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1.  The Parallel Ray: Light rays that enter the lens 
parallel to the optical axis leave the lens by passing through 
Focal Point
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Ray Tracing: Thin Lens

Optical 
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Focal Length f



2. The Focal Ray: Light rays that enter the lens from 
the focal point exit the lens parallel to the optical axis. 
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n1 n2

Ray Tracing: Thin Lens
3.  The Chief Ray: A ray that enters through the center of lens goes 
straight, without deviation



n1 n2

Ray Tracing: Thin Lens
3. 3.  The Chief Ray: A ray that enters through the center of lens 
goes straight, without deviation

Correction: Note that normally there is a shift, but this shift can be 
neglected only if the glass is thin.



Let’s applying ray tracing using three principle rays to an 
extended object, and find its image

Example: Ray tracing with a positive thin lens

Object

Mark Focal Pt



1.  The Chief Ray: A ray enters through the center of the lens 
goes straight

Example: Ray tracing with a positive thin lens



2.  The Parallel Ray: Light rays that enter the lens parallel to the 
optical axis leaves through Focal Point

Example: Ray tracing with a positive thin lens



3.  The Focal Ray: Light rays that enter the lens from the focal 
point, exit parallel to the optical axis.

Example: Ray tracing with a positive thin lens

The intersection point of 
these three lines corresponds 
to the “image” of the object.



Ray tracing convention generally uses arrows to represent the object.

Example: Ray tracing with a positive thin lens

Presenter
Presentation Notes
Note that the object is magnified and inverted. Real Image.




Image

Object

Same three rays can be applied for each point along the object.

Example: Ray tracing & imaging with a positive thin lens



For object within the focal point:

Example: Ray tracing & imaging with a positive thin lens

• intersection point occurs for the extension of the rays (dashed lines), and 
it is at the back side of the object

•  This corresponds to a “virtual image”

Presenter
Presentation Notes
Virtual images are located on side of lens opposite to viewer. Bad naming conventions as virtual images are as “real” as a real image.



Example: Ray tracing & imaging with a positive thin lens

• Only need two rays are sufficient to locate the image.
• Of course one can use all the rules to trace three (or more) 

rays, and the intersection point will remain same



Same three rules can be applied to a concave (diverging) lens.

Example: Ray tracing with a negative thin lens

Presenter
Presentation Notes
All concave lenses make virtual images that are smaller no matter where the object is located.



Again, two rays are enough to locate virtual image.

Example: Ray tracing with a negative thin lens



Concave lens makes a virtual image that is smaller than the 
object
….no matter where the object is located.

Example: Ray tracing with a negative thin lens

Presenter
Presentation Notes
All concave lenses make virtual images that are smaller no matter where the object is located.




Formulas for thin lens: object-image relationship

1
𝑓𝑓 =

1
𝑎𝑎 +

1
𝑏𝑏

𝑀𝑀 =
𝑏𝑏
𝑎𝑎

Imaging 
condition

Magnification

Focal length (lens maker’s formula)



Example: object-image relation for a positive lens

a>2F. 
A real demagnified image is formed. M<1

a = 2F. 
A real image is formed but with no magnification and M=1
A special case.  B=2F also.

2F>a>F
A real magnified image is formed.  M>1
This is used for producing the “first” image in a compound 
microscope

a=F. 
Image distance b is infinite.
No image exists that can be projected on a screen

a<F. 
No real image exists. M>1
If the eye is placed behind the lens, a virtual image is 
perceived on the far side of the lens



1) The chief ray: rays that pass through optical
center 

→ not deviated

2) The parellel rays: Rays parallel to optical axis 
→ through focal point

3) The focal rays: Rays pass through focal point
→ parallel to optical axis

f
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4) The general ray: Ray with any given angle 
• Draw a ray that is parallel to R0 that passes through the 

center of the lens, dashed red line.
• This is called helper ray, //R0 ray
• Draw a line vertical to the optical axis in the focal plane, 

black dashed line
• Find the intersection point of these two dashed lines
• The incoming ray R0 refracts by the lens and passes 

through this intersaction point



4) General ray: Ray with any given angle 
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Ray Tracing - General

Convergent lens: Divergent lens:

• Draw a ray that is parallel to R0 that passes through the center of the lens, dashed red line.

• This is called helper ray, //R0 ray

• Draw a line vertical to the optical axis in the focal plane, black dashed line

• Find the intersection point of these two dashed lines

• The original ray refracts by the lens and passes through this intersaction point



Example-1: Let’s begin with one convex lens.

Ray Tracing – Example 

Object

Image



Example-2: Add a second convex lens.

Ray Tracing - Example

Object

Image1-lens

? Image2-lens



.. it will get complicated (and not practical) for multiple lens system:

Ray Tracing - Example

Presenter
Presentation Notes
Note that two convex lenses make a smaller image



Microscope – An Optical System

Microscopes (optical 
imaging systems) contain 
multiple lenses.

Q: How could we handle ray 
bending after many 
refracting/reflecting 
components?

A: Matrix approach is an 
alternative option. 



A light ray can be defined by two co-ordinates:

• its position, y

• its slope, θ

Optical axis

y

θ

The Ray Vector

These two parameters define a ray vector,          
which will change as the ray propagates or 
passes through the optical elements.

𝑦𝑦
𝜃𝜃

z



Optical system

Matrix Optics

• An optical system is a set of optical components placed between two transverse 
planes at z1 and z2, which are referred as the input plane and the output plane.

z

z1 z2

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

• The system is characterized by its effect on an incoming ray of arbitrary position & 
direction (yin, θin)

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

• The system steers the ray so that it has a new position and direction at the output 
plane, (yout, θout)

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐵𝐵𝜃𝜃𝑖𝑖𝑖𝑖
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐷𝐷𝜃𝜃𝑖𝑖𝑖𝑖

A, B, C and D are real numbers

• In the paraxial approximation, when all angles are sufficiently small (i.e. sin 𝜃𝜃 ≈ 𝜃𝜃) 
the relationship between (yin, θin) and (yout, θout) coordinates is linear and given by:



• For optical systems with multiple components, we can define a 2 x 2 ray matrices.

These matrices are often called ABCD Matrices.

A B
C D
 
 
 

Optical system ↔ 2 x 2 Ray matrix

Ray Matrices

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜



we simply multiply ray matrices.

PS: Convention follows “Fundamentals of Photonics” by Saleh & Teich. Relevant pages are on Moodle

M1 M3M2

Cascaded Elements
yin, θin

yout, θout

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀3 𝑀𝑀2 𝑀𝑀1

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑀𝑀3𝑀𝑀2𝑀𝑀1

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

Notice the order in the multiplication: 3-2-1

Looks like the order is reverse 
….but it makes sense when you think about it.



If yin and θin are the position and slope upon entering, 
let yout and θout be the position and slope after propagating from z = 0 to z.

yin, θin

z = 0

yout ,θout

z=d

Ray matrix for propagation in free space or a medium

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜃𝜃𝑖𝑖𝑖𝑖
𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑑𝑑𝜃𝜃𝑖𝑖𝑖𝑖

Rewrite these for matrix notation:

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.𝑦𝑦𝑖𝑖𝑖𝑖 + 1.𝜃𝜃𝑖𝑖𝑖𝑖
𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 1.𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑑𝑑.𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐵𝐵𝜃𝜃𝑖𝑖𝑖𝑖
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐷𝐷𝜃𝜃𝑖𝑖𝑖𝑖

Obtain the terms by comparing the format:

𝐴𝐴 = 1 ;    B = d;    C = 0 ;   D = 1

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1 𝑑𝑑
0 1

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 1 𝑑𝑑

0 1
𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖



θin

n1

θout

n2

yin yout

Ray Matrix for Planar Interface

1) At the interface:
yout = yin

2) Now calculate θout. 
Snell's Law says:    n1 sin(θin) =   n2 sin(θout)
which becomes for small angles:   n1 θin =  n2 θout

Rewrite these for matrix notation:

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 0.𝑦𝑦𝑖𝑖𝑖𝑖 + (
𝑛𝑛𝑛
𝑛𝑛𝑛

).𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 1.𝑦𝑦𝑖𝑖𝑖𝑖 + 0.𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 1 0

0 𝑛𝑛1/𝑛𝑛2
𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 0
0 𝑛𝑛1/𝑛𝑛2

&

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐵𝐵𝜃𝜃𝑖𝑖𝑖𝑖
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐷𝐷𝜃𝜃𝑖𝑖𝑖𝑖
𝐴𝐴 = 1 ;    B = 0;    C = 0 ;   D = 𝑛𝑛𝑛

𝑛𝑛𝑛

Obtain the terms by comparing the format:



Ray Matrix for Curved Interface

yin=yout



Ray Matrix for Curved Interface

yin=yout

1) At the interface: yout = yin

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑛𝑛1 𝑛𝑛2 𝜃𝜃𝑖𝑖𝑖𝑖 + �𝑛𝑛1 𝑛𝑛2 − 1 ⁄𝑦𝑦𝑖𝑖𝑖𝑖 𝑅𝑅

2) For θout, use Snell law :

Rewrite these for matrix notation:

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = [ �𝑛𝑛1 𝑛𝑛2 − 1 /𝑅𝑅].𝑦𝑦𝑖𝑖𝑖𝑖 + �𝑛𝑛1 𝑛𝑛2 .𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 1.𝑦𝑦𝑖𝑖𝑖𝑖 + 0. 𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐵𝐵𝜃𝜃𝑖𝑖𝑖𝑖
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐷𝐷𝜃𝜃𝑖𝑖𝑖𝑖

Obtain the terms by comparing the format:

𝐴𝐴 = 1; 𝐶𝐶 = −
𝑛𝑛2 − 𝑛𝑛1
𝑛𝑛2𝑅𝑅

𝐷𝐷 =
𝑛𝑛1

𝑛𝑛2
B = 0;

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1 0

−
𝑛𝑛2 − 𝑛𝑛1
𝑛𝑛2𝑅𝑅

𝑛𝑛1

𝑛𝑛2

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 =

1 0

−
𝑛𝑛2 − 𝑛𝑛1
𝑛𝑛2𝑅𝑅

𝑛𝑛1

𝑛𝑛2

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖



Propagation

Planar
boundary

Spherical
boundary

Matrix Optics – Basic Functions

Note that when R ∞, curved surface becomes planar
Thus, C  0 for Mcurved

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1 𝑑𝑑
0 1

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1 0
0 𝑛𝑛1/𝑛𝑛2

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1 0

−
𝑛𝑛2 − 𝑛𝑛1
𝑛𝑛2𝑅𝑅

𝑛𝑛1

𝑛𝑛2



When a light ray interacts with a lens, it experiences:

Example: Ray matrix of a lens

n1 R1 R2

n2

n3

1) The 1st curved interface having a curvature of R1

1st

2nd

2) Then, propagates in the lens

3rd

3) Then, the 2nd curved interface having a curvature of R2

For a thin lens:
• we can neglect propagation inside the lens.
• Thus, in thin lens, light experiences only two curved interfaces.



𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀2𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑀𝑀1𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

With a thin lens, light experiences:

Example: Ray matrix of a thin lens

n1 R1 R2

n2

n3

1) First, the curved interface having a curvature of R1

1st

2nd

2) Next, the second curved interface having a curvature of R2

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜′
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜′

= 𝑀𝑀1𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀2𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀𝑁𝑁 …𝑀𝑀3𝑀𝑀2𝑀𝑀1

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

Remember reverse order!



Example: Ray matrix of a thin lens
𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀2𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑀𝑀1𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑀2𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑀𝑀1𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1 0

− 1 − 𝑛𝑛
𝑅𝑅2

𝑛𝑛

1 0
− 𝑛𝑛 − 1
𝑛𝑛𝑅𝑅1

1
𝑛𝑛

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1 0

− 𝑛𝑛 − 1
1
𝑅𝑅1

−
1
𝑅𝑅2

1  This can be written as: 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1 0

−
1
𝑓𝑓

1

where, 1
𝑓𝑓

= (𝑛𝑛 − 1)
1
𝑅𝑅1

−
1
𝑅𝑅2

Remember matrix 
for curved interface

Remember Lens-Maker’s 
Formula From Ray Optics 

𝑀𝑀1𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1 0

− 𝑛𝑛 − 1
𝑛𝑛𝑅𝑅1

1
𝑛𝑛

𝑛𝑛1 = 1
𝑛𝑛2 = 𝑛𝑛

𝑀𝑀2𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1 0

− 1 − 𝑛𝑛
𝑅𝑅2

𝑛𝑛
𝑛𝑛1 = 𝑛𝑛
𝑛𝑛2 = 1



THIN LENS:
1) Position is ~nearly same immediately after the ray exits a thin lens
2) Thin lens only deflects the ray (i.e., change the outgoing angle) according to the law of refraction

Link between ray tracing & matrix representation

Ray Deflection : Focal length: Imaging Condition: Magnification:

1
𝑓𝑓 =

1
𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜

+
1
𝑧𝑧𝑖𝑖𝑖𝑖

mag = 𝑧𝑧𝑖𝑖𝑖𝑖
𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜

From Ray Tracing

From Matrix Representation

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜
𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 1 0

−1/𝑓𝑓 1
𝑦𝑦𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜃𝜃𝑖𝑖𝑖𝑖 −
𝑦𝑦𝑖𝑖𝑖𝑖
𝑓𝑓

Ray Deflection :

Presenter
Presentation Notes
Apply curved surface equation twice 



converging diverging
f = + f = -

Lens maker’s formula

Matrix Representation of a Thin Lens

• Positive radii indicate convex surfaces

• Negative radii indicate concave surfaces

• Negative angles point downward from the 
z-axis in the direction of ray propagation

Presenter
Presentation Notes
Apply curved surface equation twice 



Under Paraxial Approximat ion  sinθ ≈ t anθ ≈ θ

Matrix Representation of Lenses & Curved Mirrors

1) Position is ~nearly same immediately 
after the ray exits a thin lens

2) Thin lens only deflects the ray (i.e.,
changes the outgoing angle) according to 
the law of refraction

Ray Deflection :

𝑅𝑅 = 2𝑓𝑓

1) Position is ~same immediately after the ray 
reflects from a curved mirror

2) Mirror only reflects the ray (i.e., changes 
the outgoing angle) according to the law of 
reflection

Ray Deflection :
(from ray optics)

Presenter
Presentation Notes
Apply curved surface equation twice 



converging divergin
gR = -

Concave
R = +
Convex

Lenses & Mirrors

converging diverging
f = + f = -

Lens maker’s formula

Presenter
Presentation Notes
Apply curved surface equation twice 



Lenses & Mirrors

a>2f 

a=2f 

f<a<2f 

a<f 

a a

f



Planar
mirror

Spherical
mirror

Matrix Representation for Mirrors

Corresponds to the limit case that R∞
Thus, in ABCD matrix C element becomes 0



Propagation

Planar
boundary

Spherical
boundary Lens

Spherical
mirror

Planar
mirror

Matrix optics for basic functions & components - Summary 



f1 f2

Suppose we have an “optical system” 
consisting of two thin lenses right next to each 
other with no space in between.

Two consecutive lenses act as one 
lens whose focal length is computed 
by the “resistive sum” 

Example: Consecutive Lenses

When light enters this system, it experiences:

1) Initially, 1st lens with focal length of f1
2) Then, 2nd lens with focal length of f2

𝑀𝑀2 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓2

𝑀𝑀2 =
1 0

−
1
𝑓𝑓2

1

𝑀𝑀1 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑓𝑓1

𝑀𝑀1 =
1 0

−
1
𝑓𝑓1

1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1 0

−
1
𝑓𝑓2

1 ×
1 0

−
1
𝑓𝑓1

1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1 0

−
1
𝑓𝑓1
−

1
𝑓𝑓2

1

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1 0

−
1

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
1

1
𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
1
𝑓𝑓1

+
1
𝑓𝑓2

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀2 × 𝑀𝑀1
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