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Ray Tracing: Thin Lens

1. The Parallel Ray: Light rays that enter the lens
parallel to the optical axis leave the lens by passing through
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Ray Tracing: Thin Lens

2. The Focal Ray: Light rays that enter the lens from
the focal point exit the lens parallel to the optical axis.
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Ray Tracing: Thin Lens

3. The Chief Ray: A ray that enters through the center of lens goes
straight, without deviation



Ray Tracing: Thin Lens

3.3. The Chief Ray: A ray that enters through the center of lens
goes straight, without deviation

Correction: Note that normally there is a shift, but this shift can be
neglected only if the glass is thin.



Example: Ray tracing with a positive thin lens

Let’s applying ray tracing using three principle rays to an
extended object, and find its image
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Example: Ray tracing with a positive thin lens

1. The Chief Ray: A ray enters through the center of the lens
goes straight
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Example: Ray tracing with a positive thin lens

2. The Parallel Ray: Light rays that enter the lens parallel to the
optical axis leaves through Focal Point

N\




Example: Ray tracing with a positive thin lens

3. The Focal Ray: Light rays that enter the lens from the focal
point, exit parallel to the optical axis.

The intersection point of
these three lines corresponds
to the “image” of the object.



Example: Ray tracing with a positive thin lens

Ray tracing convention generally uses arrows to represent the object.

[ —
%\



Presenter
Presentation Notes
Note that the object is magnified and inverted. Real Image.



Example: Ray tracing & imaging with a positive thin lens

Same three rays can be applied for each point along the object.
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Qxample: Ray tracing & imaging with a positive thin lens

For object within the focal point:

intersection point occurs for the extension of the rays (dashed lines), and
it is at the back side of the object
=>» This corresponds to a “virtual image”



Presenter
Presentation Notes
Virtual images are located on side of lens opposite to viewer. Bad naming conventions as virtual images are as “real” as a real image.


Example: Ray tracing & imaging with a positive thin lens

* Only need two rays are sufficient to locate the image.
* Of course one can use all the rules to trace three (or more)
rays, and the intersection point will remain same




- Example: Ray tracing with a negative thin lens

Same three rules can be applied to a concave (diverging) lens.



Presenter
Presentation Notes
All concave lenses make virtual images that are smaller no matter where the object is located.


Example: Ray tracing with a negative thin lens

Again, two rays are enough to locate virtual image.




- Example: Ray tracing with a negative thin lens

Concave lens makes a virtual image that is smaller than the
object
....no matter where the object is located.



Presenter
Presentation Notes
All concave lenses make virtual images that are smaller no matter where the object is located.



Formulas for thin lens: object-image relationship
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Example: object-image relation for a positive lens

a>2F
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a>2F.
A real demagnified image is formed. M<1

a=2F
A real image is formed but with no magnification and M=1
A special case. B=2F also.

2F>a>F

A real magnified image is formed. M>1

This is used for producing the “first” image in a compound
microscope

a=F.
Image distance b is infinite.
No image exists that can be projected on a screen

a<F.

No real image exists. M>1

If the eye is placed behind the lens, a virtual image is
perceived on the far side of the lens



Ray Tracing - General

1) The chief ray: rays that pass through optical
center

— not deviated

2) The parellel rays: Rays parallel to optical axis
— through focal point

3) The focal rays: Rays pass through focal point
— parallel to optical axis

A

4) The general ray: Ray with any given angle

e Draw a ray that is parallel to R, that passes through the
center of the lens, dashed red line.

* This s called helper ray, //R, ray

* Draw a line vertical to the optical axis in the focal plane,
black dashed line

* Find the intersection point of these two dashed lines

e The incoming ray R, refracts by the lens and passes
through this intersaction point




Ray Tracing - General

4) General ray: Ray with any given angle

* Draw aray that is parallel to R, that passes through the center of the lens, dashed red line.
* This is called helper ray, //R, ray

* Draw a line vertical to the optical axis in the focal plane, black dashed line

* Find the intersection point of these two dashed lines

* The original ray refracts by the lens and passes through this intersaction point

Convergent lens: Divergent lens:

v




Ray Tracing — Example

Example-1: Let’s begin with one convex lens.
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Ray Tracing - Example

Example-2: Add a second convex lens.
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Ray Tracing - Example

.. it will get complicated (and not practical) for multiple lens system:

7

N
~T

/1

<
[—



Presenter
Presentation Notes
Note that two convex lenses make a smaller image


Microscope — An Optical System

. ! Field or Image Formin
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Microscopes (optical
imaging systems) contain
multiple lenses.

Q: How could we handle ray
bending after many
refracting/reflecting
components?

A: Matrix approach is an
alternative option.



The Ray Vector

A light ray can be defined by two co-ordinates:

* its position, y

» its slope, 6

Optical axis Z
These two parameters define a ray vector, y
which will change as the ray propagates or [9]

passes through the optical elements.



Matrix Optics

yin]
Qin

)’out]
4 )/ Gout
Z)

z, Optical system

Z

An optical system is a set of optical components placed between two transverse
planes at z, and z,, which are referred as the input plane and the output plane.

The system is characterized by its effect on an incoming ray of arbitrary position &

direction (y;, 6;,)

The system steers the ray so that it has a new position and direction at the output

plane, (yout, 9out)

In the paraxial approximation, when all angles are sufficiently small (i.e. sin(6) = 9)
the relationship between (y;, 0;,) and (y, 0,.) coordinates is linear and given by:

Yout = AYin + BOiy
Oout = Cyin + DOy

A, B, C and D are real numbers



Ray Matrices

* For optical systems with multiple components, we can define a 2 x 2 ray matrices.

=N

|
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/
Optical system < 2 x 2 Ray matrix
<
:Vm] I A B 1 :Vout]
C D Oout

These matrices are often called ABCD Matrices.



Cascaded Elements

Yins em//v ﬁ

/V
y ouvr Hout

ym] Pl MI M3 . YOut]

Qout

we simply multiply ray matrices.

yout] M3 {Mz (Ml Yin )} _ M3M2M1 :gin]

out Hin_ n

Notice the order in the multiplication: 3-2-1

Looks like the order is reverse
...but it makes sense when you think about it.

PS: Convention follows “Fundamentals of Photonics” by Saleh & Teich. Relevant pages are on Moodle



Ray matrix for propagation in free space or a medium

If ., and @, are the position and slope upon entering,

lety,,, and @

out

y out’

2l

z=d

1
Mprop = [0

yout] [1 d] [%‘n]
out 0 1 Qin

be the position and slope after propagating from z = 0 to z.

Yout = Yin + d0iy
Oour = Oin

¥

(" Rewrite these for matrix notation:

Yout = L.Yin +d. 0y
Oour = 0.yin + 1.6,

¥

\_

6btain the terms by comparing the formaa

Your = AYin + BOy
Oout = Cyin + DOy,

A=1; B=d; C=0; D=1




Ray Matrix for Planar Interface

1) At the interface:
youz‘ - yin

2) Now calculate 4,

1 . . —
Snell's Law says: n, sin(6,) = n, sin(8,,,)
which becomes for small angles: n, 6, = n, 8,

- ‘ N 6btain the terms by comparing the format:\
Rewrite th_esle for matr(l)x réotatlon: Vour = AVin + BO;,
Yout = L.Yin T in » _
nl Hout — Cym + Dein
Oout = 0.Yin + ( ) Oin ni
A=1; B=0; C=0; D=—
- ne Y,
¥
( )

Yout _ Ym & M [ ]
Hout ~lo n1/n2 planar—interface — | n1/nz

\. J




Ray Matrix for Curved Interface
/

(-65) -




Ray Matrix for Curved Interface

2 —

(-85)

-

o

M yrved interface — [_

yout

out

\
1 0
(ny —ny) ny ]

nyR n,

] (nz - n1) n(i ] gii]

n,

J

1) At the interface: y,,,= ¥;,

2) For 6., use Snell law :

yinzyout

out’

Oout = (nl/nz)gin + (nl/nz -
¥

—

1) yin/R

Rewrite these for matrix notation:
Yout = 1. Yin T 0. Qin

( /le_l)/R l.yin + ( /nz)

Hout
\.

$

0

btain the terms by comparing the format:
Yout = AYin + BOin
Oout = Cyin + DOy

(ny —ny)
an

A=1;
\_

B=0;, C =-—




Matrix Optics — Basic Functions

. — _[1 d
Propagation / Mpyrop = 0 1

nyp | N2
Planar ; 0
boundary 7_ Mpianar—interface = [ ]
0 n,/n,
1 0 ]
R —
Spherical T M yrved interface — | _ (nz —ny) ny
boundary n \ m i n,R n, |
Convex, R > 0 concave, R<0 Note that when R—> o, curved surface becomes planar

Thus, C =2 0 for M

curved



Example: Ray matrix of a lens

When a light ray interacts with a lens, it experiences:

1) The 18t curved interface having a curvature of R,
2) Then, propagates in the lens
3) Then, the 2" curved interface having a curvature of R,

For a thin lens: -
* we can neglect propagation inside the lens. .
« Thus, in thin lens, light experiences only two curved interfaces.



Example: Ray matrix of a thin lens

With a thin lens, light experiences:
1) First, the curved interface having a curvature of R,

2) Next, the second curved interface having a curvature of R,

yout' Ym Yout - M Youtr
= Mistcyrved inter face » 2™ curved interface

out out Qoutl

Remember reverse order!

IYOut ym]

Yout
| = My ..My, [
Out

Yin
ou J Mzndcurved interface X Mlstcurved interface [




Example: Ray matrix of a thin lens

in] 1 Yout Yin
[Jelin > 20 goui out] :Q/Iz"d curved interface X Ml“ curved mterfaa ]
n= s yout ‘ Yin
1 N 1 ] Mthm lens lg. ]
Oout in
4 1 0 \\ 1 0 )
N “?;_EE” o ] Mistcurvea interface — —(n-1) 1 ! : 1
: nR, n N =n
Remember matrix
for curved interface >
— — n n
ny Myracyrvea interface — (1-mn) n nl —1
R, 2
Convex, f =0 concave, R0 /
g - )
1 0 1 0
Minin tens = Mamcurved interface X Mistcurved interface = —(1-n) n —(n—1) 1
RZ an n
1 0 1
Mihin 1ens = | _(p — 1) <i B l) = This can be written as: My 1ons = | L
Ry Ry f

Remember Lens-Maker’s 5 Wwhere, 1_ =(m-1) <_ _ _>
Formula From Ray Optics f Ri Ry



“Llink between ray tracing & matrix representation

THIN LENS:
1) Position is “nearly same immediately after the ray exits a thin lens
2) Thin lens only deflects the ray (i.e., change the outgoing angle) according to the law of refraction

From Ray Tracing

Ray Deflection Focal length: Imaging Condition: Magnification:

1 1 1 — Zim
0, =8, — 2 Z= l]'(L L) —=—+— mag=7
T f fo Zobj  Zim "

From Matrix Representation

Ray Deflection :

I e R I [ e

_1
I Oout
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Apply curved surface equation twice 


Matrix Representation of a Thin Lens

Lens maker’s formula

1
~o-0(z 7
converging diverging

5

l'

L

CONvex

~ CONVEX CONCAVYE
R, =0 R, =10
B R,<0 R.>=10
Bi-convex Bi-concave
.R| == R. =20
| R,<10 R,>0
Planar convex | Planar concave
R, >0 R, >0
U R:>0 Ry >0
Meniscus Meniscus

concave

1 0
1 1
f
Positive radii indicate convex surfaces

Negative radii indicate concave surfaces

Negative angles point downward from the
z-axis in the direction of ray propagation
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Presentation Notes
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“Matrix Representation of Lenses & Curved Mirrors

Under Paraxial Approximation = sind=tand= 0

1) Position is ~same immediately after the ray
reflects from a curved mirror

2) Mirror only reflects the ray (i.e., changes
the outgoing angle) according to the law of
reflection

1) Position is “nearly same immediately
after the ray exits a thin lens

2) Thin lens only deflects the ray (i.e.,
changes the outgoing angle) according to
the law of refraction

. y 2
Ray Deflection: f: =, ? Ray Deflection: |(—#5) + f, = Ay

—R (from ray optics)
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Lens maker’s formula

j-e (i)

converging diverging
f=+ f=-

R &

~_ CONVEX CONCAVYE
,.: RI =1 RJ < {}
'_-.!_I.r; Rz - n Rg - ﬁ

Bi-convex Bi-concave
|Rr == ! R =co

Planar convex

R, >0

Planar concave

g >y . R =0
& R;>0 . R,>0
Meniscus Meniscus
convex concave

Lenses & Mirrors
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divergin

Ya

Yi

Left of V, real object
Left of V, real image
Concave mirror

C right of V, convex
Above axis, erect object

Above axis, erect image

Right of V, virtual object

Right of V, virtual image
Convex mirror

C left of V, concave
Below axis, inverted object

Below axis, inverted image
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ST

Concave, R < 0; convex, R >0

Lenses & Mirrors

E

a>2f

a=2f

f<a<2f

a<f

=

Vs

Convex, f= 0, concave, f<10




Matrix Representation for Mirrors

=2l

Spherical —

mirror

{-R)

Concave, B <0 convex, & =0

Tk =

—_

Planar e

il

mirror -

Corresponds to the limit case that R2>
Thus, in ABCD matrix C element becomes 0

E

) =

—_



Matrix optics for basic functions & components - Summary

Propagation M = L d
0 1
d
Planar ny | N2 1 0
boundary W M = [ 0 ]

. R ,.-r"_""I? — 1
Spherical — 1 0 Lens ' M= [ ]
M= ) —F
boundary _(ramm) m U | T
n, ny no R na |"
Convex, f> 0; concave, f<()

Comvex, B =0, concave, R0

Spherical
] mirror o

Concave, R =0; convex, 8 =0

e,

Planar T~
. - e 8
mirror “*"'L:} 1 g M= [
-

e =

Iy

e




Example: Consecutive Lenses

Suppose we have an “optical system”
consisting of two thin lenses right next to each
other with no space in between.

When light enters this system, it experiences:
1) Initially, 18t lens with focal length of f,

2) Then, 2" [ens with focal length of f,

My = Mipin tens with fi M, = Mihin tens with f,

1 0 1 0
Ml = _ i 1 M2 = . i 1

fi f2 )
Two consecutive lenses act as one 1 1

lens whose focal length is computed
by the “resistive sum” =

ftotal fl

1

f2

S />

Miotqr = My X My

[ 1 0 1 0
Miotar = _i 1 X _i 1

| /2 fi

[ 1 0

Miotar = _l_l
i [

1 0

Miotar = | _ 1 1
ftotal
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