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Why?

Why measure motion? 2 main reasons

1. We would like to erase or correct motion in a series of images

Astrophysics (for denoising) example:
http://www.astrosurf.com/colmic/Traitement_SiriL/brutes/

https://siril.org/tutorials/tuto-scripts/
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How would you track this motion?

The heart of the method
▶ Define a similarity criterion

▶ Maximise this similarity criterion

▶ ...that’s it!
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Similarity criterion

What would be a good similarity criterion for Gaussian noise?

How could we tell that two images (F (x) and G (x)) of the same
size are similar with a single number?

F (x) G (x)

How about: η =
∑
x∈Ω

(F (x)− G (x))

Even better: η =
∑
x∈Ω

(F (x)− G (x))2
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The last η is a Sum of Squared Differences (classic criterion, you
may have seen it elsewhere)

Others are available:

▶ For Poisson noise

▶ (Zero?) Normalised For illumination variations
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Brute force maximisation of η

Technique #1: “Pixel Search”

Pixel-by-pixel shift to find best match. Let’s try a ± 5 px search in
X and Y

This means (1 + (5× 2))2 = 121 XY comparisons

Conventionally we look for where F (x) has gone in G (x) (forwards
in the direction of time).
In this example we need a bigger F (x) or G (x)?
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Let’s display them as an 11x11
matrix i.e., a (small) image:
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Parenthesis 1

Technique # 2:
This displacement could also be obtained in the Fourier domain
(with no limit on search range), taking the 2D Fourier transform of
the images.



Going further

Some limitations of pixel search:

▶ Brute force, so slow

▶ Not possible with repetitive patterns

▶ Displacement only(?), 1px accuracy at best?
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Think about image interpolation, can we apply small
displacements, rotations?
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Smarter iterative approach

Technique # 3: Optical flow
Many different approaches, let’s look at Lucas and Kanade:

Aperture problem: can’t measure displacement for a single pixel.

Careful, now we write: η(u⃗) =
∑
x∈Ω

(g(x + u⃗)− f (x))2

Minimisation problem: u⃗opt = argmin(η(u⃗))
With dx and dy as current estimates, and ∆x ,∆y as update,
Taylor Expansion:

η(dx+∆x , dy +∆y ) =
∑
x∈Ω

(
g(x + u⃗)− δG

δx
∆x −

δG

δy
∆y − f (x)

)2

Taking partial derivatives wrt. ∆x ,∆y and setting them to zero:[
∆x

∆y

]
=

[∑
( δGδx )

2
∑ δG

δx
δG
δy∑ δG

δx
δG
δy

∑
( δGδy )

2

]−1 [∑ δG
δx (F − G )∑ δG
δy (F − G )

]
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Iterative approach

What do those image derivatives look like?

By finite differences:
δG
δx

δG
δy

Limitations and requirements:

▶ Enough texture

▶ When to stop iterations?

▶ Small step between F (x) and G (x)
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Benefit of image pyramids

Downscaling the image, measuring u⃗opt , then continuing at higher
scale:

▶ Denoising benefit

▶ Squared or (cubed!?) data reduction

▶ Displacements are smaller (talyor expansion more valid?)

▶ Requires texture at various scales
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A taste of spam

Let’s write the problem with homogeneous coordinates.
Our homogeneous deformation operator will be Φ...



Summary so far

▶ Image similarity

▶ Criterion to optimise

▶ Pixel search (brute force)

▶ Iterative Method

▶ Sophisticated implementation in spam



Taxonomy of a DIC code

Local DIC:

window size, node spacing; Alignment, pixel search,
iterative method
For each window, obtain a deformation measurement.

How to set window size, node spacing?

OR: global approach (illustration)
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DIC applied in practice

Examples of 2D from Pierre Bésuelle in Laboratoire 3SR
(Grenoble):

True Triaxial for Rocks
(σ3 ≤ 100MPa, σ2 ≤ 530MPa, σ1 ≤ 670MPa

Output: 2D displacement fields (vector/image view)
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Key points: speckle + calibration.
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uwaterloo.ca

uwaterloo.ca


DIC applied in practice

Multi-camera – 2.5D correlation – “3D DIC”.
Key points: speckle + calibration.

Output: 3D displacements on a surface
This is called stereo-correlation

uwaterloo.ca

uwaterloo.ca


DIC applied in practice

Multi-camera – 2.5D correlation – “3D DIC”.
Key points: speckle + calibration.
Output: 3D displacements on a surface
This is called stereo-correlation

uwaterloo.ca

uwaterloo.ca


DIC applied in practice

Multi-camera – 2.5D correlation – “3D DIC”.
Key points: speckle + calibration.
Output: 3D displacements on a surface
This is called stereo-correlation

uwaterloo.ca

uwaterloo.ca


DIC applied in practice

3D volume correlation – DVC

Examples of 3D – speckle?



DIC applied in practice

3D volume correlation – DVC

Examples of 3D – speckle?



DIC applied in practice

3D volume correlation – DVC

Examples of 3D – speckle?



Some key terms

▶ Image alignment
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▶ Digital Image Correlation

▶ Local vs Global correlation

▶ Correlation residuals
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What to do with these displacement fields?!

Strains!


