Welcome to CIVIL-510 "Quantitative Imaging for Civil Engineers"

Lecturers: Florian Aymanns and Mallory Wittwer
(EPFL Center for Imaging)
edward.ando@epfl.ch

Lecture Five: 2024-10-08

Lesson Four recap

Definitions

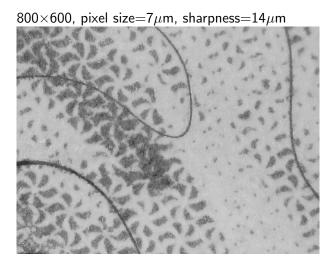
- ▶ Dark field image \neq 0
- Saw a very small depth of field
- Measured two pixel sizes
- Mostly managed to see the decrease of 10-90 rise distance with focussing

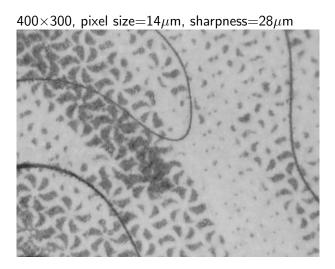
What you should understand

Page 1: Hardware description

- Darkfield
- Pixel size (μm)
- Note about focussing
- ▶ Sharpness (μm) and sharpness with x2 up and downscale
- SNR estimation (today)
- 1 bonus interesting image each!

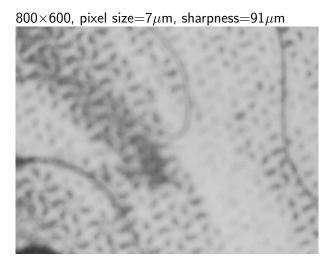
What you should understand

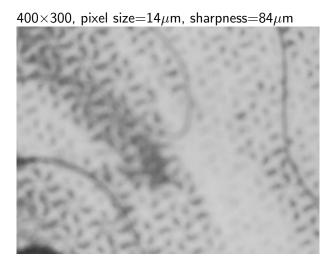

Page 1: Hardware description

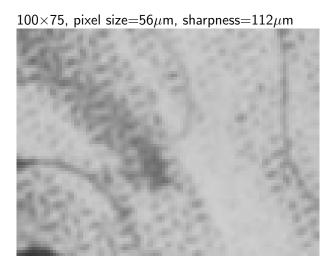

- Darkfield
- Pixel size (μm)
- ► Note about focussing
- ▶ Sharpness (μm) and sharpness with x2 up and downscale
- SNR estimation (today)
- 1 bonus interesting image each!

Page 2: Today's measurements

- Image acquisition difficulties
- Object identification
- Object characterisation
- Histogram (min 16 objects) of object "size"
- ► Histogram (min 16 objects) of object "shape"
- Discussion about errors and limitations






200 \times 150, pixel size=28 μ m, sharpness=56 μ m

 100×75 , pixel size= 56μ m, sharpness= 112μ m

Image analysis

We're finally going to measure something from our images!

Image analysis

We're finally going to measure something from our images!

I have 2 different types of sand, whose particles I would like you to characterise

Image analysis

We're finally going to measure something from our images!

I have 2 different types of sand, whose particles I would like you to characterise

Let's try too look at some particles and measure the SNR

Image analysis

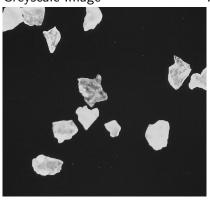
We're finally going to measure something from our images!

I have 2 different types of sand, whose particles I would like you to characterise

Let's try too look at some particles and measure the SNR

Then I'll give a little lecture about object characterisation

To your microscopes


Try to get a good picture of your particles. Careful about illumination

To your microscopes

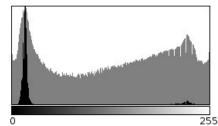

Try to get a good picture of your particles. Careful about illumination SNR reminder: $SNR = \frac{GV_{\text{high}} - GV_{\text{low}}}{STD_{\text{background}}}$

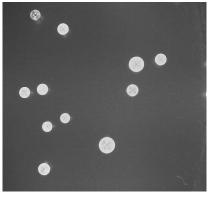
Image histogram

Greyscale Image

Histogram – log(value) in grey

N: 480000

Value: 119


Mean: 38.596 Max: 255 StdDev: 62.061 Mode: 17 (72901)

Count: 54

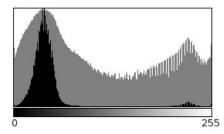

Min: 0

Image histogram

Greyscale Image

Histogram – log(value) in grey

N: 480000 Mean: 44.922

Value: 15

Max: 255 StdDev: 36.789

Mode: 39 (19665)

Count: 2316

Min: 0

Thresholding

Binary classification of pixels.

Thresholding

Binary classification of pixels. Otsu's method is a good statistical way to set a threshold to "minimise the intra-class variance" (or maximising the inter-class variance).

Let's see how it works.

This is a completely new idea, and a completely new image.

This is a completely new idea, and a completely new image.

What about SNR? What about Sharpness?

This is a completely new idea, and a completely new image.

What about SNR? What about Sharpness?

What is easy to calculate in this image now?

This is a completely new idea, and a completely new image.

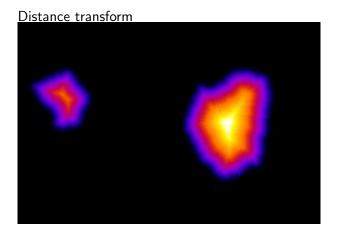
What about SNR? What about Sharpness?

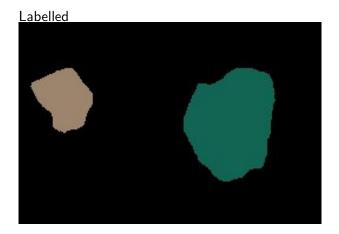
What is easy to calculate in this image now? Think about what you could calculate with matlab

Original

Erosion x1

Erosion x2





Erosion x3

Thinking caps on

- 1. I'd like a measurement in $\mu \mathrm{m}$ of a representative size of each particle
- 2. I'd like a measurement of roundness (normalised?) of each particle