cPi-L

Image Processing

Chapter 3

Characterization of discrete
iImages and linear filtering

Prof. Michael Unser, LIB
Prof. Dimitri Van De Ville, MIPLAB

October-November 2023

CONTENT

= 3.1 Characterization of discrete images

Discrete image representation
Discrete-space Fourier transform
Multidimensional z-transform

= 3.2 Digital filtering

Filtering with 2D masks
Equivalent filter characterizations
Separability

= 3.3 Filtering images: practical considerations

= 3.4 Useful image-processing filters

Smoothing: the universal tool
Moving average
Symmetric exponential filter

Unser: Image processing

3-2

3.1 Characterization of discrete images

= Discrete image representation

= Space of square-summable sequences
= Discrete-space Fourier transform

= Parseval relation

= Multidimensional z-transform

= z-transform properties

nser: Image processing

3-3

Discrete image representation

m Set of pixels (picture elements)

{alk,l]} with (k=0,---,K—1 and [=0,---,L—1)
Origin k

K : number of columns

L: number of rows (lines)

255: white

0: black

m Array of pixels of size K X L

Storage as a L x K Matlab matrix: A = [a; ;] witha;; =alj— 1,7 —1]

3-4

Unser: Image processing

Space of square-summable images

m Images as 2D sequences of the space variables

alk,l] € £5(Z?) or alk] with k= (k,1) € Z? (compact notation)

m 2D /5-inner product

(a,b)e, = Y alk, 0% [k, 1], induced £o-norm: ||alle, = \/(a,a)s,
keZ leZ

m Space of square-summable discrete images

Hilbert space: (5(Z*) = {alk] : k € Z7, ||al|j, < +oo}

m Extension to higher dimensions
CL[’C] with k = (kl,kg, ce ,k‘d) c 7¢
(0,) yzny = Y alk] " [K], 0(2%) = {alk] : k € 2, ||a]|?, < +o0}

keczd

Unser: Image processing

3-5

Discrete-space Fourier transform

m 2D discrete Fourier transform: definition

a(wr,ws) Z Z alky, ko] eI (wrkitwaka)

ki€7Z kocl Space of absolute-summable sequences

o - .) w 01(2%) = {alk] : k € Z%,||all¢, < o0}
Sufficient condition for existence: a € ¢1(Z*)

= £1-norm: [lalle, = D _geza alK]]

m 27—periodicity = (1(Z7) C £(Z9)

a(wy,ws) = a(wy +m2m,ws +n2m), (m,n) € Z?

A W2
s Support of main Fourier period:
w1 [_7‘-77‘-]2 — [_7-‘-77‘-] X [_7‘-77‘-]
_7"' 7'(' >
m Inverse Fourier transform —T
+m _
alky, ko] = a(wy,ws) €’ (wik1tw2k2) 450 dws

Unser: Image processing 3-6

Multidimensional Fourier transform

m Multidimensional vector notation (d dimensions)
= Spatial variables: k = (ki,...,kq) € Z9
= Frequency variables: w = (w1,...,wq) € R?

= Equivalent phase: (w,k) = wlk =wik; + - +wikq

a(w) =Y alk]e Ik

kcZd

1
 (2m)d

]/ (i&@u)ej“”k>duq---dwd
[_Waﬁ]

[—m, 7w = [, 7] X -+ X [, 7|

m Classical framework
a € l1(Z%) = a(w)bounded, continuous

i)l < 3 Jalk] e 7R = 37 |alk]| = |allr,

kcza kczd

Unser: Image processing

3-7

Parseval relation

m Discrete-space Fourier transform in /s

a€ly(2%) & a(w)e€ Ly([-m, %)

Theorem: The complex sinusoids {e=/{«*)1, _ form an orthonormal basis of L ([,]*) with

1

respect to the Hermitian inner-product: {(a, 6>L2([_ﬂ-,ﬂ-]d) =) /6[y i(w) b*(w) dwy - - - dwy.

Dual Hilbert-space interpretation

Z a[k]e7“F): Fourier series expansion of the 2-periodic function a(—w)

kezd

alk] = (a(-),e™I*)) 1 (_x x14): standard formula for the Fourier coefficients

A

m Parseval’s formula: (a,b)s, = (@, b) 1, (—r)

1 ~ 7%
kgda[k] b* k] = (2m)d /we[mr]d a(w)b* (w) dwy - - - dwy

m Preservation of the energy (isometry property)

HaHi(Zd) - HdH%Q([—w,w]d) - (2)d /we[_7T oy ’d(w)\Q dwy - -+

Unser: Image processing

3-8

Relation with continuous-space transform

m Shannon’s representation of a bandlimited function

fShannon Z f SlIlC r —)

kez4d

Continuous-domain Fourier transform:

F{ fshannon +(w Z flk] F{sinc(- — k) }(w) (by linearity)
keza
= Z f[k]e‘j<°"”"> F{sinc}(w) (shift property)
ezt)
~ ~ fiscreewa forw € |— 9 d
fShannon(w) — fdiscrete(w) X reCt(%) { ‘ t () [" Tr]

0, otherwise.

Note: this equivalence only holds when the function f = fshannon iS bandlimited.

Unser: Image processing 3-9

Multidimensional z-transform

Complex variable: z = (z1,...,24) € CY, Space index: k = (ki,...,kq) € Z¢
m Definition
= Multi-index exponent: z* = PN R zfjd

= z-transform: A(z) = Z alk]z™® for z € ROC : Region of convergence
keZd

m Relation with the Fourier transform iz

z; = el

Zl — ejwl Z2 — 6‘7w2 L. Zd — ejwd))
’ T unit circles: Re{z;}

Define: e/« = (ed«1, ... eiwd)
A(2)]z=eie = Z alk] (ej“’)_k — Z alkle Ik . . gmiwaka
kEZd keZd
= A(eY) =a(w) = Y alkle T
kezd

Unser: Image processing 3-10

Region of convergence

ROC: region of C? where A(z) = Z alk]z~* converges uniformly
keZd

m Practical constraint: convergent Fourier transform

= ROC must include the unit circles domain z; = e/“t, ..., z4 = e/¥d

m Most cases of interest fall into these two categories:

= alk]| is bounded and compactly supported (FIR)
= ROC = C?%\ {0} (the complex hyperplane without the origin)

= alk] € £1(Z)

A()] = | D2 alkle™ ek < ST fak]| = alle, < oo

kczd kczd

= ROC includes the unit circles z; = e7“t, ..., z4 = el®d

Unser: Image processing 3-11

z-transform properties

Separability (k] =z k1] X -+ X zq[kd] s X(z) = X1(21) x -+ x Xq(2a)
Delay zlk — ko] s z ko X (2)
Reflecton 27 [k] = z[—K] LN Xzt ozt
Convolution (hxz)[k] = Y hlki]zlk —ki] < Y(z) = H(z)X(z2)
k1 €2

Sketch of proof: Y(2)=)) hlki]z[k — ki]z~*

keZd k€2
{ Change of variable k — k1 = ko

Y(z)= > Y hlki]a[ky)z*1tk)

k1 €za ko c€zd

0
Y(z)= Z hlk,]z~F Z r[ko]z™*2 = H(2)X (2)

k1 €za ko €z

Unser: Image processing 3-12

z-transform examples in 1D

m Definition: X (z) =) a[k]z""

1N

ke
m Causal exponential
koo k>0
k] = o , with 0 < |a| < 1
0, otherwise
Geometric series
400
, 1—(a/2)E 1 2
= X, (2)= b=] — —
=3 a2 B e R T L
m Anti-causal exponential T
K| k<0
r_[k]=4 ¢ | with 0 < |a| < 1
0, otherwise - e
X=X 5 X = — <o
T\ e VY 1l—az z—a"V

Unser: Image processing 3-13

z-transform example in 2D

m Basic formula: X (2, 25) E E xlky, ko2 12y

ki1€Z ko€Z
1|10 | -1
2 1 0 |-2
1|0 | -1
-1 0 +1 k1

X(Zla ZQ) — (1) - 2129 + (O) .1 - 29 + (_1) 21_1252 4 -1
+ (0)-1-250 + (=1)- zl_lz2_1

= (21— 21_1)(2’2 + 2+ 22_1) = Separable!

x|k] bounded and compactly supported
= ROC = C?\ {0} (the complex hyperplane without the origin)

Unser: Image processing 3-14

Inverse z-transform

m |dentify the coefficients of the Laurent polynomial

2172:2 E § xklakZ k1 _kz

ki1€Z ko €Z

m Take advantage of separability when it is present: X (21, 20) = X1(21)- X2(22)

m Reminder of 1D methods
1
Cauchy integral theorem: x|k| = 5 7{ X(2)zF1dz
Uy,
I': any contour that encloses the origin

Use of tables and/or partial-fraction decomposition (linearity)

—3 3/4 1 1
_ / _ .

2271 =542z (1-22")(1-32) 1-2%1 1-1z

~ ok = (%)lkl k] (%)k b oul—F] @)_k STk

Unser: Image processing 3-15

—1

Example:

3.2 DIGITAL FILTERING

= Filtering with 2D masks

= Linearity and shift-invariance

= Impulse response and discrete convolution
= Equivalent filter characterizations

= Examples of transfer functions

= Separability

= z-transform and recursive filtering

nser: Image processing 3-16

Filtering with 2D masks

m Mask or local operator formulation

Filtering mask (weights) (2M + 1) x (2N + 1)
W1|We|Wa|Wa| W3 — _
w4 | Wa|Wa| We|We w|—M, —N]| w|M, —N]|

Wr|wg|Wwg|Weg|Wg

w = : wl0, O] :
| w[—-M, N] w[M,N] |

Local neighborhood vector
[flk—M,0—N] - flk+M,l—N] |

flk,1] = E Flk, 1]
flk—M,1+N] - flk+M1I+N]

m Filtering: matrix formulation

glk] = (f[k], w) = Z Z[flE]lij[w];; (term-by-term product)

CAUTION: “correlation” formula

Unser: Image processing 3-17

Filter examples

Unser: Image processing

= Local 3 x 3 average

= Horizontal-edge enhancement
[—1
0
1

Whor —

= Vertical-edge enhancement

Wvert =

1
1
1

1
1
1

—2

0

2

0

0

0

1

—1

1
2
1

0
1

3-18

Digital filtering: implementation
= Pseudo code (JAVA)

Input image : f (size K x L)

Output image : g (size K x L)

Local neighborhood array : v (size M x M)

Mask array : w (size M x M) (e.g., {{1,1,1}, {0,0,0}, {-1,-1,-1}})

for (x=0 ; x<K ; x++) {
for (y=0 ; y<L ; y++) {
v=f.getNeighborhood(x,y) ;
outpix=0.0 ;
for (i=0 ; i< M ; i++) {
for (j= 0; j<M ; j++) {
outpix=outpix+ v[i,Jjl*w[i,]] ;

}
g.putPixel(x,y,outpix) ;

3-19

Unser: Image processing

Linearity and shift-invariance

= Linearity

a1 filk] + az f2[K]

— Tin{} —

= Shift operator
flk] flk — ko]

— SkO{} —

= Shift-invariant filter

£k gk
— T5{} ——
flk — ko glk — ko

Unser: Image processing

Tin{a1 f1 + azfa}[k] = a1Tind f1} k] + a2Tiin{ f2} K]

Filter commutes with shift operator:

— Sk} — T5i{} —>

0

— Tg{} — 5" {}—>

3-20

Linear and shift-invariant filters

= Characterization of linear filters

Space-varying mask

f K| glk] = (flk], wk])

linear
filter

= Characterization of linear, shift-invariant filters

Fixed mask

/K] glk] = (flk], w)

—— LSl filter ——»

-1 -1 -1
Example: w = 0 0 0

1 1 1

Unser: Image processing

3-21

Converting a mask into an impulse response

m Filter implementation using a mask

glk, 1 => " wli,j] flk +i,1+4] (correlation)
v

Impulse
Impulse

response

5k, 1] » hlk, 1] = w[—k, —I] L

1 Digital ololo

LSI filter

-1(-1]-1
Mask Reversed
mask
1]-1|-1 10111
OFl0| O OFL0|O
111 1 11 -1 1
0|12 4 (3|2
112 |3 312 |1
2(3|4 2(110

Impulse response = space-reversed version of the mask

Unser: Image processing 3-22

Impulse response and discrete convolution

= Impulse response (e.g., discrete point-spread function)

Unit impulse (Kronecker delta) Impulse response

Ju hlk] = Trsi{0[-]} [K]

Digital

LSI filter

Property : A digital LSl filter is uniquely characterized by its impulse response,
which is the space-reversed version of its mask : h[k] = w|—k]

= Equivalent convolution operator

Flk, 1 glk, (] = (h* f)[k, =Y flm,n]hlk —m,l —n]

Digital
YA 7
LS| filter mesmne

Unser: Image processing 3-23

Convolution: breaking it into steps

m Unit impulse (pixel) at the origin

Ju » hlk|
Digital
LSl filter
m Unit impulse (pixel) at k
olk = kol Digital hlk = kol
LSl filter

m Pixel at kq with value f|k|

flko] - 0[k — ko] flko] - hlk — ko]

Digital
LSl filter

m Input image = sum of pixels
D Flko]dlk — kol D flkolhlk — kol
ko ko

= (hx f)[K]

Digital
LS! filter

Unser: Image processing

3-24

Equivalent filter characterizations

Digital LS| filter = Discrete convolution operator
Tusi{/f}k] = =) hln — G(z) = H(2)F(2)

neZd

m Impulse response: Trsr{0[-]} [k] = h|k]

m Transfer function: H(z1, 22) E E h (e, ko] 2 M1 25k
ki€Z ko€eZ
m Frequency response: eIt Jw2 § E :h k1, kole —jkiwi o —jhkows
k1€Z ko€

Response to a complex sinusoid: T7st {eﬂ"”"’/)} (k] = e3(@:k) . H(eI@)

Proof: (h * ej<w">) k] = Z hn]e? @k = gi{w:k) Z A

nezd nezd

Unser: Image processing

3-25

Example 1: local 3 x 3 average

(1 1 1 (1 1 1
1 1
11 1 11 1

1 1
m Transfer function: H(z1,22) = §(zl + 1+ zl_l) X §(22 + 1+ 2’2_1)

| | 1+2 1+2
m Frequency response: H(eﬂwl,ejw):< il Cosw1>(+ cost)

3 3

\ . 7 \\ 7
~~ ~~

Have(ejwl) Have(ejWQ)

| Hove ()]
lowpass behavior

NS -

3-26

Unser: Image processing

Example 2: vertical-edge enhancer

impulse response

-1 0 1 110 |-1
m Mask: wyet = | —1 (0] 1 ’ 110 |-

1 0 1 1]10]-1

“correlation® “convolution®

m Transfer function: Hyeri (21, 22) = (21 — 27 (22 + 1+ 25 1)

= Frequency response: Hyq (€791, e/%2) = (25 sinwy) (1 + 2 cosws)

bandpass lowpass

o
| Hpana (e7*1)|

Ok

NN -

Unser: Image processing 3-27

Separability

Most useful image processing filters are separable...

which brings us back to a 1D problem

m Definition of separability

d
hlki1, ko] = hlk1] - holko] — hlk] =]] hilki]
0
H(z,20) = Hi(z1) - Ha(2) — H(z) =]] Hi(z)
0
[{(ejwl’ejwz):::}]i(ejw1> -f]j(eij)
0

h=h{ ®hy = [h]-ko] - hi[—ko + M — 1]] &

Unser: Image processing

ha|—lo]

ha[—lo + N — 1]

3-28

Separability and direct (or tensor) products

m Direct vector product = M x /N multiplication table

a1b; a9by anrby
a1y ans by
al @ b=
i a1bn arbn i

m Definition of direct matrix product

A: P x () matrix ; B: M x N matrix

C=A®B=

Unser: Image processing

i Abll Ab12 AblN |
Abgl AbQN
i Ale AbMN

N
\)
o | O | O

Example: a = (1,0, —1),

PM x QN matrix

b=(1,2,1)

Example: 3 x 3 smoother

o2)]
ho=—| 2 [4] » :1[1 2 1}@Z 2
1 2 1 1
((1/4, k=+1
hlk,l] = hi[k] - hi[l] where hi[k] = ¢ 1/2, k=0
L 0, otherwise

1 _ _
HS(Zl,ZQ) = 1—6(21 + 2 -+ <1 1)(22 + 2 + <9 1)

m Limitation of separability

- Orientation-sensitive filters are in general non-separable

Unser: Image processing 3-30

Separable filtering: implementation

flk, 1 o o glk, 1]
1D filtering 1D filtering
(rows) (columns)

m Design: 1D filtering routine m Generic separable filtering algorithm
input: u[n] with(n=0,...,N —1) input: flk,l]] with(k=0,..., K—1,1=0,...
output: v[n| output: g[k, (]

function v = filterid(u,N) for (int j=0; j<L; j++) {
u=getrow(f,j);

m Data handling v=filterld(u,K);

putrow(g,j,v);
array-to-line conversion }
getrow, putrow for (int i=0; i<K; i++) {
getcolumn, putcolumn u=getcolumn(g,i);

v=filterid(u,L);

putcolumn(g,i,v);

}

. etc... (for 3D or more)
Unser: Image processing

L—1)

3-31

z-transform and recursive filtering

m Rational transfer functions and difference equations

M-—-1
E bz~ ™
m=0

H(z) = j(((z)) = N1 & z_: anylk —n] = z_: bmx |k —m)|
Z anz " =0 m=0

- Example: causal exponential

Y<z>=(:)X<z> o ylk) = ok — aylk - 1)

14+ 271aq

m Stability of rational filters

No poles z; on the unit circle z = /¢
Causal part: |z;| <1

Anti-causal part: |z;| > 1

Unser: Image processing 3-32

Recursive filtering and stability

m Recursive filter implementation

- Example: causal exponential (|z| > |a1], pole z = ay)

Y(z) = (!) X(z) <« ylk| = z[k] + a1ylk — 1]

1 —271ag

- Example: anti-causal exponential (|z| < |a1|~!, pole z = a])

Y(z):(!

1 — zaq

) X (2) & ylk] = x[k] + arylk + 1]

m Stability of rational filters

No poles z; on the unit circle z = /¢

Causal part: |z;| < 1

Anti-causal part: |z;| > 1

Unser: Image processing

3-33

3.3 Filtering: practical considerations

= About filter design for image processing
= Boundary conditions
= Fourier versus space-domain implementation

Unser: Image processing 3-34

About filter design for image processing

cat
modulus

- s 3
‘ s ot -". 3 " i}

dog

modulus

m Semantic information (edges, contours) is contained in the phase of the Fourier transform

= Use linear-phase filters; i.e., symmetric or antisymmetric

m Exact shape of the frequency response is not so important

= Go for the simplest and fastest. ..

Unser: Image processing [Example by A. Descloux] 3-35

Boundary conditions

“Thou should not neglect what happens at the boundaries.”

60’s-80’s: lazy handling (IP filters are short anyway...)

90’s: consistent handling becomes an important issue (e.g., splines, wavelets)
= Inputimage: K X L array {flk,}k=0,... . K—1,1=0,....L—1
= Extended image: {fext|k,]} x.1)ez2

« Filtered output: ~ g[k,{]=) Am,n]fext[k —m,l — n]
(m,n)€Z?

m Lazy solution: zero padding

foulk, =0 for [k ¢ [0,...,K —1]x[0,...,L 1]

CAUTION: Lack of consistency;
i.e., filtered version of a zero-padded signal

digital filter is no longer zero at the boundaries.

Unser: Image processing 3-36

Boundary conditions (Cont’d)

m Periodization

A
\ 4

fext[k, 1] = f[k mod K, I mod L]

function p=getpixel(f,k,1); {
1=k mod K;
j=1 mod L; v

p=f(i,j);

m Advantages

= Simple to implement
= Consistent: the filtering of a periodic signal produces a periodic signal

= Periodization is implicit if filtering is performed in the Fourier domain (FFT algorithm)

m Disadvantage
= Produces boundary artifacts

Unser: Image processing 3-37

Boundary conditions (Cont’d)

m Symmetrization / mirror folding
Vk € Zd7 fext[k] — fext[_k] and fext[KO + k] — fext[KO - k]

= Image extension is 2K y-periodic Ky=(K-1,L-1)

function p=getpixel(f,k,1l); {
i=k; j=1;
if (i<0) i=-i;
if (i2K) i=2K-2-(i mod (2K-2));
if (j<0) j=-j;
if (j=L) j=2L-2-(j mod (2L-2));
p=f(i,j);

m Advantages

= Consistent: the symmetric filtering of a folded signal produces a folded signal;
antisymmetric filtering yields an antisymmetric signal extension

= No boundary artifacts

Unser: Image processing 3-38

Fourier-domain filtering

Periodic convolution corresponds to a product in the Fourier domain

H(ejQﬂ'k/N>

m Algorithm
J g
—— FFT x)}— FFT1 —

1. Take discrete 2D Fourier transform of f (FFT algorithm) = O(2N?log, N) operations

Images of size N x N

2. Multiply with the transfer function of the filter = O(N?) operations

3. Take inverse discrete Fourier transform (FFT algorithm) = O(2N?log, N) operations

m Interpretation

The discrete Fourier transform F diagonalizes the periodic convolution matrix T

g=TFf I

—
Fg=FTF 'Ff=FTF ' -Ff =dag(\oo). - . A\~_1n_1)) Ff
with \,, = H(e/2™%/N) (Transfer function)

Unser: Image processing 3-39

Fourier versus space-domain filtering

Long filters should be implemented in the Fourier domain!

Rule of thumb

FFT filtering starts paying off when the number of taps is greater than 8log, N in 1D,
and 16 log, N in 2D

However:

Most usual image-processing filters are short (typ. 3 x 3): they are implemented
most efficiently in the space domain

Some classes of large filters can also be implemented efficiently in the space do-
main using recursive and/or multiscale algorithms

Boundary conditions are handled best in the spatial domain

Spatial implementation gives much more flexibility: adaptive algorithms, non-linear
filtering, etc. ..

= Image processing is mostly performed in the space domain

Unser: Image processing 3-40

3.4 Useful filters for image processing

= Smoothing: the universal tool
= Moving average

= Symmetric exponential filter
= Gaussian filter

Unser: Image processing 3-41

Smoothing: the universal tool

m Spatial smoothing

= Simulates sampling aperture

= Adjustable resolution

= Flexibility

Smoothing = Lowpass filtering

m Primary applications
= Image simplification

= Noise reduction

= Image enhancement Highpass = Identity - Lowpass Bandpass = Lowpass: - Lowpass:

= Feature extraction (image analysis)

Unser: Image processing 3-42

Smoothing (Cont’d)

m Desirable features
Computational efficiency (fast) On the other hand:

Simplicity Shape of frequency response is not important

Adjustable size Best to avoid sharp frequency cut-offs

Symmetry (Gibbs oscillation)
(sensitivity of HVS to phase distortion)

Efficient + Adjustable size = SEPARABLE + RECURSIVE implementation

m Smoothing-filter requirements (1D)

Positivity: hlk] > 0

Unit gain: d hkl=1 & H(z).m1 =1
ke

Symmetry: = Z k-hlk] =0 (centered on the origin)
ke

Equivalent window size: 02, = » k*h[k]

Unser: Image processing 3-43

Moving average filter

= Centered L; x L, moving average
LL1/2] [L2/2]

ylk,l] = L11L2 Z Z x[k —m,l — nj

L+, Lo: horizontal and vertical window sizes (must be odd)

= Example: 3 X 3 moving average

1 1 1 1
=111 1 1 —1[1 1 1]@1 1
9 3 3
1 1 1 1

= Separable transfer function:

H(z1,22) = HLl(Zl) - Hp,(22)
—Lo L—1

where H,(z 2:1z = L > 2% with Lo =[L/2]
k:_—LO k=0

= successive filtering along the rows and columns!

Unser: Image processing

3-44

Moving average: implementation

m Recursive implementation in 1D
x|k — L] x[k]

/ /

. 4

A
\

L

y[k+1]=y[k]+%(x[k—Lo+L]—:c[k:—Lo]) with Lo = |L/2]

= 2 adds and 1 mult per sample irrespective of L!

1

z-transform: 2Y(z) =Y (2) + EX(Z) (25 Fo — 5= To)
CY(2) ozt (21
= HL(Z)—X(Z)_ 7 (Z_l)

Unser: Image processing 3-45

Moving average: transfer function

m z-transform

5 Lo L7 z=Lo /L1
Hp(z) = T sz: I (z—1>

k=0

= Fourier transform: L = 2L, + 1 (odd)

HL(ejw) _ l (ejw(L0+1) - e_jWLO) _ l <€jWL/2 — e_jWL/Q) 1 SIH(WL/Q)

eiw — 1 L\ e/ —¢=iw/2) L sin(w/2)

0.751
0.5r

0.25¢

_0.25) \\/

Normalized frequency

Unser: Image processing

3-46

Symmetric exponential filter

= Impulse response
hlki, ko] = C - ol - 0}

(' such that Z hlk,l] =1 I
(k,1)€Z2

= Separable transfer function

H(z1,29) = Ha,(71) - Hay(22) where Hy(z) =

Co

= successive filtering along the rows and columns!

(1 —az=1)(1—az)

1

0.75} a=0.2

a=04
0.5}

0.25¢

_ Normalized frequency
Unser: Image processing

0.5

3-47

Symmetric exponential (1D)

h K]
m Construction of a symmetric exponential
a*l = hy (k] + hi[—k]—0[k] O<a<l1 e o o o
g = @ B20) p— b = B[k
Tl 0, otherwise T T g A=
m Transfer function - -
. 1 I 1 — a?
He(z)+ He(27) =1 = 1 —azt i 1—az = (1 —az"Y(1—az)
m Normalized exponential
_ Ca _ _ _ 2
H,(z) = a1 = a3) such that l%ha[k] =H,(1)=1 = Cy=(1-a)
l1—a 2 (1—a)?
halk] (1—|—a) . Ha(2) (1 —az"Y(1—az)

Unser: Image processing 3-48

Exponential filtering: implementation

Clo

m Exponential filter: H,(z) = B N)
—az — az

Cascade of first-order recursive filters

x[k] 1 y1[K] 1 y2 (K]
g 1—az1 1—az
causal anti-causal
X(z
Yi(z2) = T ELZ)_l = Yi(2) = X(2) +az" 'Y (2)

m Recursive-filtering algorithm

1. Causalfiltering: y1 k] = z[k] + a1 [k — 1], for (k=0,...,N —1)
2. Anti-causal filtering: yalk] = y1 k] + ay2lk + 1], for(k=N—1,...,0)

3. Normalization: ylk] = C, - y2 K]

Unser: Image processing 3-49

Gaussian filter

m 2D Gaussian impulse response

1 k? +1?
helk, 1] = 5 €XP (—(T)) = gauss(k; o) x gauss(l; o)

2o 2072

1 2
where gauss(z;0) = exp (——)

m Motivation

Only filter that is both circular-symmetric and separable

= successive filtering along the rows and columns!
Optimal space-frequency localization

Linear scale space

Unser: Image processing 3-50

Linear scale-space & the melting cat

u(x,y;t =0)

o=1

m Heat-flow interpretation

ou(z,y;t)

Diffusion equation (isotropic): = Au(x,y;t)

ot
General solution: u(z,y;t) = u(x,y; 0) * gauss(z, y; 0 = /2t)

Unser: Image processing 3-51

Refresher: Central-limit theorem
m Probability density function (PDF) m Moments: mean and variance

00 o0
p(x) = 0, /+ p(x)dr =1 M:E{x}:/_w - p(x)de

oo .
0? = Var{z} = / (z — p)?p(z) do
m Sum of two independent random variables

Var{x; + x2} = Var{z1} 4+ Var{zs} PDF: piio(z) = (p1 * p2)(x)

m Sum of IV independent, identically-distributed random variables

N N
Var {sz} = ZVar{a:i} = No?
i=1 i=1

PDF: N-fold convolution of p(x)

- _ 1 —(x — Np)?
Central-limittheorem: psum () = Sp * p:l:- - -pZ(az) — s exp (SN o2
N times

Unser: Image processing 3-52

Efficient Gaussian filtering

via a judicious use of elementary operators...

m Convolution interpretation of the Central-limit theorem

“The N-fold iteration of any lowpass filter converges to a Gaussian”

m Gaussian filtering by repeated moving average of size 2L + 1 (odd)

(r)dx >

Lo

1 Lo + L3
2 - § 2 0 0 — E 2 ~

k=—Lg keZ

N iterations = 05, =No;

rect

m Gaussian filtering by repeated exponential filtering

0_2 L 2a (: Zk2ha[k] — w)

Determination of exponential parameter for a desired o and NV

P (1 —a)? dz?
kez
2N
N iterations = o2, = a a)2
—a

s 2Na B N VN2 +2No?
o _(1—a)2 = a—1+02— >

Unser: Image processing

3-53

Side note

m |dentity to retrieve equivalent window size using z-transform
We have H,(z) = >, ha|k]z™F

so also dH (z) = >, halk](—k)z=F1

and CHe(2) — S~ h, [k)(k + 1)kz—k—2
Thus, for z = 1 we obtain >, h,[k]k? + Z hal

H/_/
=0 (centered)

Unser: Image processing 3-54

Nomenclature of prototypical filters

all-pass
[H(e7*)]

w
low-pass
: [H (e?*)]
W
—T s g
high-pass
REIChI
w
-7 ™

Unser: Image processing

band-pass
| H (7))

I Y

band-cut
| H (e7%)]

v

all-cut

[H(e)|

A

3-55

3.5 SUMMARY

Discrete images are sequences indexed by two (or more) spatial integer variables. When
they have finite energy, they can be viewed as points in the Hilbert space Ez(Zd).

A discrete image is characterized by its 2D Fourier transform which is 27-periodic.

The 2D z-transform provides an often more convenient characterization. It is a direct vector
generalization of the 1D transform. Thus, it has essentially the same properties.

Digital filtering can be described as a local masking operation (running inner-product), or as
a discrete convolution. A 2D digital filter is either described by a mask (which displays the
reversed version of the impulse response), its transfer function, or its frequency response.

When processing images, special care has to be taken to handle the boundaries (periodiza-
tion or mirror folding).

Many popular image-processing filters are short and separable. The computations are there-
fore usually performed in the spatial domain by successive filtering along the rows and
columns.

Very useful, low-complexity spatial smoothers are the moving average, the symmetric expo-
nential, and the Gaussian filter. They can all be implemented recursively with a complexity
independent of the window size.

Unser: Image processing 3-56

