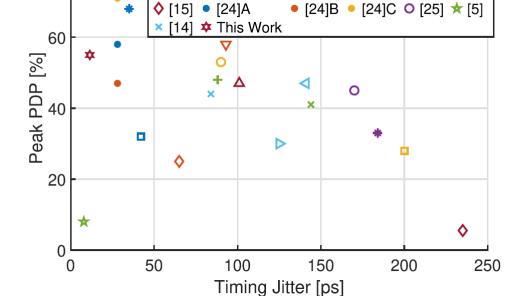
MICRO-523: Optical Detectors

Week Eleven: SPAD Fundamentals – Solutions

Claudio Bruschini

Institute of Electrical and Micro Engineering (IEM), School of Engineering (STI) Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland

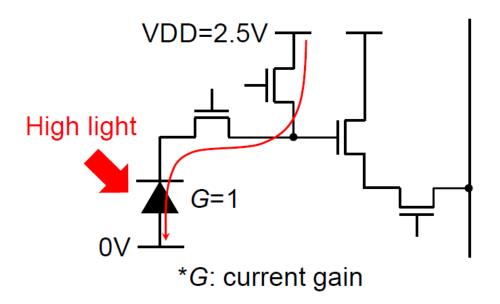

Based on MICRO-523, P.-A. Besse, 2023

TAs: Samuele Bisi, Yazan Lampert

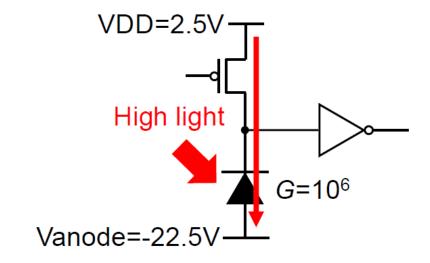
Exercise 11.2: Key SPAD metrics

- Dead time (1-100 ns) vs. Dynamic range -> spatial/temporal oversampling
- Dark counts (cps-kcps)
 vs. Sensitivity -> refined processes, gating, coincidence detection
- Sensitivity (PDE = PDP × FF)
 - Photon Detection Probability (PDP) (up to 80%)
 - Fill-factor (1-80%) -> microlenses
- Timing precision (jitter) (~7.5-100 ps) vs. Wavelength
- Afterpulsing (0.1-10%)
- Pixel pitch (10-50 μ m, lately down to a few μ m!)
- ... and in SPAD matrices: Crosstalk, PDP/DCR Uniformity

Explain all the parameters, the underlying physics and their relevance


F. Gramuglia, et al., JSTQE (28), 2022

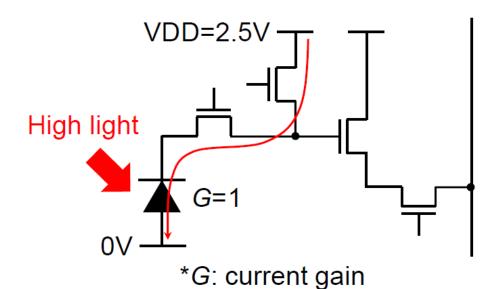
Slide 2


K. Morimoto, Image Sensors Europe 2024

■ Assumption: N_{pix} =3Mpixel, Q_{sat} =20k, Frame rate=60fps

CMOS imager (4T pixel)

SPAD imager (passive recharging)

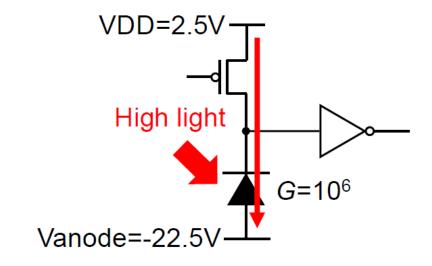

How does the power consumption of the two cameras compare?

How can the power consumption of a SPAD-based camera operating at high illumination be reduced?

K. Morimoto, Image Sensors Europe 2024

■ Assumption: N_{pix} =3Mpixel, Q_{sat} =20k, Frame rate=60fps

CMOS imager (4T pixel)



• V = 2.5V

• $I = N_{pix} \times Q_{sat} \times G \times 60 \text{fps} = 0.58 \mu A$

• $P = V/ = 1.4 \mu W$

SPAD imager (passive recharging)

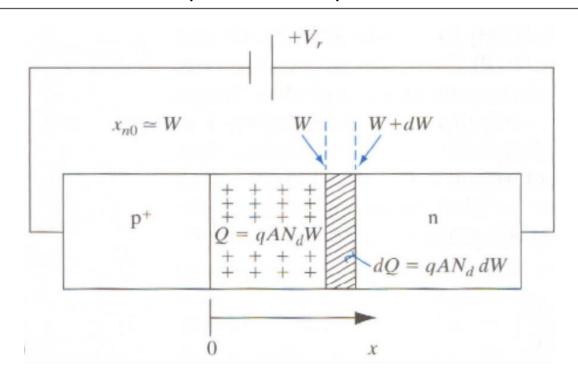
• $I = N_{\text{pix}} \times Q_{\text{sat}} \times G \times 60 \text{fps} = 0.58A$

10⁷× higher power!

How can we improve the power consumption from a device-level perspective?

SPAD Power Consumption is calculated from:

$$P = fCV_{excess}(V_{BD} + V_{excess})$$


Where f is average triggering rate, C is SPAD capacitance V_{excess} is excess bias voltage and V_{BD} is the breakdown voltage.

- To reduce **peak** power we can:
 - 1. Reduce the triggering rate by employing optical filters, choice of lens f#, aperture over detector.
 - 2. Reduce the SPAD capacitance and hence charge per pulse Q=CV_{excess} by suitable device engineering
 - 3. Reduce the breakdown voltage of the SPAD by device engineering
- To reduce **average** power SPADs should be operated with the minimum duty cycle for the required SNR and gated below V_{BD} when not in use.

Robert K. Henderson, ESSxxRC 2022

Junction depletion capacitance

$$W = \left[\frac{2\epsilon(V_0 - V)}{q} \left(\frac{N_a + N_d}{N_a N_d}\right)\right]^{1/2}$$

$$C_j = \epsilon A \left[\frac{q}{2\epsilon (V_0 - V)} \frac{N_d N_a}{N_d + N_a} \right]^{1/2} = \frac{\epsilon A}{W}$$

