Image formation

Edward Andò Head of Image Analysis Hub EPFL Center for Imaging

2024-10-15

There are 2 radically different 3D images: **surfaces** (like the cinema)

There are 2 radically different 3D images: **surfaces** (like the cinema) and *insides* (volumes, like the shell image).

There are 2 radically different 3D images: **surfaces** (like the cinema) and *insides* (volumes, like the shell image).

Today's lecture is about surface/depth measurements.

There are 2 radically different 3D images: **surfaces** (like the cinema) and *insides* (volumes, like the shell image).

Today's lecture is about surface/depth measurements.

Why 3D? Everything is 3D!

Let's start from our own perception

Question
Do we see depth, or just a flat image?

Let's start from our own perception

Question
Do we see depth, or just a flat image?
What about with only one eye?

In the natural world

Who has better depth perception? Tiger

https://www.tierart.de/wissenswertes-ueber-tiere/ueber-tiger-panthera-tigris

Antelope

https://unsplash.com/@sickpanda

Camera records pixels (x,y)...

Camera records pixels (x,y)... but is looking at angles (θ, ϕ)

Camera records pixels (x,y)... but is looking at angles (θ , ϕ)

- space for drawing -

Camera records pixels (x,y)... but is looking at angles (θ , ϕ)

- space for drawing -

Underlying principle: multi-camera geometry

Completely different approach

Otherwise this is possible:

Completely different approach

Otherwise this is possible:

https://www.treehugger.com/bat-facts-4864066

TOF in one slide

Time-of-flight method: underlying principle timing a reflected wave

TOF in one slide

Time-of-flight method: underlying principle timing a reflected wave

- space for drawing -

SL in one slide

Structured light: projecting a known pattern and looking at its deformation

SL in one slide

Structured light: projecting a known pattern and looking at its deformation

- space for drawing -

SL in one slide

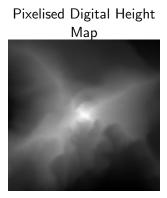
Structured light: projecting a known pattern and looking at its deformation

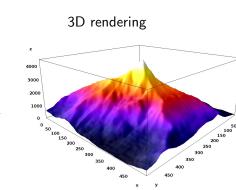
space for drawing –

Underlying principle: single-camera geometry and tracking

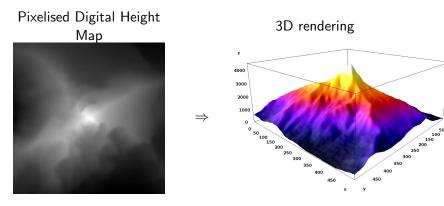
Two (+1) main families of methods

These will each be presented by a PhD student (Bryan and Andrea).

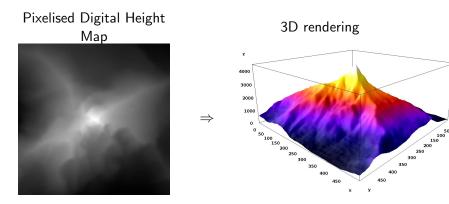

Two (+1) main families of methods


These will each be presented by a PhD student (Bryan and Andrea).

Before we start, some key ideas:


- What the data will look like
- Possible analysis and interpretation
- Some basic ideas to structure your thoughts

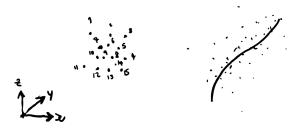
We've already seen this:



We've already seen this:

This is a matrix H(x, y) right?

We've already seen this:

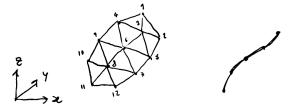

This is a matrix H(x, y) right? This digital height map is a possible way of showing depth from a single view

Raw data in 3D

Both TOF, SL and stereo-based methods output "point clouds".

Raw data in 3D

Both TOF, SL and stereo-based methods output "point clouds".


What does it look like inside the computer?

3D surface data

Surfaces are defined with a plane, which is typically discretised – meshed – into triangles

3D surface data

Surfaces are defined with a plane, which is typically discretised – meshed – into triangles

What does it look like inside the computer?