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Today’s plan

A full-time lecture: “Full” 3D with volume imaging – the basic
principles of x-ray tomography:

I How to generate x-rays

I X-ray interaction with matter

I Using x-rays for radiography

I Basic principles of tomographic reconstruction

I Making the story more complicated (introducing ugly reality)

I Trade-offs in x-ray scanning

I Common artefacts and some mitigation

I Cool examples

This lecture is here to prepare next week’s practical session with
Gary on the x-ray machine
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Learning objectives

I A bit of x-ray physics

I Appreciation of which problems can be tackled with
radiography/tomography

I Understanding of key technical details
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What are x-rays?

X-rays are high-energy electro-magnetic radiation

Wave/discrete photons, ionising radiation

Higher energy you are:

Lower energy you are:

Discovery of x-rays – a glowing sheet...
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X-ray detection

Measuring x-ray radiation

One keyword: scintillation, the property of a material that
phosphoresces when excited by ionising radiation.

If phosphorescence is in the visible light range, we can use usual
cameras, etc. Typical setups:

mirror+camera flat panel
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X-ray detection 2

Important note: direct x-ray detectors are coming soon (CdTe
technology, see medipix, pixirad, direct conversion, dectris).

“Photon counting” detectors, “x-ray colour” detectors
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Making x-rays – basic physics

I Story of the discovery of x-rays, first Nobel prize in Physics

I How to make x-rays with electrons interaction with
matter/fields:

flying electrons atomic electrons
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Making x-rays – main devices

electron gun & target magnetic field



X-ray interaction with matter

We have an x-ray generator, and an x-ray source, let’s do some
experiments!

Let’s measure x-ray transmission through an object, what do we
expect?
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X-ray interaction with matter

Beer Lambert law : Transmission through a sample (with
attenuation reducing intensity of the beam by absorption):

I = I0e
−µρx

It’s by far not the only x-ray-material (see phase contrast,
diffraction...) interaction but it’s what we’ll use.
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Integral of an attenuation field

Think of the physical process:

I = I0e
−
∫ l

0 µ(x)dx



A practical example

SOD
SDD

Source

I(i,j)
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A real (toy) example
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Radiography by itself

...is already quite useful. Uses? Limitations?

Ideal amount of transmission: 30%
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Going for the 3D volume

The Radon transform (wikipedia): “In mathematics, the Radon
transform is the integral transform which takes a function f defined
on the plane to a function Rf defined on the (two-dimensional)
space of lines in the plane, whose value at a particular line is equal
to the line integral of the function over that line.”

Is that useful? Very. f in this case is µ(x , y) and Rf is a “sinogram”

X-ray tomography in short:

I We will measure many (but discrete) line integrals
(“projections”) of our object to put together Rf

I We’ll try to compute the inverse Radon transform to get
µ(x , y)

I How many projections should we acquire?
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Handwavy explanation of fourier slice theorem + FBP



The field we want to measure – µ(x , y)



Source and detector system



Measure I0



Let’s measure the sample
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Let’s measure the sample – x



Measure I – we have projected the field of µ(x , y)



Project in another direction...
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Project in another direction...



We have collected a load of projections of µ(x , y) as I

How do we go back to µ(x , y)?



Backprojection
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Example from M. Wiebicke 17
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Example from M. Wiebicke 1120 – matrix of values



How can we describe the quality of this reconstructed µ(x , y)?

I Signal-to-Noise ratio ( val(fg)
STDev(bg))

I Sharpness
I Tomography artefacts:

I Beam hardening
I Ring artefacts
I Streaks...
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SNR=100 SNR=10 SNR=1

Blur=0.05 px Blur=0.50 px Blur=5.00 px

A. Tengattini & E. Andò, Kalisphera -- MST -- 2015,



Usual trade-off between field of view and pixel size
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Hostun HN31 Sand (D =328µm)50

Glass capillary

1.5mm

1µm/px 15µm/px

Miniaturised triaxial specimen

11mm

Standard triaxial specimen

70mm

90µm/px

Please note: the zoom-in illustrations are merely to relate the sizes, the scans shown are of different specimens

E. Andò & Viggiani, On the ease of experimental access to deformation entities in granular

assemblies, RIG - 2018



r=1mm, I
I0

with θ varying, note noise, overlaps:



What happens next typically, backprojection to get µ(x , y , z):
This is a horizontal slice as I add more θ:
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Result: 3D matrix of noisy µ(x , y , z), here we’re moving through z



Practical aspects

Need to know the centre of rotation:

Good Offset Movement



Simplified x-ray scanner

Main control variables



Some metrological aspects

I We’re measuring transmission, mustn’t be too low or too high

I Geometry of each projection must be known

I Sharpness typically depends on x-ray power

I Blur in the radio has direct repercussion on reconstruction

I Number of radiographs commensurate with pixels in slice
(fourier slice theorem)

I Noise often a problem – Gaussian noise means SNR increases
with

√
time

I Low energy x-rays can mess up the measurement
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Main tradeoffs

For a fixed volume and a fixed object:

Time (im/sec) vs Spatial Resolution (mm) vs Noise (SNR)



This is a nice model, reality a little more messy

I Movements must be known very exactly

I X-ray beam is not “monochromatic” (so what units?!)

I For lab scanners, spot size
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we can draw here



Some typical artefacts

Rings Streaks Beam hardening

https://hal.archives-ouvertes.fr/

hal-01998216

https://doi.org/10.1109/23.856534 Mukunoki (2001)

https://hal.archives-ouvertes.fr/hal-01998216
https://hal.archives-ouvertes.fr/hal-01998216
https://doi.org/10.1109/23.856534


Surprising things that work

I Local tomography

I Non-uniform angles (Laminography)



Summary

I Scintillation for detection

I X-rays made by electrons

I Beer lambert law

I We measure discrete Radon transform of the object

I We try to reconstruct the object by inverse radon (FBP),
more fancy things available

I Resulting measurement typically with weird units

I Tradeoffs



Key tips

I Number of projections – Number of pixels

I Think in terms of tradeoff

I Set the energy well for your problem

I Don’t trust the CT value too much

I Keep samples cylindrical

I Limitations in size (big and small)

I Limitations in contrast

I Dose limitations



Some cool examples

Freestyle examples (remember a 4D image)

Note: visualising and understanding 3D volumes is not easy!
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