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Exercise 1.1: Components of an optical system
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Exercise 1.1: Components of an optical system

Select 1-2 key blocks in the previous slide:

 What are their main parameters?

e (Canyou think of examples?

|deas:

* Light source: laser vs thermal light, CW vs pulsed operation, wavelength, ...
e Optical medium: air, tissue, ..., close by, far, ...

e Detectors: single-point vs 2D camera, all-solid-state vs photomultiplier tube, size, number of
pixels, ...

e Signal processing: one single image vs a movie, averaging (mean value) vs peak finding, ...
* Qutput (display) : human eye vs screen, colour palette, bit depth, ...

* Interpretation: simple intensity, time of arrival = distance, multispectral -> fruit ripening, ...
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Exercise 1.2: Band structure: photons and acoustic phonons

4 Questions
sl : CONDUCTION
BANO Consider a semiconductor with an indirect bandgap,
5 for example silicon:
2 1) What is the maximum value of the horizontal axis
> (wave vector K) for a crystal with spacing a =3 A?
% (the spacing a, corresponds to the spacing of the
; primary cell, i.e. to half of the crystal lattice).
(FY]
0 .
2) What are the wave vector K and the energy E (in eV)
of a photon of wavelength A=1 um?
-
V"‘é—fﬁgE 3) An acoustic phonon is a crystal vibration that propagates
-2 - at the speed of sound (about v, = 1500 m/s).
(1] O [ioo] .p

‘K What is the energy of such a phonon, knowing that its
wave vector is at its maximum value (see question 1)7
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Exercise 1.2: Table of summary
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Exercise 1.2: Bands in silicon

Brillouin zone Dispersion relation and valleys of energy
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J. Singh “Semiconductor Devices”
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Exercise 1.2:

Largest K-vector
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Exercise 1.2: Main Equations

2
E[eV]=? and Av = speed and [(:%

Photon: 4, =1 [um]

2T h c
= K, =—=6-10° [m! E,=——=1.24 [eV
=T ] y =g = 124 LeV]
Phonon: A, = 0.6 [nm]
2T _ hvg _
I:> Ka _ — = 1010 [m_l] Ea =——=0.01 [eV]
Aq q g
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Exercise 1.2: Summary Table

Photon Phonons
Wavelength A=1um 2 a, =0.6 nm K4y
Speed ¢ =3.108 m/s Vg = 1500 m/s <<<i C
K 21T - % =6-10°m=1 | 2n- % =10 m™  » iKy
T |t en [t
= 1.24 [eV] — 0.01 [eV] <<|Ey
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Exercise 1.2: Band structure: photons and acoustic phonons

daqua

4
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Exercise 1.2: Band structure

2 g OF _ h%k
= = slope = ok m
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Exercise 1.2: Minima of the conduction band

v.<0 v,>0

vg=0

Impulse non-vanishing but
no speed !
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Exercise 1.2: Impulse of a photon?

daqua

Optical tweezers

The lateral

trapping
force

(_

Reaction
force on
particle

Transverse
momentum
imparted to light

—

https://phys.libretexts.org/Bookshelves/College Physics/College Physics le (OpenStax)/29%3A Introduction to Quantum Physics/29.04%3A Photon Momentum

The axial

trapping
force

Reaction
force on
particle

I

Axial momentum
imparted to light

l

Solar sail

Direction of travel

' Payload

(@)

Space sails

https://www.analogictips.com/optical-tweezers-move-nano-objects-part-1-the-principles/
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Exercise 1.3: Absorption in Semiconductors

Absorption Coeff. (cm™)
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https://www.thorlabs.com/newgrouppage9.cfm?objectgroup id=14218
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue

daqua

Absorption

Scattering
| C. Bruschini | 2024

Questions

In tissue, scattering can represent an important
component in addition to absorption

* (Canyou think of the related implications?

* Which kind of measurement set-up could be used?

u = attenuation coefficient

1(z) = e "%, withu = u, + ug
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue

:

SA0- 470 nm
ATH-E45 nm
CB48-E00 nm
fp-860 nm
B - 840 nm
@a0-1700 Am

| Wavelength (nm) | CDodor Range Penetratsom [mam) |

Violet to Deep Blue  ~0.3

Yellow to Orange.  ~0.5-1.0

Deep Red-NIR 23

Avci, Pinar, et al. "Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring." Seminars in cutaneous
medicine and surgery. Vol. 32. No. 1. NIH Public Access, 2013.
slide 22 E=P+L
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue

Light emitter Light emitter
@ Light detector
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Chiarelli et al. (2017),
Neurophotonics, 4 (4),
041411
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue

Light propagation in head tissue

Absorption

(a) / (b) /
- N ‘

0.2

0.1 L—
0.5 0.75 1.0 05 0.75 1.0
Penetration depth [cm] Penetration depth [cm]
Scattering
758 nm 830 nm

In vivo FD-NIRS measurements

[

Felix Scholkmann, Univ. Zurich & Univ. Bern, 2023

(c) _— (d)
0.5 0.75 10 05 0.75

il

0

Penetration depth [cm] Penetration depth [cm]

Fang, Q. (2010). Mesh-based Monte Carlo method using fast ray-tracing in Choi et al. (2004) Noninvasive determination of the optical properties of adult brain:
Plicker coordinates. Biomedical Optics Express, 1(1), 165-175. near-infrared spectroscopy approach. Journal of Biomedical Optics, 9 (1): 221-229.
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue

Q. Fang, BiomedOpEx(1) 2010, Supp.Mat.
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue

. 7
Chromophores and hemoglobin spectra
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uv [0,Hb]: low Blood color
5 Optical [HHb]: hlgh i
100 ¢ window
— [O,Hb]: high
= #/\ Proteins [Hi—lb]' Io?v Blood_
£ 10" | Melani ' oxygenation
= elanin
.3‘ T S0,:1008060 40 20 0%
T 5 ' -
5 10 F S, 055 [tHb] = 100 uM
= =N
o = o SO, = 0% — [HHb]
© 10" Q@
S 0
2 % 0.35 |
o
S 10"} 8
(72] c 0.25
< CtOx S —
10° L Water Q 0.5
Water § SO, = 100% — [O,Hb]
] < 0.05 — — A —
100 200 400 600 1000 2000 3000 1000 600 650 700 750 800 850 900

Wavelength [nm]

Wavelength [nm]

Franceschini et al. (1985). Near-infrared spiroximetry: noninvasive

Scholkmann et al. (2014). A review on continuous wave functional near-infrared

spectroscopy and imaging instrumentation and methodology. Neuroimage, 85, 6-27. J. Appl. Physiol., 92 (1), 372-384.
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Exercise 1.3: (Bouger-)Beer-Lambert in tissue

fNIRS & NIRCO: Technical implementations i
(a) Single-distance continuous-wave NIRS (SDCW-NIRS) (d) Multi-distance continuous-wave NIRS (MDCW-NIRS)
A In Out In Out
140) Ki) — It
- > I(z)/IU(I) — =~ > I(L(, CJ)
4y
H,
d . ! / d d, d, d,
(b) Single-distance frequency-domain NIRS (SDFD-NIRS)
(e) Multi-distance frequency-domain NIRS (MDFD-NIRS)
1,(0), 1), In Out
(@)1 (1) Y WW S |—Ini@ 1 (nap
—~ =~ ~ -
r AVAVAVA\ I - E T — D
H, :# Sw(l‘rd)
d t i %
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(c) Single-distance time-domain NIRS (SDTD-NIRS)
In Out
fonL > (i)
) - — DTOF() + newly developed methodology
H,
d f t
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Exercise 1.3: Near-infrared Optical Tomography (NIROT) Basics

Preterm brain imaging
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