Welcome to MICRO-518 "Quantitative Imaging for Engineers"

Lecturers: Edward Andò (EPFL Center for Imaging) edward.ando@epfl.ch

December 3, 2024

Introduction to "tracking and measuring motion"

► Why?

- ► Why?
- General uses

- ► Why?
- General uses
- ► General principles

- ► Why?
- General uses
- ► General principles
- Specific techniques

- ► Why?
- General uses
- ► General principles
- Specific techniques
- Some examples

General ideas

We're talking about measuring motion

General ideas

We're talking about measuring motion...of an object/area

General ideas

We're talking about measuring motion...of an object/area *between* two images.

Why measure motion? 2 main reasons

1. We would like to **erase** or **correct** motion in a series of images

Why measure motion? 2 main reasons

 We would like to erase or correct motion in a series of images Astrophysics (for denoising) example: http://www.astrosurf.com/colmic/Traitement_Siril/brutes/

https://siril.org/tutorials/tuto-scripts/

Why measure motion? 2 main reasons

1. We would like to **erase** or **correct** motion in a series of images

Why measure motion? 2 main reasons

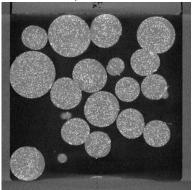
- 1. We would like to **erase** or **correct** motion in a series of images
- 2. The motion is what we're interested in

Why measure motion? 2 main reasons

- 1. We would like to **erase** or **correct** motion in a series of images
- 2. The motion is what we're interested in (typically mechanical experiments)

Why measure motion? 2 main reasons

- 1. We would like to **erase** or **correct** motion in a series of images
- 2. The motion is what we're interested in (typically mechanical experiments)



How would you track this motion?

How would you track this motion?

The heart of the method

► Define a similarity criterion

How would you track this motion?

The heart of the method

- ▶ Define a similarity criterion
- Maximise this similarity criterion

How would you track this motion?

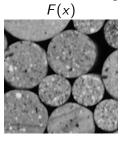
The heart of the method

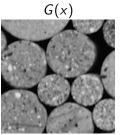
- Define a similarity criterion
- Maximise this similarity criterion
- ...that's it!

What would be a good similarity criterion for Gaussian noise?

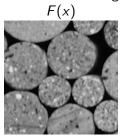
What would be a good similarity criterion for Gaussian noise?

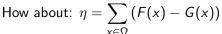
What would be a good similarity criterion for Gaussian noise?

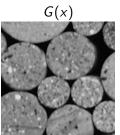




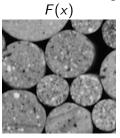
What would be a good similarity criterion for Gaussian noise?

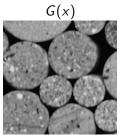






What would be a good similarity criterion for Gaussian noise?

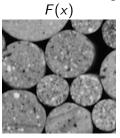


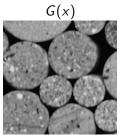


How about:
$$\eta = \sum_{x \in \Omega} (F(x) - G(x))$$

Even better:
$$\eta = \sum_{x \in \Omega} (F(x) - G(x))^2$$

What would be a good similarity criterion for Gaussian noise?





How about:
$$\eta = \sum_{x \in \Omega} (F(x) - G(x))$$

Even better:
$$\eta = \sum_{x \in \Omega} (F(x) - G(x))^2$$

The last η is a Sum of Squared Differences (classic criterion, you may have seen it elsewhere)

The last η is a Sum of Squared Differences (classic criterion, you may have seen it elsewhere)

Others are available:

For Poisson noise

The last η is a Sum of Squared Differences (classic criterion, you may have seen it elsewhere)

Others are available:

- For Poisson noise
- ► (Zero?) Normalised For illumination variations

Technique #1: "Pixel Search"

Technique #1: "Pixel Search"

Pixel-by-pixel shift to find best match. Let's try a $\pm~5$ px search in X and Y

Technique #1: "Pixel Search"

Pixel-by-pixel shift to find best match. Let's try a \pm 5 px search in X and Y

This means $(1 + (5 \times 2))^2 = 121$ XY comparisons

Technique #1: "Pixel Search"

Pixel-by-pixel shift to find best match. Let's try a \pm 5 px search in X and Y

This means $(1 + (5 \times 2))^2 = 121$ XY comparisons

Conventionally we look for where F(x) has gone in G(x)

Technique #1: "Pixel Search"

Pixel-by-pixel shift to find best match. Let's try a $\pm~5$ px search in X and Y

This means $(1 + (5 \times 2))^2 = 121$ XY comparisons

Conventionally we look for where F(x) has gone in G(x) (forwards in the direction of time).

Technique #1: "Pixel Search"

Pixel-by-pixel shift to find best match. Let's try a $\pm~5$ px search in X and Y

This means $(1 + (5 \times 2))^2 = 121$ XY comparisons

Conventionally we look for where F(x) has gone in G(x) (forwards in the direction of time).

In this example we need a bigger F(x) or G(x)?

Results

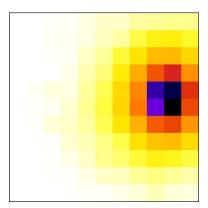
Results are 121 similarity criteria.

Results

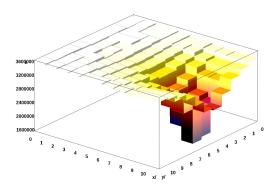
Results are 121 similarity criteria. Let's display them as an 11×11 matrix

Results are 121 similarity criteria. Let's display them as an 11×11 matrix *i.e.*, a (small) image:

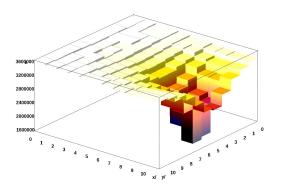
Results are 121 similarity criteria. Let's display them as an 11×11 matrix *i.e.*, a (small) image:



Results are 121 similarity criteria. Let's display them as an 11×11 matrix *i.e.*, a (small) image:

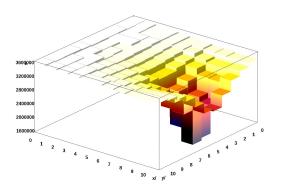


Results are 121 similarity criteria. Let's display them as an 11×11 matrix *i.e.*, a (small) image:



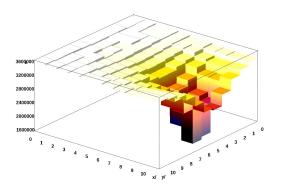
There is a clear minimum combination of dX and dY, which gives us a measurement of displacement.

Results are 121 similarity criteria. Let's display them as an 11×11 matrix *i.e.*, a (small) image:



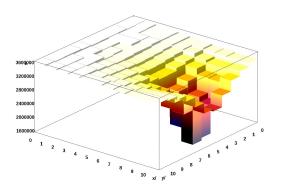
There is a clear minimum combination of dX and dY, which gives us a measurement of displacement. Comments?

Results are 121 similarity criteria. Let's display them as an 11×11 matrix *i.e.*, a (small) image:



There is a clear minimum combination of dX and dY, which gives us a measurement of displacement. Comments? Accuracy?

Results are 121 similarity criteria. Let's display them as an 11×11 matrix *i.e.*, a (small) image:



There is a clear minimum combination of dX and dY, which gives us a measurement of displacement. Comments? Accuracy? Robustness?

Parenthesis 1

Technique # 2:

This displacement could also be obtained in the **Fourier domain** (with no limit on search range), taking the 2D Fourier transform of the images.

Some limitations of pixel search:

► Brute force, so slow

- ► Brute force, so slow
- Not possible with repetitive patterns

- ► Brute force, so slow
- Not possible with repetitive patterns
- Displacement only

- ► Brute force, so slow
- Not possible with repetitive patterns
- ▶ Displacement only(?)

- ► Brute force, so slow
- Not possible with repetitive patterns
- Displacement only(?), 1px accuracy at best

- ► Brute force, so slow
- Not possible with repetitive patterns
- Displacement only(?), 1px accuracy at best?

Can we improve the accuracy?

Does a sub-pixel displacement make sense?

Can we improve the accuracy?

Does a sub-pixel displacement make sense?

Think about image interpolation, can we apply small displacements, rotations?

Technique # 3: **Optical flow** Many different approaches, let's look at Lucas and Kanade:

Technique # 3: **Optical flow**

Many different approaches, let's look at Lucas and Kanade:

Aperture problem: can't measure displacement for a single pixel.

Technique # 3: Optical flow

Many different approaches, let's look at Lucas and Kanade:

Aperture problem: can't measure displacement for a single pixel.

Careful, now we write:
$$\eta(\vec{u}) = \sum_{x \in \Omega} (g(x + \vec{u}) - f(x))^2$$

Technique # 3: **Optical flow**

Many different approaches, let's look at Lucas and Kanade:

Aperture problem: can't measure displacement for a single pixel.

Careful, now we write:
$$\eta(\vec{u}) = \sum_{x \in \Omega} (g(x + \vec{u}) - f(x))^2$$

Minimisation problem: $\vec{u}_{opt} = \operatorname{argmin}(\eta(\vec{u}))$

Technique # 3: Optical flow

Many different approaches, let's look at Lucas and Kanade: Aperture problem: can't measure displacement for a single pixel.

Careful, now we write:
$$\eta(\vec{u}) = \sum_{x \in \Omega} (g(x + \vec{u}) - f(x))^2$$

Minimisation problem: $\vec{u}_{opt} = \operatorname{argmin}(\eta(\vec{u}))$

With d_x and d_y as current estimates, and $\Delta_x, \Delta y$ as update,

Taylor Expansion:

$$\eta(d_x + \Delta_x, d_y + \Delta_y) = \sum_{x \in \Omega} \left(g(x + \vec{u}) - \frac{\delta G}{\delta x} \Delta_x - \frac{\delta G}{\delta y} \Delta_y - f(x) \right)^2$$

Technique # 3: **Optical flow**

Many different approaches, let's look at Lucas and Kanade: Aperture problem: can't measure displacement for a single pixel.

Careful, now we write:
$$\eta(\vec{u}) = \sum_{x \in \Omega} (g(x + \vec{u}) - f(x))^2$$

Minimisation problem: $\vec{u}_{opt} = \operatorname{argmin}(\eta(\vec{u}))$

With d_x and d_y as current estimates, and $\Delta_x, \Delta y$ as update,

Taylor Expansion:

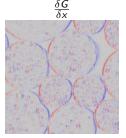
$$\eta(d_x + \Delta_x, d_y + \Delta_y) = \sum_{x \in \Omega} \left(g(x + \vec{u}) - \frac{\delta G}{\delta x} \Delta_x - \frac{\delta G}{\delta y} \Delta_y - f(x) \right)^2$$

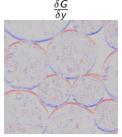
Taking partial derivatives wrt. $\Delta_x, \Delta y$ and setting them to zero:

$$\begin{bmatrix} \Delta_x \\ \Delta_y \end{bmatrix} = \begin{bmatrix} \sum \left(\frac{\delta G}{\delta x}\right)^2 & \sum \frac{\delta G}{\delta x} \frac{\delta G}{\delta y} \\ \sum \frac{\delta G}{\delta x} \frac{\delta G}{\delta y} & \sum \left(\frac{\delta G}{\delta y}\right)^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum \frac{\delta G}{\delta x} (F - G) \\ \sum \frac{\delta G}{\delta y} (F - G) \end{bmatrix}$$

What do those image derivatives look like?

What do those image derivatives look like? By finite differences:

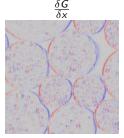


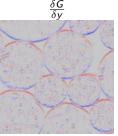


Limitations and requirements:

▶ Enough texture

What do those image derivatives look like? By finite differences:

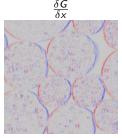


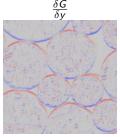


Limitations and requirements:

- Enough texture
- ▶ When to stop iterations?

What do those image derivatives look like? By finite differences:





Limitations and requirements:

- Enough texture
- ▶ When to stop iterations?
- ▶ Small step between F(x) and G(x)

Downscaling the image, measuring \vec{u}_{opt} , then continuing at higher scale:

▶ Denoising benefit

Downscaling the image, measuring \vec{u}_{opt} , then continuing at higher scale:

- Denoising benefit
- ► Squared or (cubed!?) data reduction

Downscaling the image, measuring \vec{u}_{opt} , then continuing at higher scale:

- Denoising benefit
- ► Squared or (cubed!?) data reduction
- Displacements are smaller (talyor expansion more valid?)

Downscaling the image, measuring \vec{u}_{opt} , then continuing at higher scale:

- Denoising benefit
- ► Squared or (cubed!?) data reduction
- Displacements are smaller (talyor expansion more valid?)
- Requires texture at various scales

A taste of spam

Let's write the problem with *homogeneous coordinates*. Our homogeneous deformation operator will be Φ ...

Summary so far

- ► Image similarity
- Criterion to optimise
- ► Pixel search (brute force)
- ► Iterative Method
- Sophisticated implementation in spam

Local DIC:

Local DIC: window size, node spacing;

Local DIC: window size, node spacing; Alignment, pixel search, iterative method

Local DIC: window size, node spacing; Alignment, pixel search, iterative method
For each window, obtain a deformation measurement.

Taxonomy of a DIC code

Local DIC: window size, node spacing; Alignment, pixel search, iterative method
For each window, obtain a deformation measurement.

How to set window size, node spacing?

Taxonomy of a DIC code

Local DIC: window size, node spacing; Alignment, pixel search, iterative method
For each window, obtain a deformation measurement.

How to set window size, node spacing?

OR: global approach (illustration)

Examples of 2D from Pierre Bésuelle in Laboratoire 3SR (Grenoble):

Examples of 2D from Pierre Bésuelle in Laboratoire 3SR (Grenoble):

True Triaxial for Rocks $(\sigma_3 \le 100 MPa, \sigma_2 \le 530 MPa, \sigma_1 \le 670 MPa$



Examples of 2D from Pierre Bésuelle in Laboratoire 3SR (Grenoble):

True Triaxial for Rocks $(\sigma_3 \le 100 MPa, \sigma_2 \le 530 MPa, \sigma_1 \le 670 MPa$

Output: 2D displacement fields (vector/image view)

Multi-camera – 2.5D correlation – "3D DIC".

Multi-camera -2.5D correlation - "3D DIC". Key points: speckle + calibration.

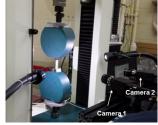
 $\label{eq:multi-camera-2.5D} \begin{array}{l} \mbox{Multi-camera} - 2.5\mbox{D correlation} - \mbox{"3D DIC"}. \\ \mbox{Key points: speckle} + \mbox{calibration}. \\ \mbox{Output: 3D displacements on a surface} \\ \mbox{This is called $\it stereo-correlation} \end{array}$

Multi-camera – 2.5D correlation – "3D DIC".

Key points: speckle + calibration.

Output: 3D displacements on a surface

This is called stereo-correlation



uwaterloo.ca

3D volume correlation - DVC

3D volume correlation - DVC

Examples of 3D – speckle?

3D volume correlation - DVC

Examples of 3D - speckle?

► Image alignment

► Image alignment or registration

- ► Image alignment or registration
- ► Digital Image Correlation

- ► Image alignment or registration
- ► Digital Image Correlation
- Local vs Global correlation

- ► Image alignment or registration
- ► Digital Image Correlation
- Local vs Global correlation
- Correlation residuals

What to do with these displacement fields?!

Strains!