) 



Example: Diffraction with single slit and double slits 

Single slit with a finite width “w”

Double slit (without a width) 
separated by “d”

x

Convolution of these two yields:
Double slit with a finite width (w) 
and separation (d)

w

𝐼 = 𝐼0 𝑠𝑖𝑛𝑐
2

𝛽

2
𝑐𝑜𝑠2



2

𝛽 =
2𝜋𝑤

 
𝑠𝑖𝑛𝜃  =

2𝜋𝑑

 
𝑠𝑖𝑛𝜃



Diffraction by slits with finite width

With increasing number of slits (to infinity), the system will gradually transition to a “grating”



Recall: Diffraction of a “grating”

x

INPUT: OUTPUT:

𝑠𝑖𝑛𝜃𝑚 =
𝑚

𝑑

Grating Equation (mth grating order):

𝑑 𝑠𝑖𝑛𝜃𝑚 = 𝑚 

Diffraction angle m increases as the wavelength  increases
 Diffraction grating can be used to disperse white light!

Diffraction angle m increases as the period d decreases
 Smaller features diffracts more!

L>> d & 

F.T.



• For a given input function, we obtain the output pattern (which corresponds to the F.T. of 
the input function) at far distance….

• What is the criteria for being at far distance?



Diffraction of a 1D Rectangular Aperture

Fourier transform plane is at the far-field:

 Far-field observation condition is given by Fraunhofer Approximation, which is b2/L << 1

For = 500nm (green)

i) b =2.5 cm  L >> 1.9 km

ii) b =1 mm  L >> 6 m 

iii) b =2 mm  L >> 0.15 mm

Slit Field @slit Fresnel Fraunhofer

0 Distance …  far-field

b F.T.



A lens can bring the F.T. plane from far-field to a closer distance

Back Focal Plane of Lens =  Fourier Plane

Input:
f(x,y)

Output at the back-focal plane of the lens:
F(nx, ny)

Derivation is given in Saleh & Teich, Ch. 4 

Each wave is focused in Fourier plane at: 

𝑥 = 𝜃𝑥𝑓

𝑥 = 𝑣𝑥𝑓

𝜃𝑖 ≈ n𝑖

angle spatial 
frequency

Recall 1-to-1 relationship between:



𝑠𝑖𝑛𝜃𝑚 =
𝑚

𝑑
𝜃𝑚 ≈

𝑚

𝑑

𝐹𝑜𝑟 𝑚 = 1 → 𝜃1 ≈ 
1

𝑑

𝐹𝑜𝑟 𝑚 = 2 → 𝜃2 ≈ 
2

𝑑

Reminder: Spatial Frequency & Angles
under paraxial 
approximation

𝐹𝑜𝑟 𝑚 = 𝑖 → 𝜃𝑖 ≈ 
𝑖

𝑑

.

.

.

angle spatial 
frequency

• “Larger angle” means “higher spatial frequency”
• “Higher frequency” corresponds to “smaller feature”
 THUS, smaller features contain higher frequency

𝜃𝑖 ≈ n𝑖



An Example: Fourier (a.k.a Diffraction) Plane

• Let’s assume that our object is a grating, and it is placed on specimen plane, which is located 
between f & 2f (2f>a>f).

• The Fourier (or diffraction) plane is located at the back focal plane of the lens.

- The rays of different orders are separated at the diffraction plane

- But, the rays of different orders are merged (interfere) at the image plane

- The objective lens produces a magnified real image of the grating (i.e. object) in the image plane.


