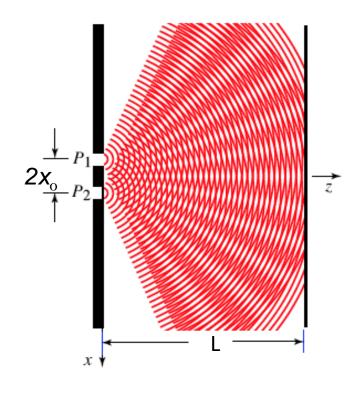
# **MICRO-561**

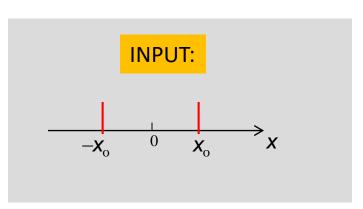
Biomicroscopy I

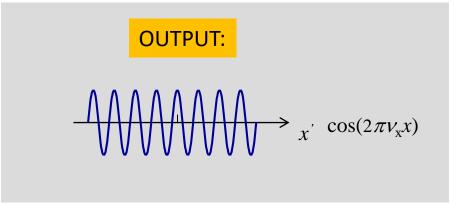
# Syllabus (tentative)

| Lecture 1                | Introduction & Ray Optics-1            |
|--------------------------|----------------------------------------|
| Lecture 2                | Ray Optics-2 & Matrix Optics-1         |
| Lecture 3                | Matrix Optics-2                        |
| Lecture 4                | Matrix Optics-3 & Microscopy Design-1  |
| Lecture 5                | Microscopy Design-2                    |
| Lecture 6                | Microscopy Design-3 & Resolution -1    |
| Lecture 7                | Resolution-2                           |
| Lecture 8                | Resolution-3                           |
| Lecture 9                | Resolution-4 & Contrast-1              |
| Lecture 10               | Contrast-2 & Fluorescence-1            |
| 44                       |                                        |
| Lecture 11               | Fluorescence-2                         |
| Lecture 11<br>Lecture 12 | Fluorescence-2 Fluorescence-3, Sources |
|                          |                                        |
| Lecture 12               | Fluorescence-3, Sources                |

### Reminder: Double Slit (with no width) Experiment

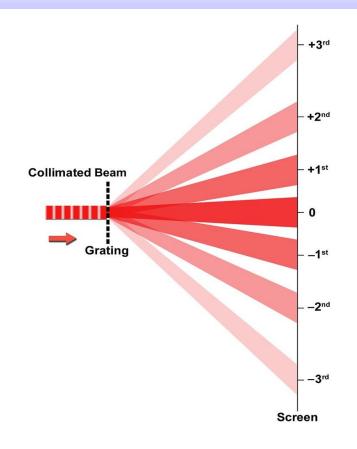






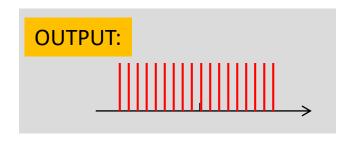
PS: Ignore slit width

## Reminder: Diffraction by a "grating"

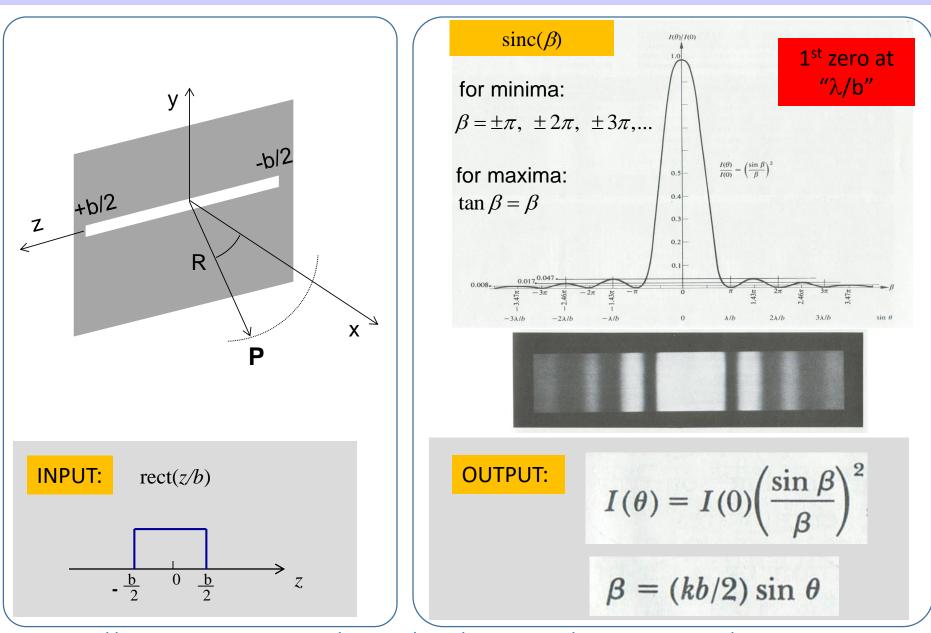


 $m^{ ext{th}}$  order: Grating Equation:  $sin heta_m = rac{m \lambda}{d}$   $d \ sin heta_m = m \ \lambda$ 



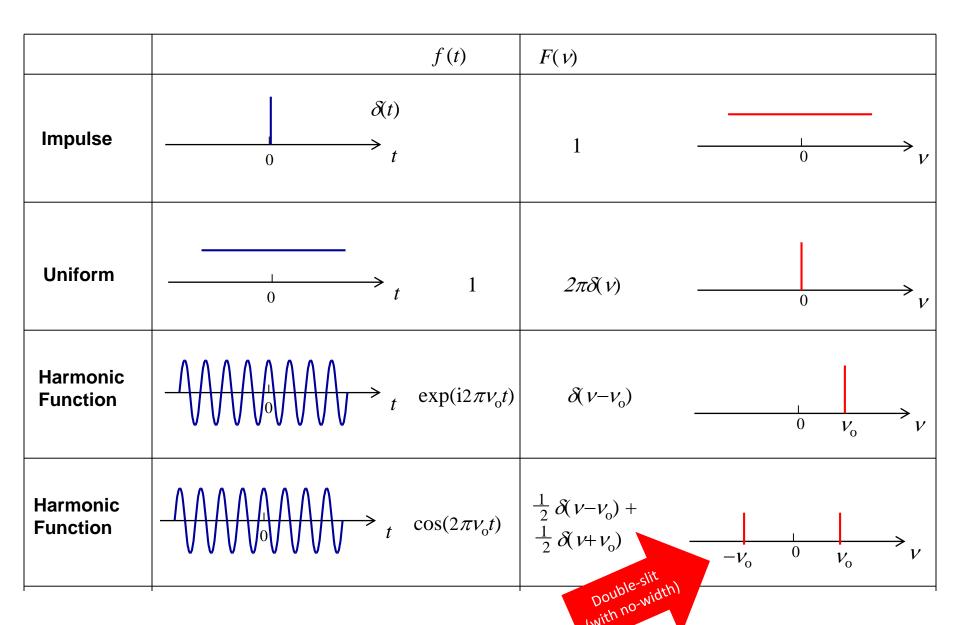


#### Diffraction of a 1D single slit(aperture) with a width of "b"

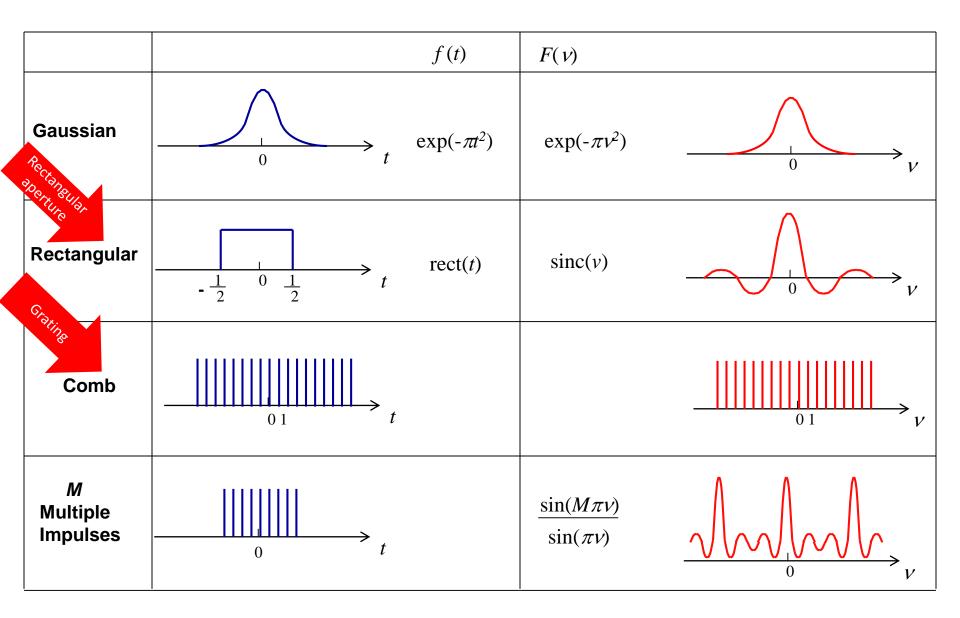


http://micro.magnet.fsu.edu/primer/java/diffraction/basicdiffraction/index.html

### Fourier Transform Pairs - Basic Functions



#### Fourier Transform Pairs - Basic Functions



# Fourier Transform - Temporal

#### For a temporal function of f(t):

$$F.T.\{f(t)\} = F(v) = \int_{-\infty}^{+\infty} f(t)e^{-i2\pi vt}dt$$
 Fourier Transform

$$I.F.T.\{F(v)\} = f(t) = \int_{-\infty}^{+\infty} F(v)e^{+i2\pi t}dv$$
 Inverse Fourier Transform

v is called as **temporal frequency** and has units of 1/time

Example: [v]=1/sec=hertz

# **Fourier Transform - Temporal**

**For a temporal function f(t),** you may also encounter with the following F.T. formula:

$$F.T.\{f(t)\} = F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt$$

I.F.T.
$$\{F(\omega)\} = f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)e^{+i\omega t}d\omega$$

Here,  $\omega$  is called as **angular frequency**:  $\omega = 2\pi v$ 

Its units is radians/time, such as  $2\pi/\text{sec}$ .

# Fourier Transform - Spatial

#### For a spatial function of f(x):

$$F.T.\{f(x)\} = F(p_x) = \int_{-\infty}^{+\infty} f(x)e^{-i2\pi p_x x} dx$$

Fourier Transform

$$I.F.T.\{F(p_x)\} = f(x) = \int_{-\infty}^{+\infty} F(p_x)e^{+i2\pi x}dp_x$$
 Inverse Fourier Transform

 $P_x$  is called **spatial frequency** and has units of [1/length]

# Fourier Transform - Spatial

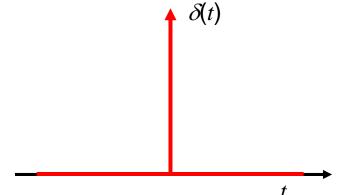
For a spatial function f(x), you may also encounter with the following F.T. formula:

$$F.T.\{f(x)\} = F(k) = \int_{-\infty}^{+\infty} f(x)e^{-ik_x x} dx$$

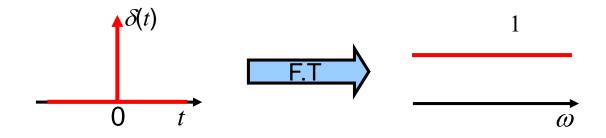
In optics, 
$$k_{\scriptscriptstyle \chi}$$
 is called wave-number:  $k_{\scriptscriptstyle \chi} = 2\pi p_{\scriptscriptstyle \chi}$ 

# Examples: the Dirac delta function, $\delta(t)$

$$\delta(t) \equiv \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}$$

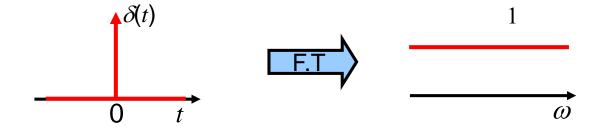


Fourier Transform: 
$$\int_{-\infty}^{\infty} \delta(t) \exp(-i\omega t) dt = \exp(-i\omega[0]) = 1$$

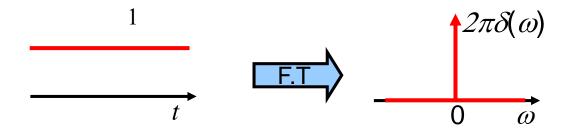


## Examples: Fourier Transforms of $\delta(t)$ and 1.

$$\int_{-\infty}^{\infty} \delta(t) \exp(-i\omega t) dt = \exp(-i\omega[0]) = 1$$

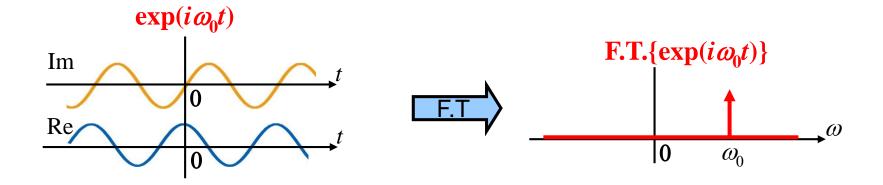


Fourier Transform of "1" is 
$$2\pi\delta(\omega)$$
: 
$$\int_{-\infty}^{\infty} 1 \exp(-i\omega t) \ dt = 2\pi \ \delta(\omega)$$



# Examples: Fourier transform of $\exp(i\omega_0 t)$

- The harmonic function  $\exp(i\omega_0 t)$  is the basis of Fourier analysis.
- It corresponds to a **single** frequency,  $\omega_0$ .



$$F.T.\left\{\exp(i\omega_0 t)\right\} = \int_{-\infty}^{\infty} \exp(i\omega_0 t) \exp(-i\omega t) dt$$
$$= \int_{-\infty}^{\infty} \exp(-i[\omega - \omega_0]t) dt = 2\pi \delta(\omega - \omega_0)$$

# Basic Examples: Fourier transform of $\cos(\omega_0 t)$

$$F.T.\{\cos(\omega_0 t)\} = \int_0^\infty \cos(\omega_0 t) \exp(-i\omega t) dt$$

$$= \frac{1}{2} \int \left[ \exp(i \omega_0 t) + \exp(-i \omega_0 t) \right] \exp(-i \omega t) dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} \exp(-i[\omega - \omega_0]t) dt + \frac{1}{2} \int_{-\infty}^{\infty} \exp(-i[\omega + \omega_0]t) dt$$

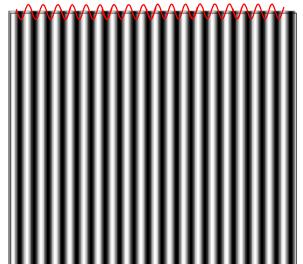
$$= \pi \, \delta(\omega - \omega_0) + \pi \, \delta(\omega + \omega_0)$$

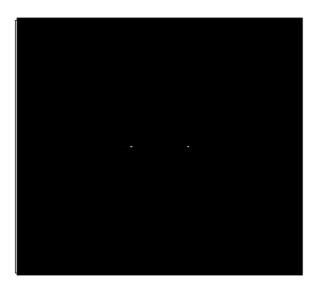
### Examples: 1D Fourier Transform - Spatial

Space Domain (i.e specimen plane)

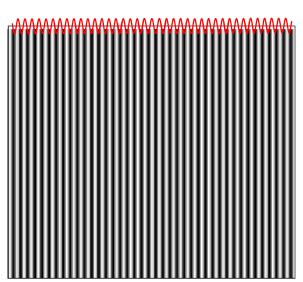
Frequency Domain (i.e. Fourier plane)

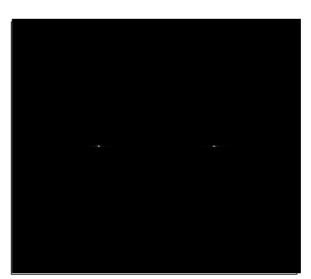






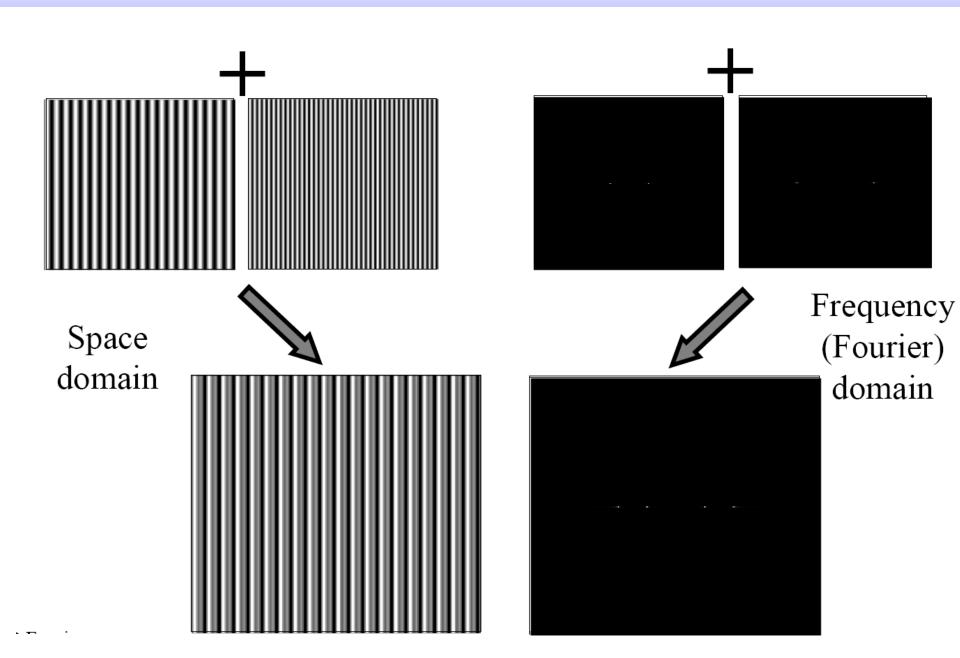
Sinusoidal: smaller periodicity





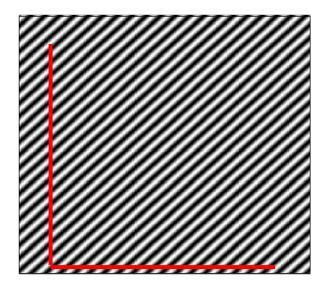
Higher frequency

### **Examples: Superposition Principle**

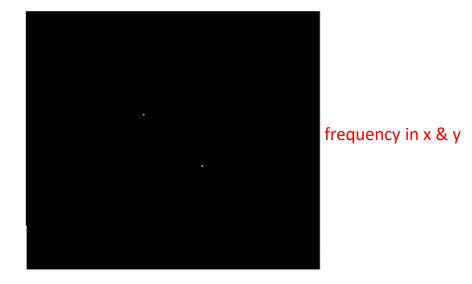


### Examples: 2D-Fourier Transform - Spatial

Space Domain (i.e. specimen plane)



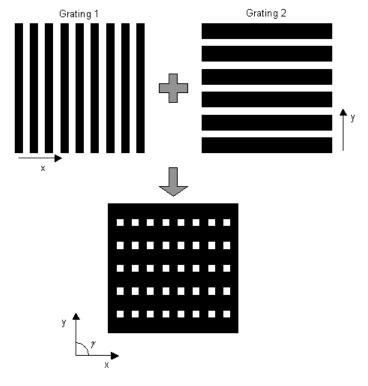
Frequency Domain (i.e. Fourier plane)

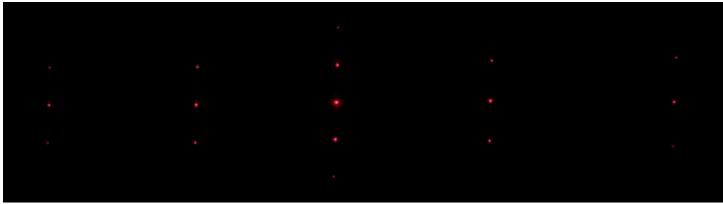


Periodic in x & y

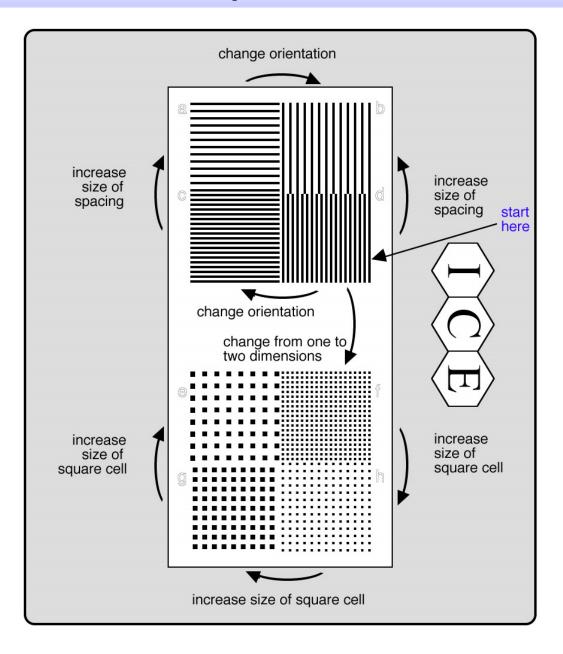
### Examples: 2D diffraction of a periodic "pattern"

#### Moving towards a real object (pattern):

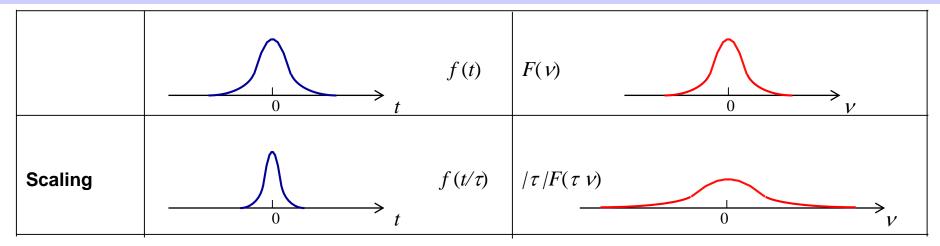




# In Class: Experimental Set-up



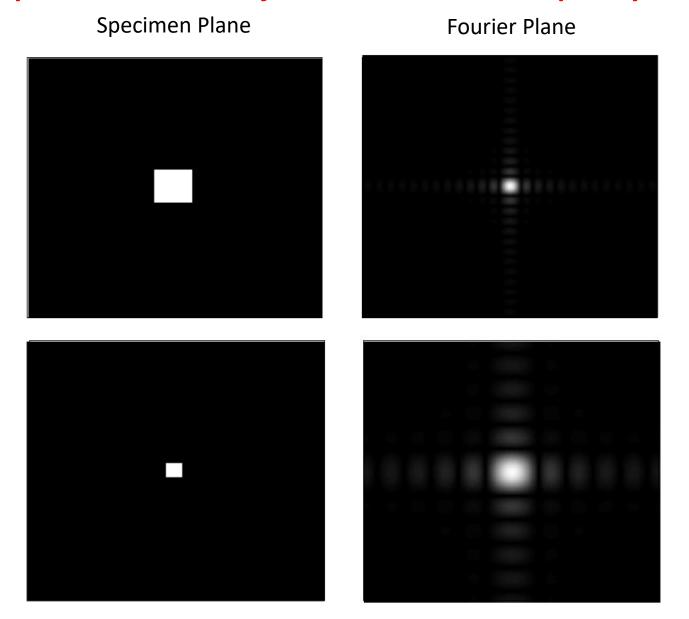
# Properties of the Fourier Transform



When you scale down a function in time/space domain, its F.T. will spread in the frequency domain

### Example: Scaling of an 2D spatial object

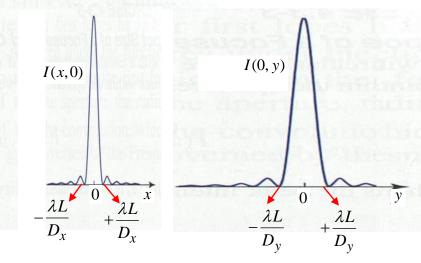
Relationship between the "object size" and the "frequency content"



# Diffraction of a 2D-Rectangular Aperture



- In this example D<sub>v</sub> is smaller than D<sub>x</sub>
- Thus, diffraction pattern spreads more (i.e. higher frequencies) along the y-axis compared to the x-axis.



#### **INPUT:**

$$f(x,y) = rect(x/D_x) rect(y/D_y)$$

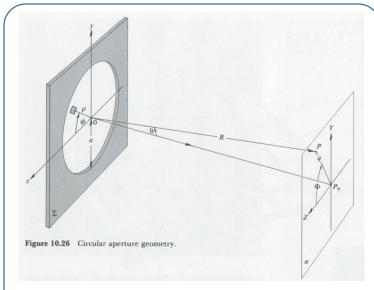
#### **OUTPUT:**

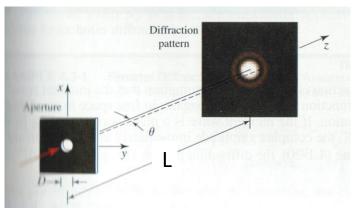
$$I(x, y) = I_o \sin c^2 \frac{D_x x}{\lambda L} \sin c^2 \frac{D_y y}{\lambda L}$$

*first zeros at*  $x = \pm \lambda L / D_x$ ,  $y = \pm \lambda L / D_y$ 

with angles 
$$\theta_x = \frac{\lambda}{D_x}$$
,  $\theta_y = \frac{\lambda}{D_y}$ 

### Diffraction of a Circular Aperture

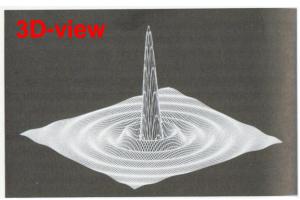


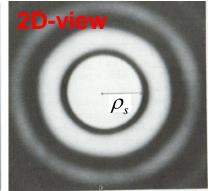


INPUT:

$$f(\rho) = circ(\rho/D)$$

$$\rho = sqrt(x^2+y^2)$$





• Spreading of  $\theta$  (thus frequency) has inverse relation on the radius size (D)

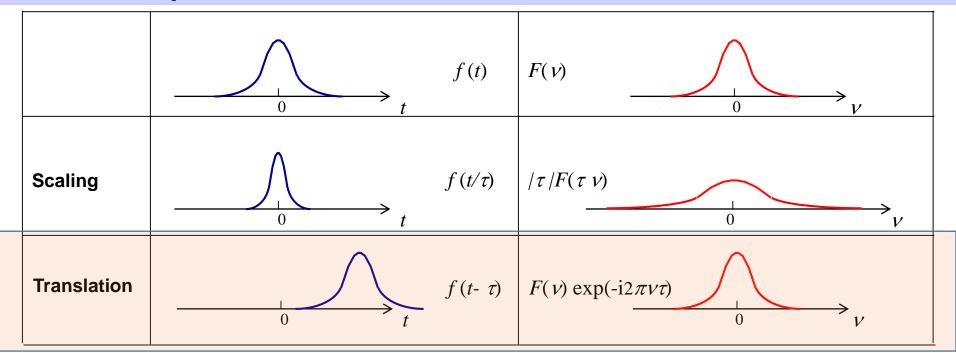
**AIRY RINGS** 

#### **OUTPUT:**

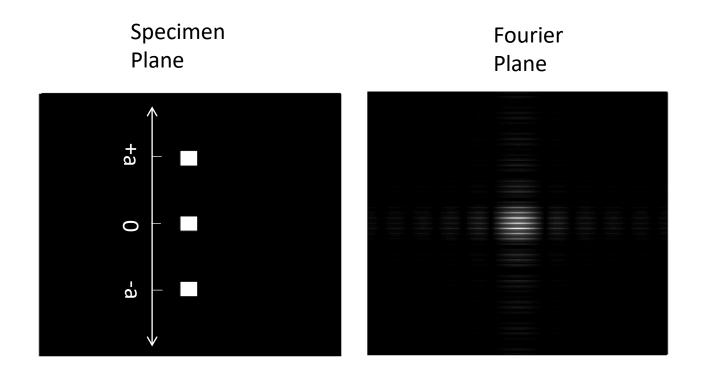
$$I(x,y) = I_o \left[ \frac{2J_1(\pi D\rho / \lambda L)}{\pi D\rho / \lambda L} \right]^2, \rho = \sqrt{x^2 + y^2}$$

first zero at 
$$\rho_s = 1.22 \frac{\lambda}{D} L$$
angle  $\theta = 1.22 \frac{\lambda}{D}$ 

# Properties of the Fourier Transform



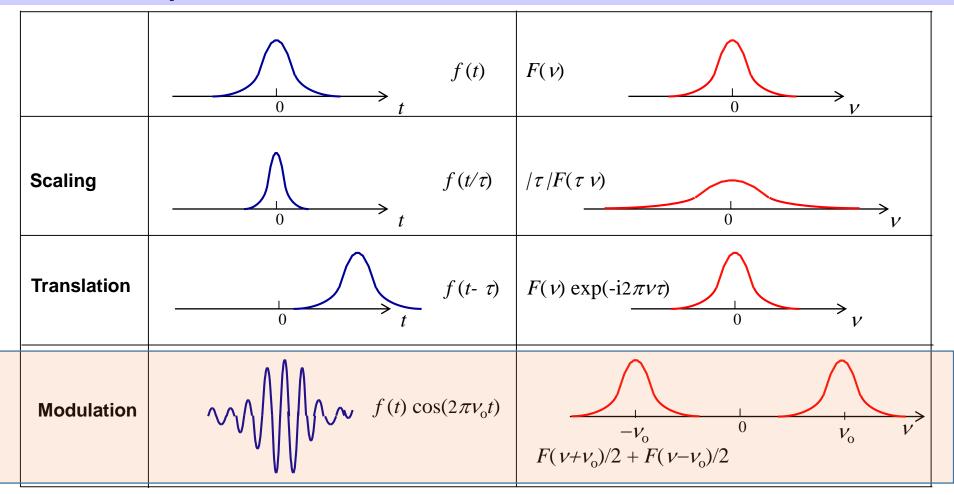
# Example: Superimpose Shifted Objects



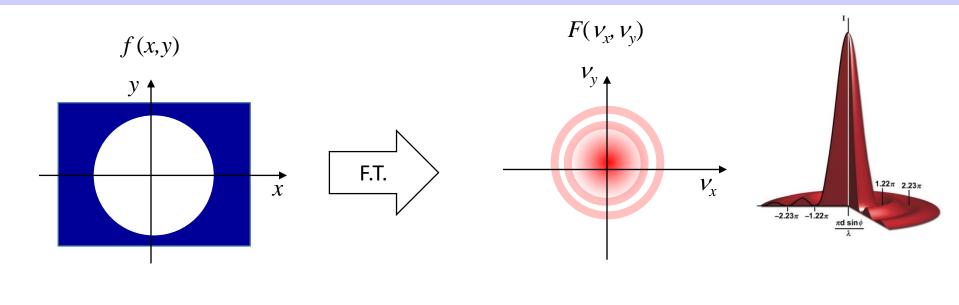
If we assume a 1D case, then input function is:  $f(x) = rect[(x-0)/D_x] + rect[(x-a)/D_x] + rect[(x+a)/D_x]$ 

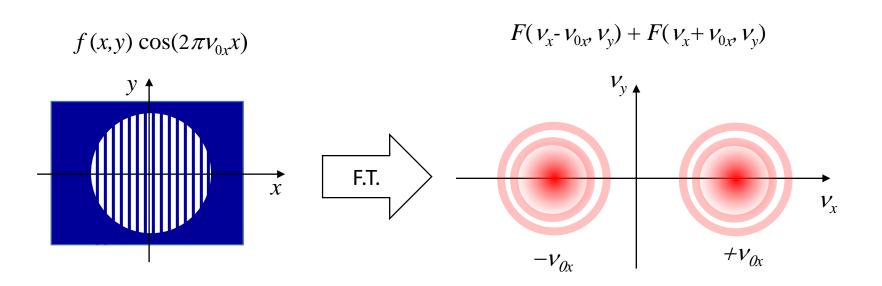
The diffraction pattern at the far-field (Fourier plane) is proportional to the square of:  $F(v) = sinc(v) \left[1 + \exp(-i2\pi va) + \exp(+i2\pi va)\right]$ 

# Properties of the Fourier Transform

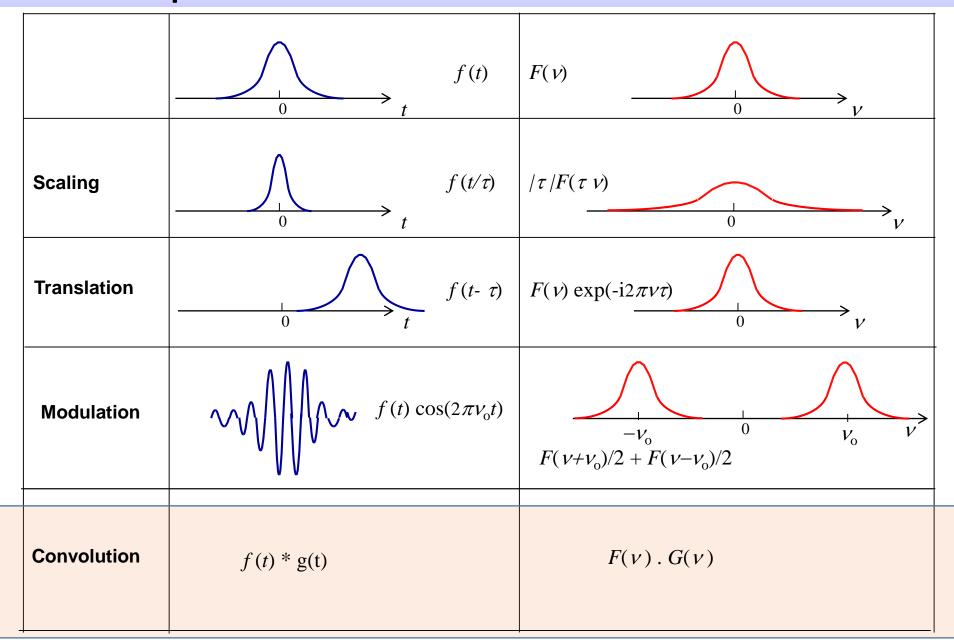


# Example: Spatially Modulated 2D Object

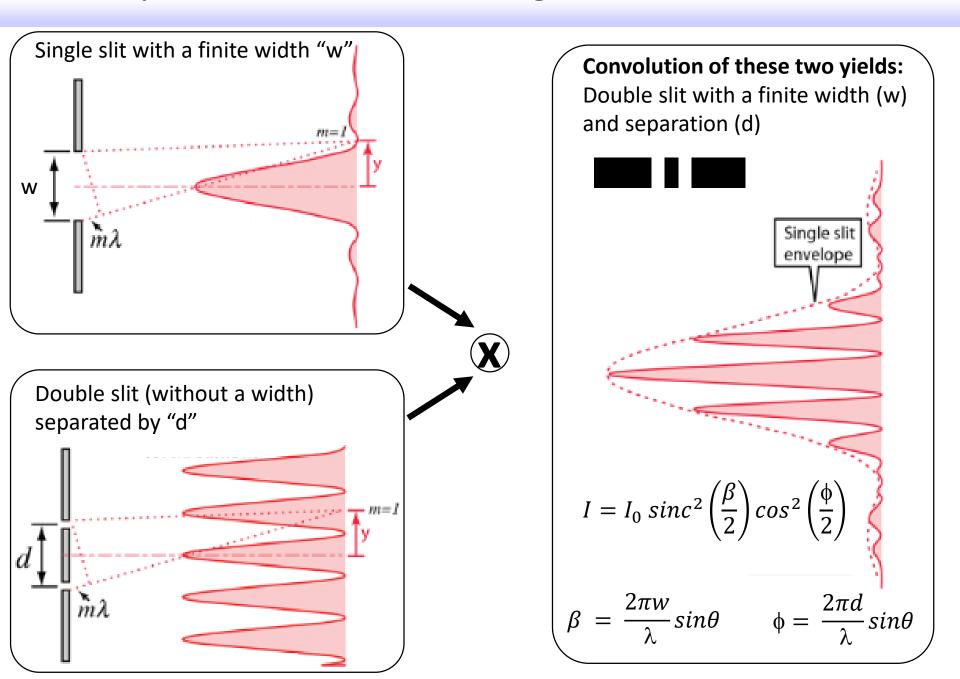




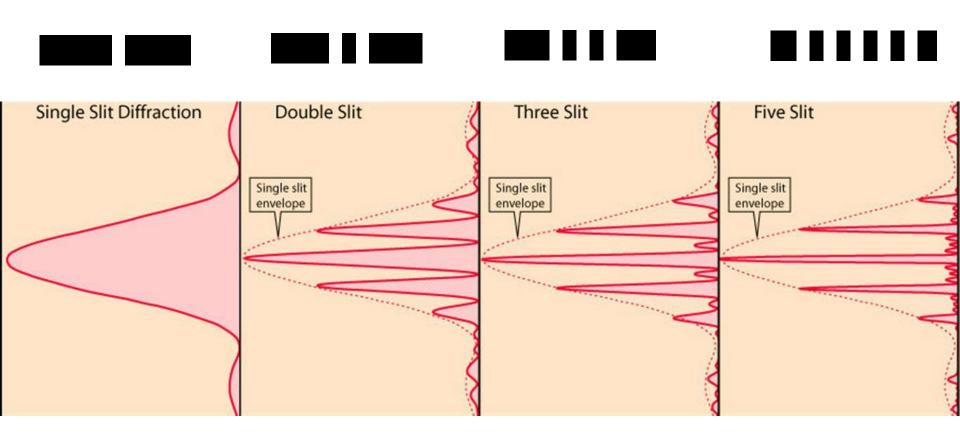
# Properties of the Fourier Transform



#### Example: Diffraction with single slit and double slits

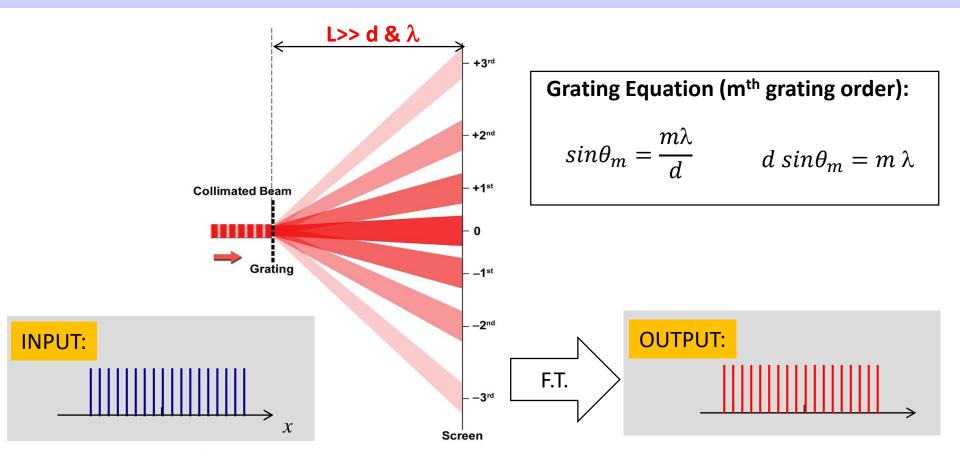


# Diffraction by slits with finite width



→ With increasing number of slits (to infinity), the system will gradually transition to a "grating"

### Recall: Diffraction of a "grating"



Diffraction angle  $\theta_m$  increases as the period d decreases

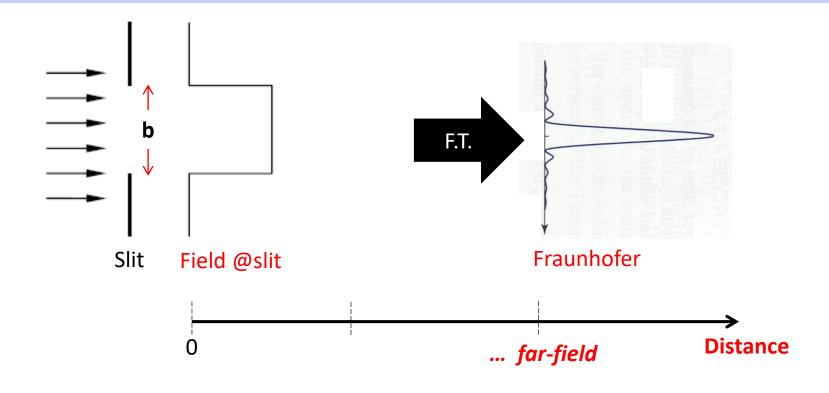
→ Smaller features diffracts more!

Diffraction angle  $\theta_m$  increases as the wavelength  $\lambda$  increases

→ Diffraction grating can be used to **disperse** white light!

| • | For a given input function, we obtain the output pattern (which corresponds to the F.T. of the input function) at far distance  What is the criteria for being at far distance? |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# Diffraction of a 1D Rectangular Aperture

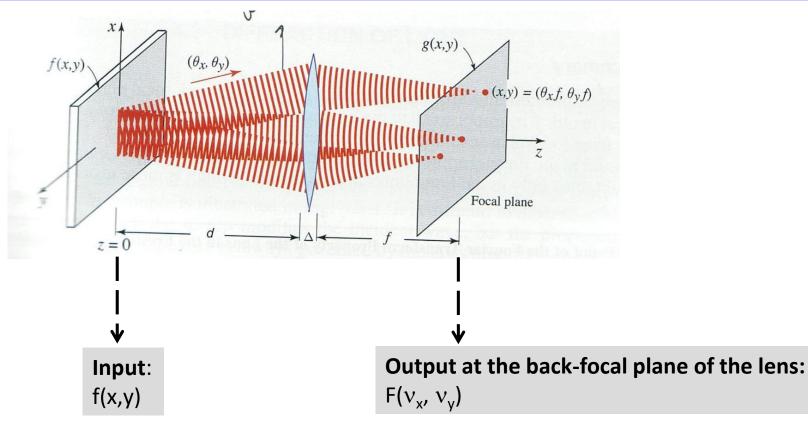


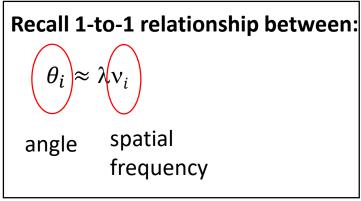
#### Fourier transform plane is at the far-field:

 $\rightarrow$  Far-field observation condition is given by Fraunhofer Approximation, which is  $b^2/\lambda L \ll 1$ 

For 
$$\lambda = 500nm$$
 (green)  
i)  $b = 2.5 \text{ cm} \implies L >> 1.9 \text{ km}$   
ii)  $b = 1 \text{ mm} \implies L >> 6 \text{ m}$   
iii)  $b = 2 \text{ } \mu\text{m} \implies L >> 0.15 \text{ mm}$ 

#### A lens can bring the F.T. plane from far-field to a closer distance





#### **Back Focal Plane of Lens = Fourier Plane**

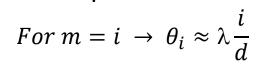
Each wave is focused in Fourier plane at:

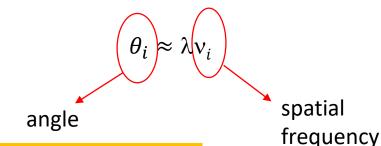
$$x = \theta_x f$$
$$x = \lambda v_x f$$

Derivation is given in Saleh & Teich, Ch. 4

### Reminder: Spatial Frequency & Angles

$$sin\theta_m = \frac{m\lambda}{d}$$
 
$$\theta_m \approx \frac{m\lambda}{d}$$
 
$$For \ m = 1 \ \rightarrow \ \theta_1 \approx \lambda \frac{1}{d}$$
 
$$For \ m = 2 \ \rightarrow \ \theta_2 \approx \lambda \frac{2}{d}$$
 
$$\vdots$$
 
$$\vdots$$





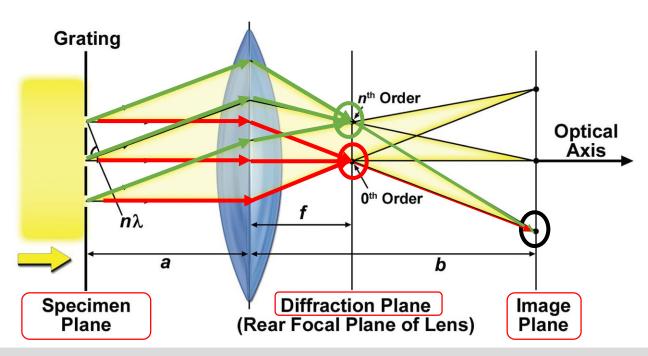
"Larger angle" means "higher spatial frequency"

\_1st

Screen

- "Higher frequency" corresponds to "smaller feature"
  - → THUS, smaller features contain higher frequency

# An Example: Fourier (a.k.a Diffraction) Plane



- Let's assume that our object is a grating, and it is placed on specimen plane, which is located between f & 2f (2f>a>f).
- The objective lens produces a magnified real image of the grating (i.e. object) in the image plane.
- The Fourier (or diffraction) plane is located at the back focal plane of the lens.
- The rays of different orders are separated at the diffraction plane
- But, the rays of different orders are merged (interfere) at the image plane