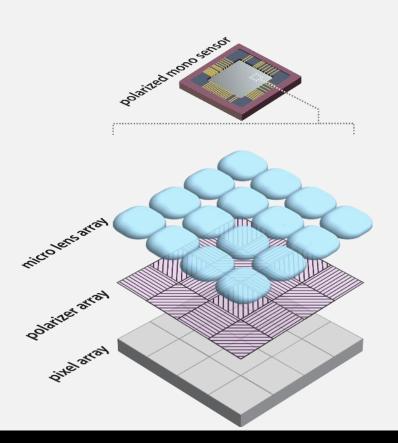
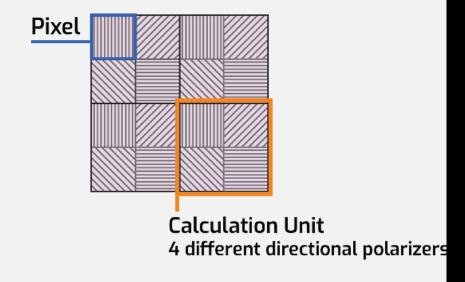
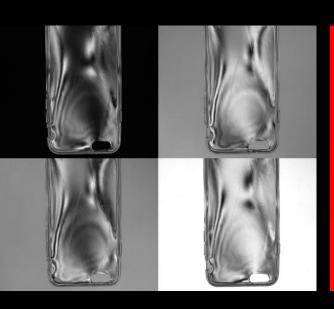
Dana Diezemann

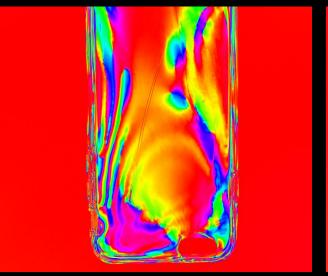
High Dynamic Range Imaging | HDR A short summary

Image Sensors Europe | 12. 03. 2020

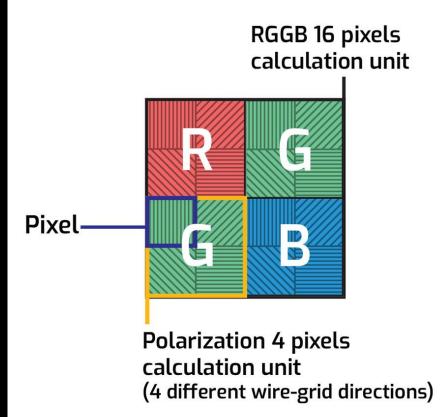





Polarized Pixels | Sony



Polarized pixels | Sony



Polarized pixels | Sony

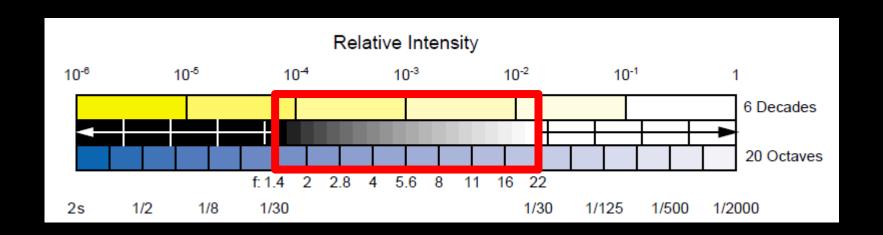
Pro:

4 different images in one capture.

Mono and color variants.

See more with reflections.

Con:


Not really more system dynamic.

Weak effect with stray light.

CLASSIC	NOT LINEAR	PHOTON	SPLIT
		Polarization	

Dynamic

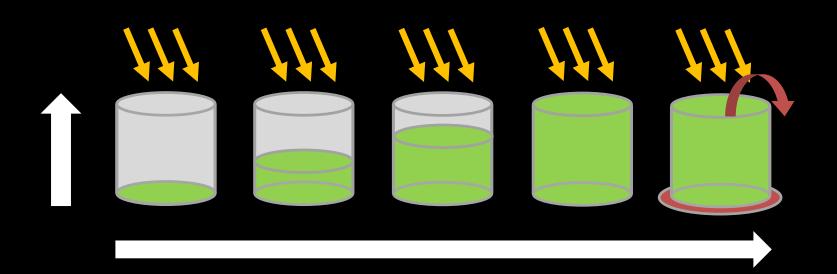
Outdoor: ~ 160 dB

Dynamic Range = 20 x log -

Fullwell Capacity

Noise

Examples


FW: 10.000 e- | Noise: 2e- | DR: 74 dB

FW: 100.000 e- | Noise: 1e- | DR: 100 dB

FW: 200.000 e- | Noise: 0.5e- | DR: 112 dB

HDR

A linear pixel has limitations in its dynamic range. Always.

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence		Polarization	

Sequencer

© Jörg Rieger Aurora HDR Software

Sequencer

Sequencer

Set of different settings (Exposure time, Gain), individual frame by frame

Result:

2 to 11 different images

- @ DSC DSLR: ISP
- @ PC: Software Aurora...

Con:

Slow in capture

Artefacts with moving objects or changed conditions

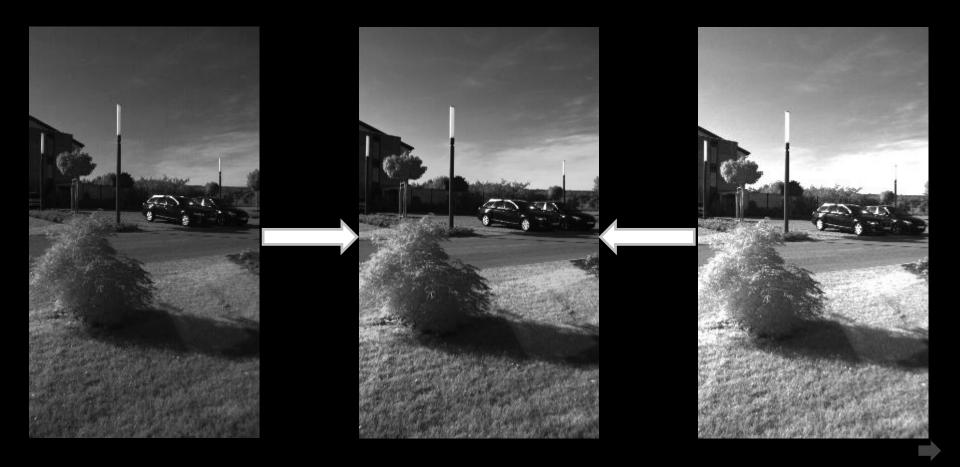
External processing

Different results due to algorithms

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence		Polarization	
Interleave			

Example: Line wise

Short Exposure


Long Exposure

This is called **Interleave HDR**.

<u>Line wise</u>: Photonfocus | CMOSIS CMV | GPIXEL GMAX sensors.

Column wise: Teledyne e2v Snappy sensors.

The shorter exposure time starts later by a longer pixel reset phase.

End by the charge transfer.

Pro: One image capture with 2 different images.

Con: Low resolution | weak HDR effect.

Different exposure start is difficult for moving objects.

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence		Polarization	
Interleave			
Dual Exposure			

Dual exposure | triggering

Sony Pregius series | 3rd and 4th generation

Sensor is divided into two vertical regions with different exposure timings and gain settings

ROI: Upper part

ROI: Lower part

lystem Bildnummer Ort PS635799 1603111253 - 150 - 1 Gem. Kirchheim - A4. km 364,250 - Kirchheimer Dreisck - Dresden

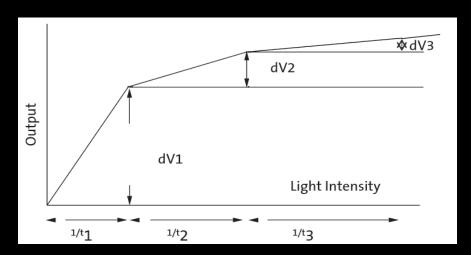
CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence		Polarization	
Interleave			
Dual Exposure			
Piecewise linear			

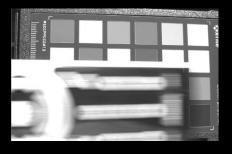
Multiple reset voltages & reset points

Called <u>Kneepoint Mode</u> or Piecewise Linear Pixel Response.

First example 2004: Micron MT9V022.

2 or 3 exposure phases.

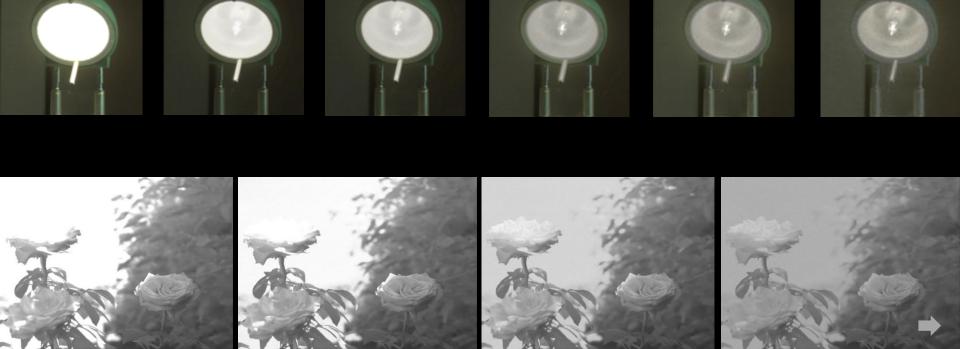

Brighter pixels where reset to given level.

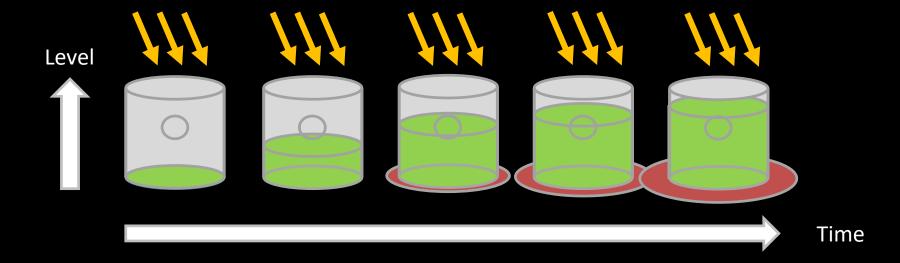

Then short exposure phase added to saturate the pixels again.


And optional again.

Pro: One capture | One result.

Con: Moving bright objects | Color balance.




CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	
Interleave			
Dual Exposure			
Piecewise linear			

Playing with the Antiblooming Voltage...

Only the bright parts are "damped"

"Drill a hole and spill out..."

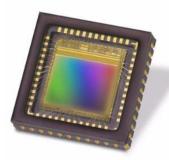
LinLog | Photonfocus

Different Anti Blooming Voltages controls the offset of the "knee".

Teledyne e2v: ev76c560 | ev76c570

Cons:

FPN around the kneepoint
Color Imaging
Not working with low light scenes


e₂v

EV76C560 1.3 Mpixels B&W and Color CMOS Image Sensor

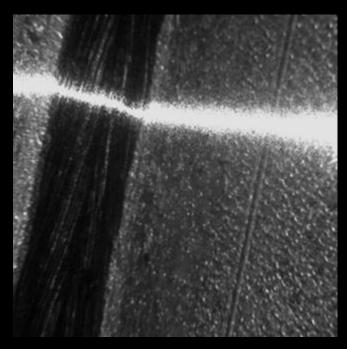
Datasheet

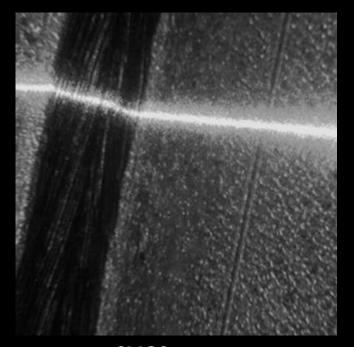
Features

- 1.3 million (1280 x 1024) pixels, 5.3 μm square pixels with micro-lens
- Optical format 1/1.8"
- 60 fps@ full resolution
- · Embedded functions:
 - Image Histograms and Context output
 - Sub-sampling / binning
 - Multi-ROI (including 1 line mode)
 - Defective pixel correction
 - PLL with 5 to 50 MHz input frequency range (compatible with dithered
 - High dynamic range capabilities
 - Time to Read improvement (Abort image and Good first image)
- Timing modes:
 - Global shutter in serial and overlap modes
 - Rolling shutter allowing true CDS readout and global reset
- . Output format 8 or 10 bits parallel plus synchronization

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	
Interleave	LinLog		
Dual Exposure			
Piecewise linear			

LinLog


Only the bright parts are "damped"

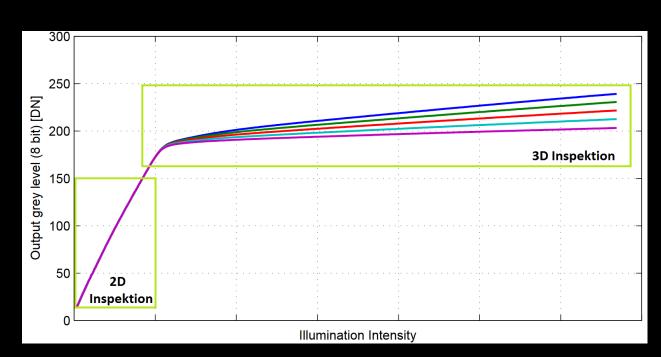


LinLog

Inspection of a Welding Seam

CMOS camera with linear response curve (<60dB)

CMOS camera with LinLog (120dB)


LinLog | Photonfocus & Log Mode | e2v

Different Anti Blooming Voltages

Called Kneepoints
Control offset and slope

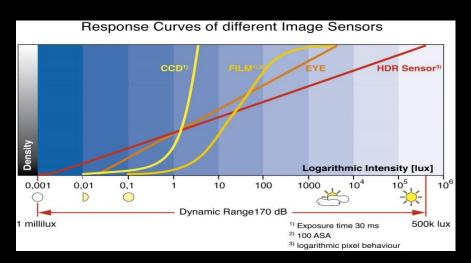
LinLog (Photonfocus)
Offset and slope

LogMode (Teledyne e2v)
Offset

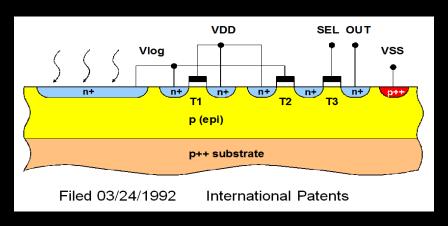
Con: FPN | Color Imaging

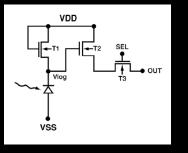
CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	
Interleave	LinLog		
Dual Exposure	Real Log		
Piecewise linear			

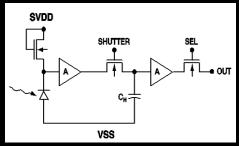
Full-logarithmic | IMS


HDRC Imager

Full-logarithmic | IMS




HDRC Imager



Pro: Real log Pixel

Con: Complex DSNU & PRNU correction

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	
Interleave	LinLog		
Dual Exposure	Real Log		
Piecewise linear	Solar Cell		

No integration | logarithmic | NIT

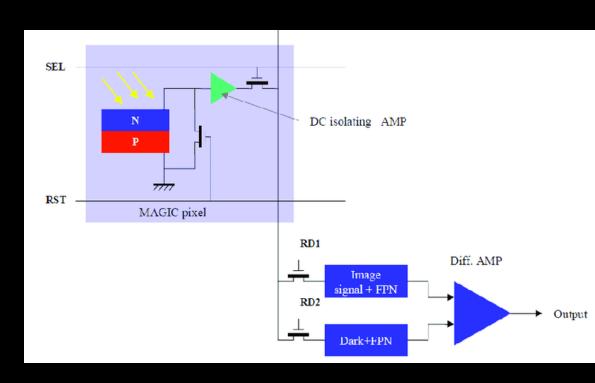
SONY

Pregius

IMX 174 NSC1003

No integration logarithmic | NIT

WyDy | WDR – Wide Dynamic Range


Pro:

Solar cell pixel | actual light value no integration | global readout real log pixel

Con:

FPN

Image lag
black level drift (dark current)
analog output | timing like CCD

Conclusion

It depends – There is no winner. But a lot of inspiration for a modern pixel design!

	HDR Effect	Image Prozessing	Moving objects	Camera implementation	Image quality
Polarized pixels		+	++	+	+
Sequencer	++				++
Interleave Exposure	-		-	-	+
LinLog	+	+	++	+	
Kneepoint mode	+	+	+	+	
Full-logarithmic Log	++		++	-	+
No integration Log	++	-	+		+

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	
Interleave	LinLog	Dual Conversion Gain	
Dual Exposure	Real Log		
Piecewise linear	Solar Cell		

Dual conversion gain

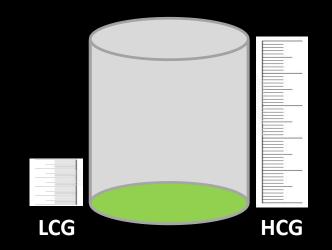
Convert photons twice and different into electrons!

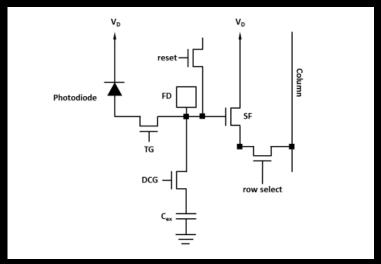
LCG – Low Conversion Gain

This is the normal mode.

White is at 90% of pixel saturation.

For bright parts in the image.

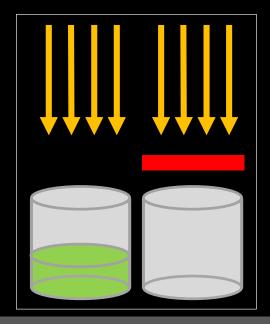

HCG – High Conversion Gain

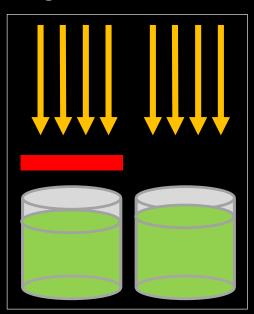

Advantage in SNR at low illuminance levels.

For dark parts in the image.

Factor 2 to 7 between LCG and HCG.

Combine on chip or with ISP!





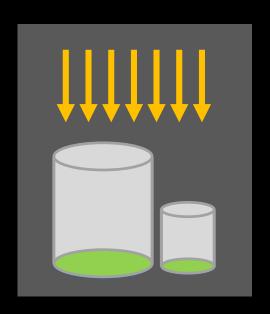
CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	
Interleave	LinLog	Dual Conversion Gain	
Dual Exposure	Real Log	Dual Storage Node	
Piecewise linear	Solar Cell		

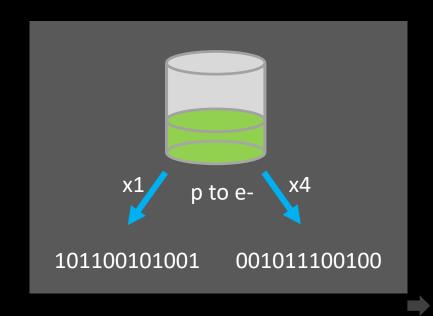
Pyxalis | STM: Dual storage node

One Global Shutter Pixel with 2 storage nodes

First: Short Exposure Time

Second: Long Exposure Time

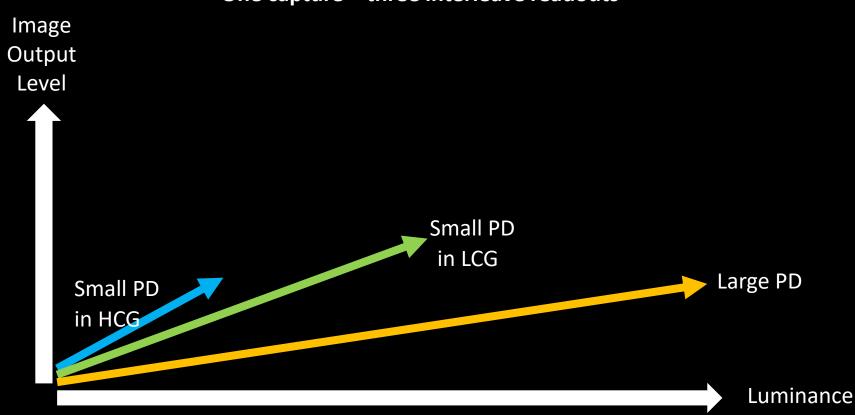

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	þþþ
Interleave	LinLog	Dual Conversion Gain	
Dual Exposure	Real Log	Dual Storage Node	
Piecewise linear	Solar Cell		


Split and Dual in combination

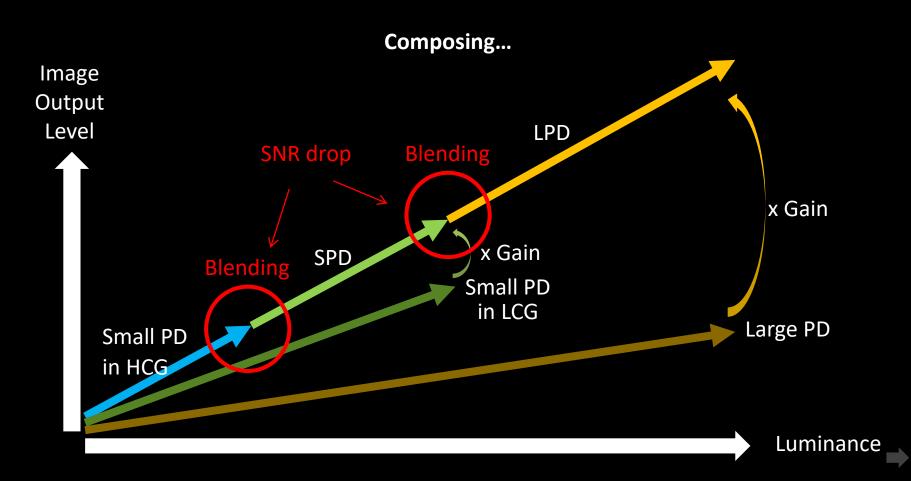
Split Photodiode

Dual Conversion Gain

Large - LPD | Small - SPD


CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	Sony IMX390
Interleave	LinLog	Dual Conversion Gain	
Dual Exposure	Real Log	Dual Storage Node	
Piecewise linear	Solar Cell		

Sony Semiconductor IMX390



Sony Semiconductor IMX 390

One capture – three interleave readouts

Sony Semiconductor IMX 390

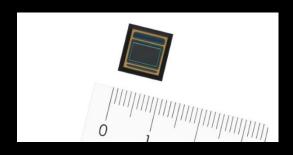
Sony Semiconductor

Sony	IMX390CQV-W
Sensor	2.3 MP 1920 x 1200 50 fps Color RS
Pixelarray	Dual PD 1:31? 3.0μm 1/2.7" 21° CRA
Exposure / Images	1/3
Conversion gain	Dual for Small Pixel 1:3.6
HDR	110 / 120 dB On Board 12 - 24 Bit RAW Combined Compressed
Anti flicker	Yes
Features	LUT BLC DNR Shading DPC
Output	MIPI CSI-2 4-lane

Sony Semiconductor

IMX390

2 MP class

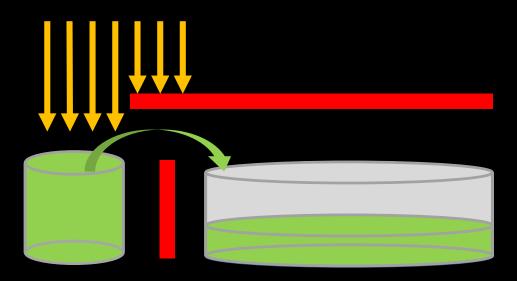

3 readouts

IMX490

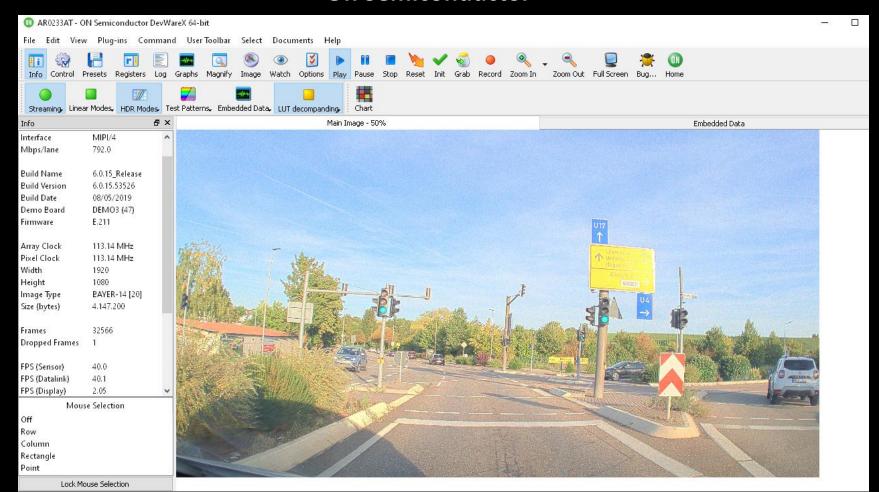
5.4 MP | 3k x 2k class | 3μm | 10.3mm diag

4 readouts (Dual Pixel, twice dual conversion gain)

Further family extension planned 2020 / 2021 with a 3 MP and a 2 MP sensor



CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	Sony IMX390
Interleave	LinLog	Dual Conversion Gain	On Semi ARO233
Dual Exposure	Real Log	Dual Storage Node	
Piecewise linear	Solar Cell		



Single PD with additional local overflow "Area" Dual CG | 4 readouts to combine

On Semiconductor	AR0233
Sensor	2.65 MP 2064 x 1288 45 fps Color RS
Pixelarray	Single PD 3.0μm 1/2.5" 17° CRA
Exposures / Images	2/4
Conversion gain	Dual on PD +Overflow
HDR	140 dB On Board Processing 24 Bit RAW
Anti flicker	Yes
Features	•••
Output	MIPI CSI-2 4-lane

AR0233

2.6 MP | Single PD | Dual storage | Dual CG on PD

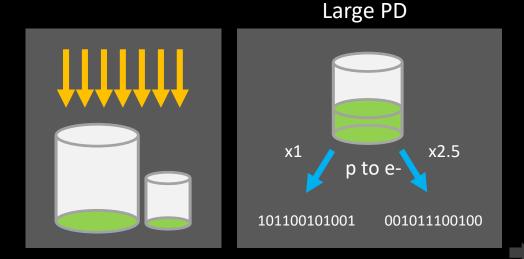
AR0820

8 MP | 4k x 2k | 2.1μm | 1/2" | Dual PD | Dual CG

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	Sony IMX390
Interleave	LinLog	Dual Conversion Gain	On Semi ARO233
Dual Exposure	Real Log	Dual Storage Node	OVT OXO2A10
Piecewise linear	Solar Cell		

Omnivision OX02A10

Omnivision


Exposure

Short Exposure Time Small PD

Long Exposure Time Large PD

Readout

- 1. Small PD
- 2. Large PD with HCG
- 3. Large PD with LCG

Omnivision

OmniVision	OX02A10
Sensor	1.7 MP 1824 x 940 60 fps Color RS
Pixelarray	Dual PD 4.2μm 1/2.1" 19° CRA
Exposure / Images	2/3
Conversion gain	Dual at LPD 1:2.5
HDR	110 – 120 dB On Board 20 Bit linear comb. RAW YUV
Anti flicker	Yes
Features	LENC, DPC, DNR, ToneMap, AWB, AEC, AGC, BLC, LUT
Output	12 Bit Parallel MIPI CSI-2 with 4-lanes

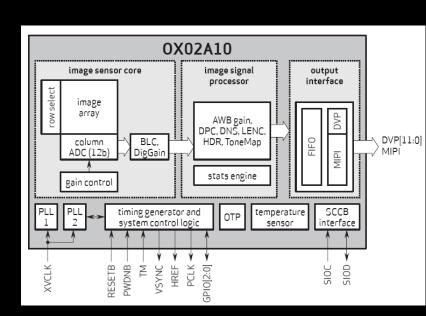
Omnivision

OX02A10

1.7 MP | Dual PD | Dual Gain on one PD

OX03A10

2.46 MP | Single PD | Dual Gain | 120dB | 50 fps


OX01D10

1.2 MP | Dual PD | Dual Gain on one PD

OX01B40

1.3 MP | Dual PD | Dual Gain on one PD

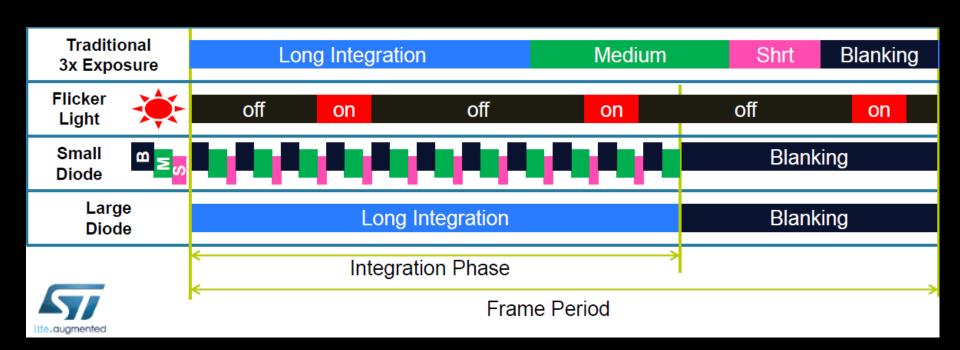
+ 120 dB with stacked ISP

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	Sony IMX390
Interleave	LinLog	Dual Conversion Gain	On Semi ARO233
Dual Exposure	Real Log	Dual Storage Node	OVT OXO2A10
Piecewise linear	Solar Cell		STM VC 6768

Traditional 3 exposure times in a sequence is not bad

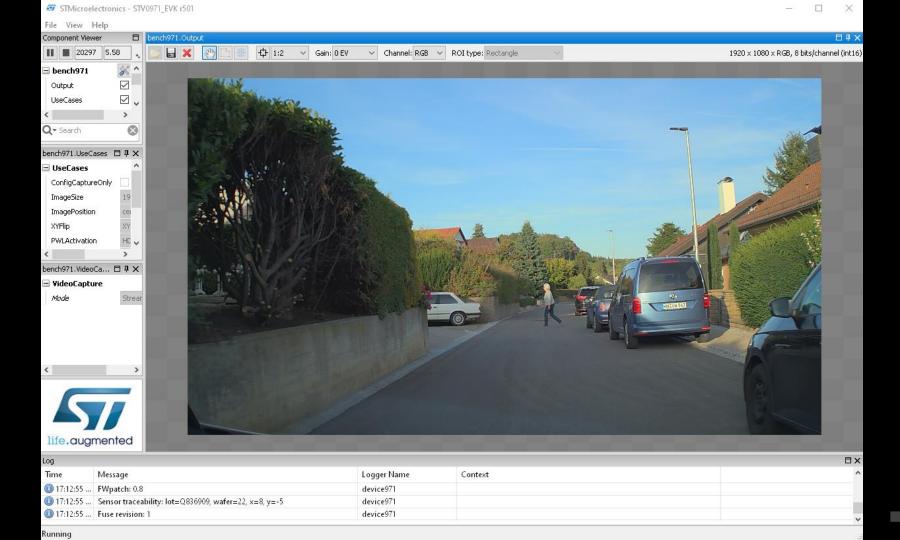
Issues with LED light sources
Issues with motion

Traditional 3x Exposure	Long Integration			Medium Shrt E	Blanking	Long	
Flicker Light	off	on	off	on	off	on	off


Chopping the exposure is the right direction.

Catch LED Illumination correct.

But with moving objects much more worse.


Traditional 3x Exposure	Long Inte	egration	Medium	Shrt	Blanking	J
Flicker Light	off	on	off	on	off	on
Chopped Exposure	Long Inte	gration	ШШ	Ш	31 n ting	

Interleave parallel in 2 photodiodes is faster

ST Microelectronics	VG6768		
Sensor	2.5 MP 1928 x 1288 60 fps Color RS		
Pixelarray	Dual PD 1:4 3.2μm 1/2.1" 15° CRA		
Exposure / Images	1/3		
Conversion gain	Dual 1:3		
HDR	145 dB 14 + 11 + 11 Bit Merge		
Anti flicker	Yes		
Features	BLC DPC DNR LUT		
Output	MIPI CSI-2 4-lane		

Summary

	Sony IMX390	ST Micro VG6768	OVT OX02A10	On Semi AR0233
PD per Pixel	Dual	Dual	Dual	Single
Exposure / Images	1	1	2 (sim)	2 (seq)
Conversion gain / readout	Dual for SPD	Dual for LPD	Dual for LPD	Dual for PD
Resulting images	3	3	3	4

CLASSIC	NOT LINEAR	PHOTON	SPLIT
Sequence	Antiblooming	Polarization	Sony IMX390
Interleave	LinLog	Dual Conversion Gain	On Semi AR0233
Dual Exposure	Real Log	Dual Storage Node	OVT OXO2A10
Piecewise linear	Solar Cell	SPAD / QIS	STM VC 6768

SPAD / QIS

Say "hello" to a single photon!

<u>Single Photon Avalance Diode in an 2D-Array</u> <u>Quanta Image Sensor</u>

100 – 150 ps timing resolution

Digital counting

130 - 150 dB DR

Promising? Trend?

Summary

- Forget linear cameras with single conventional pixel
- The classic methods shows the direction
- The new pixel designs are the right way
- All 4 modern HDR sensors are doing a great job
- The HDR image quality is near perfect
- The overall image quality is better with an external ISP
- The Implementation is easy (SW / HW)
- And take care of lenses and IR-cut filter

High Dynamic Range Imaging

A short summary

Dana Diezemann

Senior Strategical Product Manager

ddiezemann@isravision.com +49 6151 948 278 | +49 172 2980 278 isravision.com | photonfocus.com

