MICRO-523: Optical Detectors

Week Three: Optical Methods –Selected Examples

Claudio Bruschini

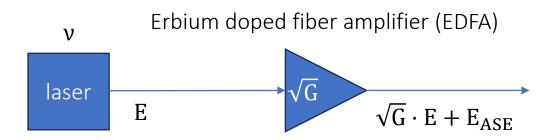
Institute of Electrical and Micro Engineering (IEM), School of Engineering (STI) Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland

Based on MICRO-523, P.-A. Besse, 2023

TAs: Samuele Bisi, Yazan Lampert

Outline

- 3.1 Superresolution microscopy
- 3.2 Optical amplification noise effect on detection
- 3.3 Rain sensor
- 3.3 Sun sensor


Exercise 3.1: Superresolution microscopy

Questions

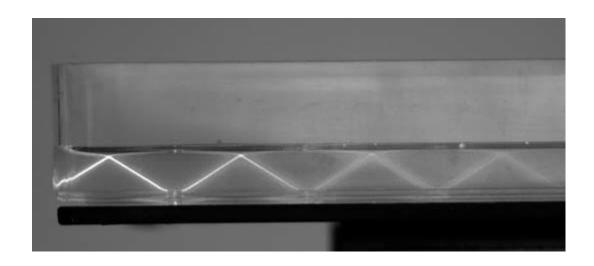
- Which kind of different microscope configurations exist (in particular widefield vs. Scanning confocal)?
 - → Which kind of microscopy superresolution techniques exist?
- Which type of photonic detector would you use?

Exercise 3.2: Optical amplification noise effect on detection

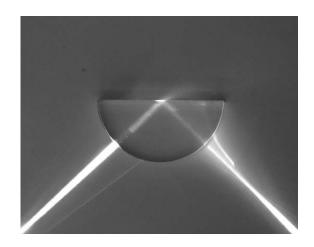
ASE: amplified spontanoues emission

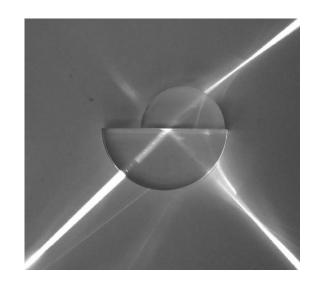
G: power gain

 n_{sp} : spontaneous emission factor

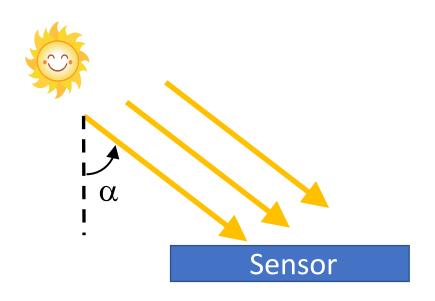

h: Planck's constant

B_o: optical bandwidth


- Neglect all other noise terms apart from ASE
- Use for optical power $P = |E|^2$
- Sketch the power spectral density [Watt/Hz] and highlight ν , P, P_{ASE} , B_o for G=0, G=25 and G=100
- What is the ratio between the signal at frequency \mathbf{v} and noise ? how can we improve the signal to noise ratio?


Exercise 3.3: Rain Sensor

Design a rain sensor for a car windshield based on these experiments.



Hints: water presence \rightarrow total internal reflection What happens when there is a gap?

Exercise 3.4: Sun Sensor

Hint: sun at ∞ , α to be determined Make it as easy as possible \rightarrow PSD?

Design a sensor to measure the azimuth and the elevation of the sun!

A potential application could be to guide a satellite.

Location sensor:

-S.W. Janson «micro/nanotechnology for picosatellites», 22nd Annual AIAA/USU Conference on small satellites, paper SSC08-VII-6

2) Camera:

-N. Xie, A. Theuwissen, «Low-power high-accuracy micro-digital sun sensor by means of a CMOS image sensor», Journal of Electronic Imaging 22(3), 033030 (Jul–Sep 2013)

