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Reminder: Diffraction by a “grating”
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Diffraction of a 1D single slit(aperture) with a width of “b”
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http://micro.magnet.fsu.edu/primer/java/diffraction/basicdiffraction/index.html



http://micro.magnet.fsu.edu/primer/java/diffraction/basicdiffraction/index.html

Fourier Transform Pairs - Basic Functions

f(t) F(v)
At)
Impulse
by 0 t 1 IO
Unif

Harmonic ]
Function 0 t  exp(i2zvgt) Kv—v,) |
0 V,

Harmonic
Function 0 t COS(27vyt)




Fourier Transform Pairs - Basic Functions
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Fourier Transform - Temporal

For a temporal function of f(t):

+ 0o
F.-T.{f(t)}=F) = f(e 2mvtqt Fourier Transform
+00 |
I.LF.TAF(v)}=f(t) = J F(v)et¥?™dy Inverse Fourier Transform

v is called as temporal frequency and has units of 1/time

Example: [v]=1/sec=hertz



For a temporal function f(t), you may also encounter with the following F.T. formula:

F.T.{f(t)} = F(w) = +oof(t)e‘i“’tdt
1 (*® .
I.F.TAF(w)}=f(t) = %J F(w)e ' *tdw

Here, O is called as angular frequency: W = 27TV

Its units is radians/time, such as 2m/sec.



Fourier Transform - Spatial

For a spatial function of f(x):

+ 00

FTAf(O}=Fp) =] flx)e ?™Px*dx

— 00

LE.TAF(o)} = f(x) = f F(py)e 2w dp,

P, is called spatial frequency and has units of [1/length]

Fourier Transform

Inverse Fourier Transform



For a spatial function f(x), you may also encounter with the following F.T. formula :

F.T{f(0)) = F(k) = j F (et dx

In optics, kx is called wave-number: kx = 2TTP,



Examples: the Dirac delta function, o(t)

4 )
(0 ift=0

o(t) =
O=10ift 20

Fourier Transform: j 5(1:) exp(—ia)t) dt = eXp(—lﬂ)[O]) =1

At) 1
[R—

0 t ©




Examples: Fourier Transforms of 6(t) and 1.
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Examples: Fourier transform of exp(iw, t)

« The harmonic function exp(io,t) is the basis of Fourier analysis.
It corresponds to a single frequency, o,.

exp(imgt)
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Basic Examples: Fourier transform of cos(a, t)
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Examples: 1D Fourier Transform - Spatial

Space Domain Frequency Domain
(i.e specimen plane) (i.e. Fourier plane)

sinusoidal

Sinusoidal:
smaller periodicity

Higher frequency




Examples: Superposition Principle
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Examples: 2D-Fourier Transform - Spatial

Space Domain Frequency Domain
(i.e. specimen plane) (i.e. Fourier plane)




Examples: 2D diffraction of a periodic “pattern”

Moving towards a real object (pattern):
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.
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¥
¥
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http://www.msm.cam.ac.uk/doitpoms/tlplib/DD1-6/images/2d-Grat-dp.jpg

In Class: Experimental Set-up
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Properties of the Fourier Transform

J\ f@® |FO J\
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Scaling J\ f(t/g) ||z|F(zv)
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When you scale down a function in time/space domain, its F.T. will spread in the frequency domain



Example: Scaling of an 2D spatial object

Relationship between the “object size” and the “frequency content”

Specimen Plane Fourier Plane



Diffraction of a 2D-Rectangular Aperture

Diffraction
pattern

INPUT:

f(x,y) = rect(x/D,) rect(y/D,)

In this example D, is smaller than D,
Thus, diffraction pattern spreads more (i.e. higher
z frequencies) along the y-axis compared to the x-axis.
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Diffraction of a Circular Aperture

INPUT: f(p) = CirC(p/D)

p = sqrt (x*+y?)
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Properties of the Fourier Transform
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Example: Superimpose Shifted Objects

Specimen Fourier
Plane Plane

If we assume a 1D case, then input function is:
f(x) = rect[(x-0)/D,] + rect[(x-a)/D,] + rect[(x+a)/D,]

The diffraction pattern at the far-field (Fourier plane) is proportional to the square of:
F(v) =sinc(v) [1 + exp(-i2mva)+exp(+i2mva)]



Properties of the Fourier Transform
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Example: Spatially Modulated 2D Object
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F(xy)

f (X,y) cos(27v,,X)

y Vy A

Vi



Properties of the Fourier Transform
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Example: Diffraction with single slit and double slits

/Single slit with a finite width “w”) I

/Double slit (without a width)
separated by “d”
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/ Convolution of these two yields:\
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Diffraction by slits with finite width

Single Slit Diffraction Double Slit Three Slit Five Slit
Single slit Single slit 3 Single slit
envelope envelope envelope

=>» With increasing number of slits (to infinity), the system will gradually transition to a “grating”



Recall: Diffraction of a “grating”

L>>d & A

- +3rd

Grating Equation (mt™ grating order):

| 4ond . mh
sintpy, = d d sinf,, =mA\

Collimated Beam +1st

| |
Grating

- _2nd

INPUT: OUTPUT:

X

Screen

Diffraction angle 6, increases as the period d decreases
=» Smaller features diffracts more!

Diffraction angle 6, increases as the wavelength A increases
=>» Diffraction grating can be used to disperse white light!



* For agiven input function, we obtain the output pattern (which corresponds to the F.T. of
the input function) at far distance....
* What is the criteria for being at far distance?



Diffraction of a 1D Rectangular Aperture

.
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Slit  Field @slit Fraunhofer

>
.. far-field Distance

0

Fourier transform plane is at the far-field:
=> Far-field observation condition is given by Fraunhofer Approximation, which is b?/AL << 1

For A= 500nm (green)

1) b=25cm = L>>1.9km
i) b=1mm = L>>6m

iii) b=2 um = L>>0.15mm



A lens can bring the FT. plane from far-field to a closer distance

8(x.y)

\ ”“““““““M) = (Ouf, by

Focal plane
5 e trctde s e
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Input: Output at the back-focal plane of the lens:
f(x,y) Flvy, v))
Recall 1-to-1 relationship between: Back Focal Plane of Lens = Fourier Plane
z )@ Each wave is focused in Fourier plane at:
x = 0yf
angle spatial X = vy f
frequency

Derivation is given in Saleh & Teich, Ch. 4



Reminder: Spatial Frequency & Angles

under paraxial
approximation

ma . ma
Sinf,, = > 0, ~—
[ Form=1 - Olzka

) Form=2—>62zka

Collimated Beam
L]

L
L ]
Grating _qst

- Form=i - 6 ~k—

| —3rd
Screen

angle

spaﬂal
frequency
e “Larger angle” means “higher spatial frequency”
* “Higher frequency” corresponds to “smaller feature”

=>» THUS, smaller features contain higher frequency



An Example: Fourier (a.k.a Diffraction) Plane

Grating //t\
~
) e n" Order
: D
/ ~. \ Optical
Axis
0t Order
5 .
Specimen [Diffraction Plane ] Image
Plane (Rear Focal Plane of Lens) Plane

* Let’s assume that our object is a grating, and it is placed on specimen plane, which is located
between f & 2f (2f>a>f).

>

=> I a

- The objective lens produces a magnified real image of the grating (i.e. object) in the image plane.

* The Fourier (or diffraction) plane is located at the back focal plane of the lens.
- The rays of different orders are separated at the diffraction plane

- But, the rays of different orders are merged (interfere) at the image plane



