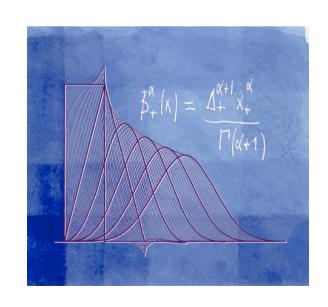


Image Processing

Chapter 3 Characterization of discrete images and linear filtering

Prof. Michael Unser, LIB

Prof. Dimitri Van De Ville, MIPLAB



CONTENT

3.1 Characterization of discrete images

- Discrete image representation
- Discrete-space Fourier transform
- Multidimensional z-transform

3.2 Digital filtering

- Filtering with 2D masks
- Equivalent filter characterizations
- Separability

3.3 Filtering images: practical considerations

3.4 Useful image-processing filters

- Smoothing: the universal tool
- Moving average
- Symmetric exponential filter

3.1 Characterization of discrete images

- Discrete image representation
- Space of square-summable sequences
- Discrete-space Fourier transform
- Parseval relation
- Multidimensional z-transform
- z-transform properties

Discrete image representation

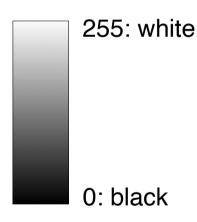
Set of *pixels* (picture elements)

 $\{a[k,l]\}$ with $(k=0,\cdots,K-1)$ and $l=0,\cdots,L-1$

Origin

K: number of columns

L: number of rows (lines)



a[k, l]

 \blacksquare Array of pixels of size $K \times L$

Storage as a $L \times K$ Matlab matrix: $\mathbf{A} = [a_{i,j}]$ with $a_{i,j} = a[j-1, i-1]$

with
$$a_{i,j} = a[j-1, i-1]$$

Space of square-summable images

Images as 2D sequences of the space variables

$$a[k,l] \in \ell_2(\mathbb{Z}^2)$$
 or $a[k]$ with $k = (k,l) \in \mathbb{Z}^2$ (compact notation)

 \blacksquare 2D ℓ_2 -inner product

$$\langle a,b\rangle_{\ell_2} = \sum_{k\in\mathbb{Z}} \sum_{l\in\mathbb{Z}} a[k,l]\,b^*[k,l], \qquad \text{ induced ℓ_2-norm: } \|a\|_{\ell_2} = \sqrt{\langle a,a\rangle_{\ell_2}}$$

Space of square-summable discrete images

Hilbert space:
$$\ell_2(\mathbb{Z}^2) = \{a[k] : k \in \mathbb{Z}^2, ||a||_{\ell_2}^2 < +\infty\}$$

Extension to higher dimensions

$$a[\mathbf{k}]$$
 with $\mathbf{k} = (k_1, k_2, \cdots, k_d) \in \mathbb{Z}^d$
$$\langle a, b \rangle_{\ell_2(\mathbb{Z}^d)} = \sum_{\mathbf{k} \in \mathbb{Z}^d} a[\mathbf{k}] \, b^*[\mathbf{k}], \qquad \qquad \ell_2(\mathbb{Z}^d) = \left\{ a[\mathbf{k}] : \mathbf{k} \in \mathbb{Z}^d, \|a\|_{\ell_2}^2 < +\infty \right\}$$

Discrete-space Fourier transform

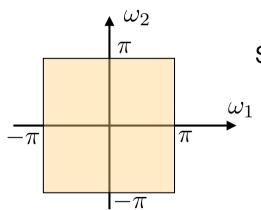
2D discrete Fourier transform: definition

$$\hat{a}(\omega_1, \omega_2) = \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} a[k_1, k_2] e^{-j(\omega_1 k_1 + \omega_2 k_2)}$$

Sufficient condition for existence: $a \in \ell_1(\mathbb{Z}^2)$

 $= 2\pi - periodicity$

$$\hat{a}(\omega_1, \omega_2) = \hat{a}(\omega_1 + m2\pi, \omega_2 + n2\pi), \quad (m, n) \in \mathbb{Z}^2$$



Space of absolute-summable sequences

$$\ell_1(\mathbb{Z}^d) = \{ a[k] : k \in \mathbb{Z}^d, ||a||_{\ell_1} < +\infty \}$$

$$lacksquare \ell_1$$
-norm: $\|a\|_{\ell_1} = \sum_{m{k} \in \mathbb{Z}^d} |a[m{k}]|$

$$\bullet \ell_1(\mathbb{Z}^d) \subset \ell_2(\mathbb{Z}^d)$$

Support of main Fourier period:

$$\omega_1 \quad [-\pi, \pi]^2 = [-\pi, \pi] \times [-\pi, \pi]$$

Inverse Fourier transform

$$a[k_1, k_2] = \frac{1}{(2\pi)^2} \int_{-\pi}^{+\pi} \int_{-\pi}^{+\pi} \hat{a}(\omega_1, \omega_2) e^{j(\omega_1 k_1 + \omega_2 k_2)} d\omega_1 d\omega_2$$

Multidimensional Fourier transform

- Multidimensional vector notation (d dimensions)
 - Spatial variables: $\mathbf{k} = (k_1, \dots, k_d) \in \mathbb{Z}^d$
 - Frequency variables: $\boldsymbol{\omega} = (\omega_1, \dots, \omega_d) \in \mathbb{R}^d$
 - Equivalent phase: $\langle \boldsymbol{\omega}, \boldsymbol{k} \rangle = \boldsymbol{\omega}^T \boldsymbol{k} = \omega_1 k_1 + \cdots + \omega_d k_d$

$$\hat{a}(\boldsymbol{\omega}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} a[\boldsymbol{k}] e^{-j\langle \boldsymbol{\omega}, \boldsymbol{k} \rangle}$$

$$a[\mathbf{k}] = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \hat{a}(\boldsymbol{\omega}) e^{j\langle \boldsymbol{\omega}, \mathbf{k} \rangle} d\omega_1 \cdots d\omega_d$$

$$[-\pi,\pi]^d = [-\pi,\pi] \times \cdots \times [-\pi,\pi]$$

Classical framework

 $a \in \ell_1(\mathbb{Z}^d) \quad \Rightarrow \quad \hat{a}(\boldsymbol{\omega}) \text{ bounded, continuous}$

$$|\hat{a}(\boldsymbol{\omega})| \leq \sum_{\boldsymbol{k} \in \mathbb{Z}^d} |a[\boldsymbol{k}] e^{-j\langle \boldsymbol{\omega}, \boldsymbol{k} \rangle}| = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} |a[\boldsymbol{k}]| = ||a||_{\ell_1}$$

3-7

Parseval relation

 $lue{}$ Discrete-space Fourier transform in ℓ_2

$$a \in \ell_2(\mathbb{Z}^d) \quad \Leftrightarrow \quad \hat{a}(\boldsymbol{\omega}) \in L_2([-\pi, \pi]^d)$$

Theorem: The complex sinusoids $\left\{e^{\pm j\langle \boldsymbol{\omega}, \boldsymbol{k}\rangle}\right\}_{\boldsymbol{k} \in \mathbb{Z}^d}$ form an orthonormal basis of $L_2([-\pi, \pi]^d)$ with respect to the Hermitian inner-product: $\langle \hat{a}, \hat{b} \rangle_{L_2([-\pi, \pi]^d)} = \frac{1}{(2\pi)^d} \int_{\boldsymbol{\omega} \in [-\pi, \pi]^d} \hat{a}(\boldsymbol{\omega}) \, \hat{b}^*(\boldsymbol{\omega}) \, d\omega_1 \cdots d\omega_d.$

Dual Hilbert-space interpretation

- $\sum_{k \in \mathbb{Z}^d} a[k] e^{-j\langle \omega, k \rangle}$: Fourier series expansion of the 2π -periodic function $\hat{a}(-\omega)$
- $ullet a[m{k}] = \langle \hat{a}(\cdot), e^{-j\langle \cdot, m{k} \rangle} \rangle_{L_2([-\pi,\pi]^d)}$: standard formula for the Fourier coefficients
- Parseval's formula: $\langle a,b\rangle_{\ell_2}=\langle \hat{a},\hat{b}\rangle_{L_2([-\pi,\pi]^d)}$

$$\sum_{\mathbf{k}\in\mathbb{Z}^d} a[\mathbf{k}] b^*[\mathbf{k}] = \frac{1}{(2\pi)^d} \int_{\boldsymbol{\omega}\in[-\pi,\pi]^d} \hat{a}(\boldsymbol{\omega}) \hat{b}^*(\boldsymbol{\omega}) d\omega_1 \cdots d\omega_d$$

Preservation of the energy (isometry property)

$$||a||_{\ell_2(\mathbb{Z}^d)}^2 = ||\hat{a}||_{L_2([-\pi,\pi]^d)}^2 = \frac{1}{(2\pi)^d} \int_{\boldsymbol{\omega} \in [-\pi,\pi]^d} |\hat{a}(\boldsymbol{\omega})|^2 d\omega_1 \cdots d\omega_d$$

3-8

Relation with continuous-space transform

Shannon's representation of a bandlimited function

$$f_{\mathrm{Shannon}}(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} f[\boldsymbol{k}] \operatorname{sinc}(\boldsymbol{x} - \boldsymbol{k})$$

Continuous-domain Fourier transform:

$$\mathcal{F}\{f_{\mathrm{Shannon}}\}(\boldsymbol{\omega}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^d} f[\boldsymbol{k}] \, \mathcal{F}\{\mathrm{sinc}(\cdot - \boldsymbol{k})\}(\boldsymbol{\omega}) \qquad \text{(by linearity)}$$

$$= \sum_{\boldsymbol{k} \in \mathbb{Z}^d} f[\boldsymbol{k}] e^{-j\langle \boldsymbol{\omega}, \boldsymbol{k} \rangle} \, \mathcal{F}\{\mathrm{sinc}\}(\boldsymbol{\omega}) \qquad \text{(shift property)}$$

$$\hat{f}_{\mathrm{Shannon}}(\boldsymbol{\omega}) = \quad \hat{f}_{\mathrm{discrete}}(\boldsymbol{\omega}) \, \times \, \mathrm{rect}\big(\frac{\boldsymbol{\omega}}{2\pi}\big) \, = \left\{ \begin{array}{l} \hat{f}_{\mathrm{discrete}}(\boldsymbol{\omega}), & \text{for } \boldsymbol{\omega} \in [-\pi, \pi]^d \\ 0, & \text{otherwise.} \end{array} \right.$$

Note: this equivalence only holds when the function $f = f_{Shannon}$ is bandlimited.

Multidimensional z-transform

Complex variable: $z = (z_1, \dots, z_d) \in \mathbb{C}^d$, Space index: $k = (k_1, \dots, k_d) \in \mathbb{Z}^d$

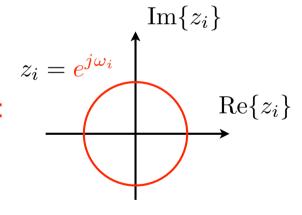
Definition

- Multi-index exponent: $z^k \stackrel{\triangle}{=} z_1^{k_1} z_2^{k_2} \cdots z_d^{k_d}$
- lacksquare z-transform : $A(m{z}) = \sum a[m{k}] m{z}^{-m{k}}$ for $m{z} \in \mathsf{ROC}$: Region of convergence

Relation with the Fourier transform

$$z_1 = e^{j\omega_1}, z_2 = e^{j\omega_2}, \dots, z_d = e^{j\omega_d}$$

unit circles:



Define: $e^{j\boldsymbol{\omega}} \stackrel{\triangle}{=} (e^{j\omega_1}, \dots, e^{j\omega_d})$

$$A(\boldsymbol{z})|_{\boldsymbol{z}=e^{j\boldsymbol{\omega}}} = \sum_{\boldsymbol{k}\in\mathbb{Z}^d} a[\boldsymbol{k}] \left(e^{j\boldsymbol{\omega}}\right)^{-\boldsymbol{k}} = \sum_{\boldsymbol{k}\in\mathbb{Z}^d} a[\boldsymbol{k}] e^{-j\omega_1 k_1} \cdots e^{-j\omega_d k_d}$$

$$\Rightarrow A(e^{j\omega}) = \hat{a}(\omega) = \sum_{\mathbf{k} \in \mathbb{Z}^d} a[\mathbf{k}] e^{-j\langle \omega, \mathbf{k} \rangle}$$

Region of convergence

ROC: region of
$$\mathbb{C}^d$$
 where $A(z) = \sum_{k \in \mathbb{Z}^d} a[k] z^{-k}$ converges uniformly

- Practical constraint: convergent Fourier transform
 - \Rightarrow ROC must include the unit circles domain $z_1=e^{j\omega_1},\ldots,z_d=e^{j\omega_d}$
- Most cases of interest fall into these two categories:
 - $\mathbf{a}[\mathbf{k}]$ is bounded and compactly supported (FIR)

$$\Rightarrow ROC = \mathbb{C}^d \setminus \{0\}$$
 (the complex hyperplane without the origin)

 $a[k] \in \ell_1(\mathbb{Z}^d)$

$$\left| A(e^{j\boldsymbol{\omega}}) \right| = \left| \sum_{\boldsymbol{k} \in \mathbb{Z}^d} a[\boldsymbol{k}] e^{-j\omega_1 k_1} \cdots e^{-j\omega_d k_d} \right| \leqslant \sum_{\boldsymbol{k} \in \mathbb{Z}^d} |a[\boldsymbol{k}]| = ||a||_{\ell_1} < +\infty$$

 \Rightarrow ROC includes the unit circles $z_1 = e^{j\omega_1}, \dots, z_d = e^{j\omega_d}$

z-transform properties

Separability
$$x[k] = x_1[k_1] \times \cdots \times x_d[k_d]$$
 $\stackrel{z}{\longleftrightarrow}$ $X(z) = X_1(z_1) \times \cdots \times X_d(z_d)$

Delay
$$x[\boldsymbol{k}-\boldsymbol{k}_0]$$
 $\stackrel{z}{\longleftrightarrow}$ $z^{-\boldsymbol{k}_0}X(z)$

Convolution
$$(h*x)[k] = \sum_{k_1 \in \mathbb{Z}^d} h[k_1]x[k-k_1] \quad \stackrel{z}{\longleftrightarrow} \quad Y(z) = H(z)X(z)$$

Sketch of proof:
$$Y(z) = \sum_{k \in \mathbb{Z}^d} \sum_{k_1 \in \mathbb{Z}^d} h[k_1] x[k - k_1] z^{-k}$$

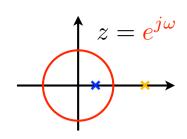
 \updownarrow Change of variable $oldsymbol{k} - oldsymbol{k}_1 = oldsymbol{k}_2$

$$Y(\boldsymbol{z}) = \sum_{\boldsymbol{k}_1 \in \mathbb{Z}^d} \sum_{\boldsymbol{k}_2 \in \mathbb{Z}^d} h[\boldsymbol{k}_1] x[\boldsymbol{k}_2] \boldsymbol{z}^{-(\boldsymbol{k}_1 + \boldsymbol{k}_2)}$$

$$Y(\boldsymbol{z}) = \sum_{\boldsymbol{k}_1 \in \mathbb{Z}^d} h[\boldsymbol{k}_1] \boldsymbol{z}^{-\boldsymbol{k}_1} \sum_{\boldsymbol{k}_2 \in \mathbb{Z}^d} x[\boldsymbol{k}_2] \boldsymbol{z}^{-\boldsymbol{k}_2} = H(\boldsymbol{z}) X(\boldsymbol{z})$$

z-transform examples in 1D

Definition:
$$X(z) = \sum_{k \in \mathbb{Z}} x[k]z^{-k}$$



Causal exponential

$$x_{+}[k] = \begin{cases} a^{k}, & k \geqslant 0 \\ 0, & \text{otherwise} \end{cases} \quad \text{with } 0 < |a| < 1$$

$$\text{ with } 0<|a|<1$$



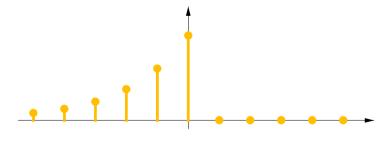
Geometric series

$$\Rightarrow X_{+}(z) = \sum_{k=0}^{+\infty} (a/z)^{k} = \lim_{K \to +\infty} \left(\frac{1 - (a/z)^{K}}{1 - (a/z)} \right) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|$$

Anti-causal exponential

$$x_-[k] = \left\{ \begin{array}{ll} a^{|k|}, & k \leqslant 0 \\ 0, & \text{otherwise} \end{array} \right. \quad \text{with } 0 < |a| < 1$$

$$\text{ with } 0<|a|<1$$



$$X_{-}(z) = X_{+}(z^{-1}) \quad \Rightarrow \quad Z$$

$$X_{-}(z) = X_{+}(z^{-1}) \quad \Rightarrow \quad X_{-}(z) = \frac{1}{1 - az} = -\frac{a^{-1}}{z - a^{-1}}, \qquad |z| < |a|^{-1}$$

$$|z| < |a|^{-1}$$

z-transform example in 2D

■ Basic formula: $X(z_1, z_2) = \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} x[k_1, k_2] z_1^{-k_1} z_2^{-k_2}$

1	0	-1
2	0	-2
1	0	-1

 $x[{m k}]$ bounded and compactly supported

 \Rightarrow ROC = $\mathbb{C}^2 \setminus \{0\}$ (the complex hyperplane without the origin)

Inverse z-transform

Identify the coefficients of the Laurent polynomial

$$X(z_1, z_2) = \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \in \mathbb{Z}} x[k_1, k_2] z_1^{-k_1} z_2^{-k_2}$$

- Take advantage of separability when it is present: $X(z_1, z_2) = X_1(z_1) \cdot X_2(z_2)$
- Reminder of 1D methods
 - Cauchy integral theorem: $x[k] = \frac{1}{2\pi j} \oint_{\Gamma} X(z) z^{k-1} dz$

 Γ : any contour that encloses the origin

Use of tables and/or partial-fraction decomposition (linearity)

Example:
$$\frac{-3}{2z^{-1} - 5 + 2z} = \frac{3/4}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{2}z)} = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - \frac{1}{2}z} - 1$$

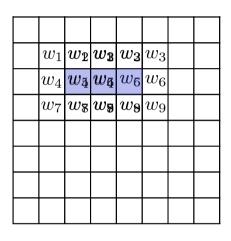
$$\Rightarrow \quad x[k] = \left(\frac{1}{2}\right)^{|k|} = u[k] \left(\frac{1}{2}\right)^k + u[-k] \left(\frac{1}{2}\right)^{-k} - \delta[k]$$

3.2 DIGITAL FILTERING

- Filtering with 2D masks
- Linearity and shift-invariance
- Impulse response and discrete convolution
- Equivalent filter characterizations
- Examples of transfer functions
- Separability
- z-transform and recursive filtering

Filtering with 2D masks

Mask or local operator formulation



Filtering mask (weights) $(2M+1) \times (2N+1)$

$$m{w} = \left[egin{array}{cccc} w[-M,-N] & \cdots & w[M,-N] \ dots & \left[w[0,0]
ight] & dots \ w[-M,N] & \cdots & w[M,N] \end{array}
ight]$$

Local neighborhood vector

$$m{f}[k,l] = \left[egin{array}{cccc} f[k-M,l-N] & \cdots & f[k+M,l-N] \ dots & f[k,l] & dots \ f[k-M,l+N] & \cdots & f[k+M,l+N] \end{array}
ight]$$

Filtering: matrix formulation

$$g[m{k}] = \langle m{f}[m{k}], m{w}
angle = \sum_i \sum_j [m{f}[m{k}]]_{i,j} [m{w}]_{i,j}$$
 (term-by-term product)

CAUTION: "correlation" formula

Filter examples

digital filter

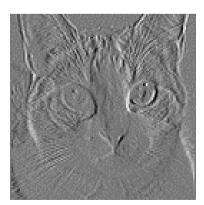
Mask: $oldsymbol{w}$

 \blacksquare Local 3×3 average

$$m{w}_{
m ave} = rac{1}{9} \left[egin{array}{cccc} 1 & 1 & 1 & 1 \ 1 & \boxed{1} & 1 \ 1 & 1 & 1 \end{array}
ight]$$

Horizontal-edge enhancement

$$oldsymbol{w}_{\mathrm{hor}} = \left[egin{array}{ccc} -1 & -2 & -1 \ 0 & \boxed{0} & 0 \ 1 & 2 & 1 \end{array}
ight]$$



Vertical-edge enhancement

$$oldsymbol{w}_{ ext{vert}} = \left[egin{array}{ccc} -1 & 0 & 1 \ -2 & \boxed{0} & 2 \ -1 & 0 & 1 \end{array}
ight]$$

Digital filtering: implementation

Pseudo code (JAVA)

```
Input image : f (size K \times L)
Output image : g (size K \times L)
Local neighborhood array : v (size M × M)
Mask array: \mathbf{w} (size M × M) (e.g., {{1,1,1}, {0,0,0}, {-1,-1,-1}})
for (x=0 ; x<K ; x++) {
    for (y=0 ; y<L ; y++) {
       v=f.getNeighborhood(x,y) ;
       outpix=0.0;
       for (i=0; i < M; i++) {
         for (j=0; j<M; j++) {
            outpix=outpix+ v[i,j]*w[i,j] ;
        q.putPixel(x,y,outpix);
```

Linearity and shift-invariance

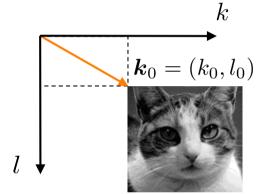
Linearity

$$a_1 f_1[\mathbf{k}] + a_2 f_2[\mathbf{k}] \longrightarrow T_{\text{lin}}\{a_1 f_1 + a_2 f_2\}[\mathbf{k}] = a_1 T_{\text{lin}}\{f_1\}[\mathbf{k}] + a_2 T_{\text{lin}}\{f_2\}[\mathbf{k}]$$

$$\longrightarrow T_{\text{lin}}\{\}$$

Shift operator

$$f[\mathbf{k}] \longrightarrow S^{\mathbf{k}_0}\{\} \longrightarrow f[\mathbf{k} - \mathbf{k}_0]$$

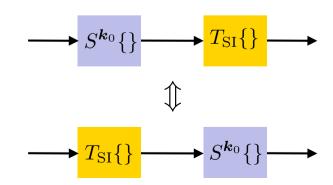


Shift-invariant filter

$$f[\mathbf{k}] \longrightarrow T_{SI}\{\} \longrightarrow g[\mathbf{k}]$$

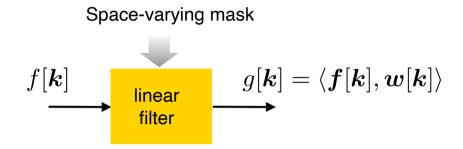
$$f[\mathbf{k} - \mathbf{k}_0] \longrightarrow g[\mathbf{k} - \mathbf{k}_0]$$

Filter commutes with shift operator:

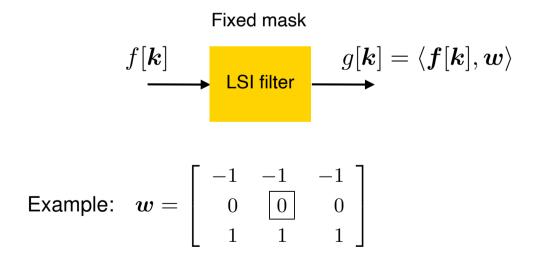


Linear and shift-invariant filters

Characterization of linear filters



Characterization of linear, shift-invariant filters



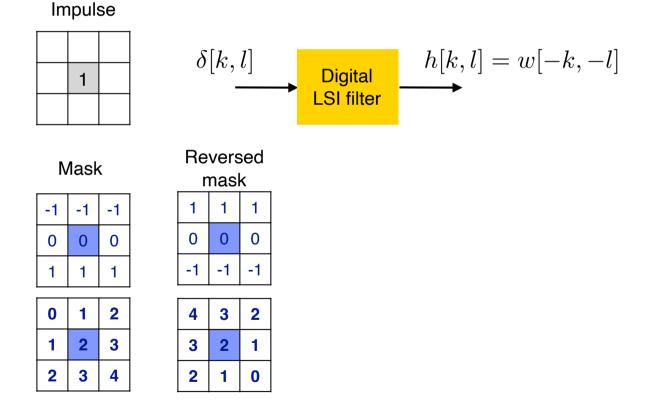
Converting a mask into an impulse response

Impulse

response

Filter implementation using a mask

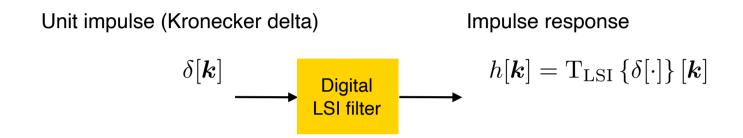
$$g[k,l] = \sum_{i} \sum_{j} w[i,j] f[k+i,l+j]$$
 (correlation)



Impulse response = **space-reversed** version of the mask

Impulse response and discrete convolution

Impulse response (e.g., discrete point-spread function)



Property: A digital LSI filter is uniquely characterized by its impulse response, which is the **space-reversed** version of its mask: h[k] = w[-k]

Equivalent convolution operator

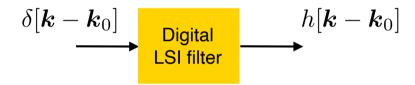
$$\begin{array}{c} f[k,l] \\ \hline \\ \text{Digital} \\ \text{LSI filter} \\ \end{array} \\ \begin{array}{c} g[k,l] = (h*f)[k,l] = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} f[m,n]h[k-m,l-n] \\ \hline \\ \text{Discrete convolution} \\ \end{array}$$

Convolution: breaking it into steps

Unit impulse (pixel) at the origin

Definition of impulse response

lacksquare Unit impulse (pixel) at $oldsymbol{k}_0$



Shift-invariance

Pixel at k_0 with value $f[k_0]$

$$f[\mathbf{k}_0] \cdot \delta[\mathbf{k} - \mathbf{k}_0] \xrightarrow{\text{Digital LSI filter}} f[\mathbf{k}_0] \cdot h[\mathbf{k} - \mathbf{k}_0]$$

Linearity

Input image = sum of pixels

$$\sum_{\boldsymbol{k}_0} f[\boldsymbol{k}_0] \delta[\boldsymbol{k} - \boldsymbol{k}_0] \longrightarrow \sum_{\boldsymbol{k}_0} f[\boldsymbol{k}_0] h[\boldsymbol{k} - \boldsymbol{k}_0]$$
 Superposition
$$= (h * f)[\boldsymbol{k}]$$

3-24 Unser: Image processing

Equivalent filter characterizations

Digital LSI filter = Discrete convolution operator

$$T_{\mathrm{LSI}}\{f\}[oldsymbol{k}] = (h*f)[oldsymbol{k}] = \sum_{oldsymbol{n}\in\mathbb{Z}^d} h[oldsymbol{n}]f[oldsymbol{k}-oldsymbol{n}] & \stackrel{z}{\longleftrightarrow} G(oldsymbol{z}) = H(oldsymbol{z})F(oldsymbol{z})$$

- Impulse response: $T_{\mathrm{LSI}}\left\{\delta[\cdot]\right\}[m{k}] = h[m{k}]$
- Transfer function: $H(z_1,z_2)=\sum_{k_1\in\mathbb{Z}}\sum_{k_2\in\mathbb{Z}}h[k_1,k_2]z_1^{-k_1}z_2^{-k_2}$
- Frequency response: $H(e^{j\omega_1},e^{j\omega_2})=\sum_{k_1\in\mathbb{Z}}\sum_{k_2\in\mathbb{Z}}h[k_1,k_2]e^{-jk_1\omega_1}e^{-jk_2\omega_2}$

Response to a complex sinusoid:
$$T_{\rm LSI}\left\{e^{j\langle m{\omega}, m{k}' \rangle}\right\}[m{k}] = e^{j\langle m{\omega}, m{k} \rangle} \cdot m{H}(e^{jm{\omega}})$$

Proof:
$$\left(h * e^{j\langle \boldsymbol{\omega}, \cdot \rangle}\right)[\boldsymbol{k}] = \sum_{\boldsymbol{n} \in \mathbb{Z}^d} h[\boldsymbol{n}] e^{j\langle \boldsymbol{\omega}, \boldsymbol{k} - \boldsymbol{n} \rangle} = e^{j\langle \boldsymbol{\omega}, \boldsymbol{k} \rangle} \sum_{\boldsymbol{n} \in \mathbb{Z}^d} h[\boldsymbol{n}] e^{-j\langle \boldsymbol{\omega}, \boldsymbol{n} \rangle}$$

Example 1: local 3 × 3 average

■ Mask:
$$w_{\text{ave}} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \boxed{1} & 1 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow h_{\text{ave}} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \boxed{1} & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

■ Transfer function:
$$H(z_1,z_2) = \frac{1}{3}(z_1+1+z_1^{-1}) \times \frac{1}{3}(z_2+1+z_2^{-1})$$

Frequency response:
$$H(e^{j\omega_1}, e^{j\omega_2}) = \underbrace{\left(\frac{1+2\cos\omega_1}{3}\right)}_{H_{\text{ave}}(e^{j\omega_1})} \underbrace{\left(\frac{1+2\cos\omega_2}{3}\right)}_{H_{\text{ave}}(e^{j\omega_2})}$$

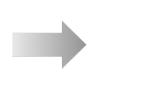
$$|H_{
m ave}(e^{j\omega})|$$

lowpass behavior

Example 2: vertical-edge enhancer

impulse response

■ Mask:
$$m{w}_{\mathrm{vert}} = \left[egin{array}{ccc} -1 & 0 & 1 \\ -1 & \boxed{0} & 1 \\ -1 & 0 & 1 \end{array} \right]$$

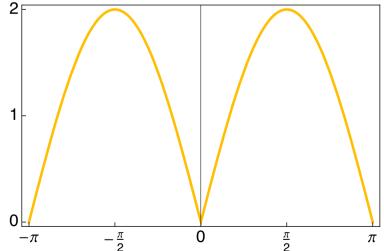


1	0	-1	
1	0	-1	
1	0	-1	

"correlation"

"convolution"

- Transfer function: $H_{\text{vert}}(z_1, z_2) = (z_1 z_1^{-1})(z_2 + 1 + z_2^{-1})$
- Frequency response: $H_{\mathrm{vert}}(e^{j\omega_1},e^{j\omega_2}) = \underbrace{(2j\sin\omega_1)}_{\text{bandpass}}\underbrace{(1+2\cos\omega_2)}_{\text{lowpass}}$



 $\left| H_{\mathrm{band}}(e^{j\omega_1}) \right|$

Separability

Most useful image processing filters are separable... which brings us back to a 1D problem

Definition of separability

$$h[k_1, k_2] = h_1[k_1] \cdot h_2[k_2] \qquad \rightarrow \qquad h[\mathbf{k}] = \prod_{i=1}^d h_i[k_i]$$

$$\updownarrow$$

$$H(z_1, z_2) = H_1(z_1) \cdot H_2(z_2) \qquad \rightarrow \qquad H(\mathbf{z}) = \prod_{i=1}^d H_i(z_i)$$

$$\updownarrow$$

$$H(e^{j\omega_1}, e^{j\omega_2}) = H_1(e^{j\omega_1}) \cdot H_2(e^{j\omega_2})$$

$$\updownarrow$$

$$oldsymbol{h} = oldsymbol{h}_1^T \otimes oldsymbol{h}_2 = egin{bmatrix} h_1[-k_0] \cdots h_1[-k_0+M-1] \end{bmatrix} \otimes egin{bmatrix} h_2[-l_0] \ dots \ h_2[-l_0+N-1] \end{bmatrix}$$

Separability and direct (or tensor) products

■ Direct vector product = $M \times N$ multiplication table

$$oldsymbol{a}^T \otimes oldsymbol{b} = \left[egin{array}{cccc} a_1b_1 & a_2b_1 & \cdots & a_Mb_1 \ a_1b_2 & & \cdots & a_Mb_2 \ dots & & dots \ a_1b_N & & & a_Mb_N \end{array}
ight]$$

×	1	0	-1
1	1	0	-1
2	2	0	-2
1	1	0	-1

Example: $\mathbf{a} = (1, 0, -1), \quad \mathbf{b} = (1, 2, 1)$

Definition of direct matrix product

 $A: P \times Q$ matrix; $B: M \times N$ matrix

$$m{C} = m{A} \otimes m{B} = egin{bmatrix} m{A}b_{11} & m{A}b_{12} & \cdots & m{A}b_{1N} \ m{A}b_{21} & \cdots & m{A}b_{2N} \ dots & dots \ m{A}b_{M1} & m{A}b_{MN} \end{bmatrix} PM imes QN \ ext{matrix}$$

3-29 Unser: Image processing

Example: 3 × 3 smoother

$$m{h}_{
m s} = rac{1}{16} \left[egin{array}{ccc} 1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1 \end{array}
ight] = rac{1}{4} \left[egin{array}{ccc} 1 & 2 & 1 \end{array}
ight] \otimes rac{1}{4} \left[egin{array}{ccc} 1 \ 2 \end{array}
ight]$$

$$h[k,l] = h_1[k] \cdot h_1[l]$$
 where $h_1[k] = \begin{cases} 1/4, & k = \pm 1 \\ 1/2, & k = 0 \\ 0, & \text{otherwise} \end{cases}$

$$H_{\rm s}(z_1, z_2) = \frac{1}{16}(z_1 + 2 + z_1^{-1})(z_2 + 2 + z_2^{-1})$$

- Limitation of separability
 - Orientation-sensitive filters are in general non-separable

Separable filtering: implementation

Design: 1D filtering routine

input:
$$u[n]$$
 with $(n=0,\ldots,N-1)$ output: $v[n]$ function $v = filter1d(u,N)$

Data handling

```
getrow, putrow
getcolumn, putcolumn
```

array-to-line conversion

Generic separable filtering algorithm

```
input: f[k,l] with (k=0,\ldots,K-1,\ l=0,\ldots,L-1) output: g[k,l]
```

```
for (int j=0; j<L; j++) {
    u=getrow(f,j);
    v=filter1d(u,K);
    putrow(g,j,v);
}

for (int i=0; i<K; i++) {
    u=getcolumn(g,i);
    v=filter1d(u,L);
    putcolumn(g,i,v);
}</pre>
```

etc... (for 3D or more)

z-transform and recursive filtering

Rational transfer functions and difference equations

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{m=0}^{M-1} b_m z^{-m}}{\sum_{n=0}^{N-1} a_n z^{-n}} \qquad \Leftrightarrow \qquad \sum_{n=0}^{N-1} a_n y[k-n] = \sum_{m=0}^{M-1} b_m x[k-m]$$

recursive-filter implementation

- Example: causal exponential

$$Y(z) = \left(\frac{1}{1+z^{-1}a_1}\right)X(z) \iff y[k] = x[k] - a_1y[k-1]$$

Stability of rational filters

No poles z_i on the unit circle $z=e^{j\omega}$

Causal part: $|z_i| < 1$

Anti-causal part: $|z_i| > 1$

Recursive filtering and stability

Recursive filter implementation

- Example: causal exponential ($|z|>|a_1|$, pole $z=a_1$)

$$Y(z) = \left(\frac{1}{1 - z^{-1}a_1}\right)X(z) \Leftrightarrow y[k] = x[k] + a_1y[k-1]$$

- Example: anti-causal exponential ($|z| < |a_1|^{-1}$, pole $z = a_1^{-1}$)

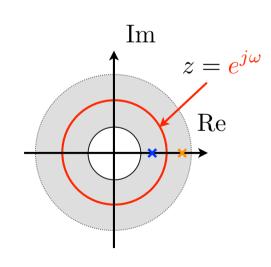
$$Y(z) = \left(\frac{1}{1 - za_1}\right)X(z) \qquad \Leftrightarrow \qquad y[k] = x[k] + a_1y[k+1]$$

Stability of rational filters

No poles z_i on the unit circle $z=e^{j\omega}$

Causal part: $|z_i| < 1$

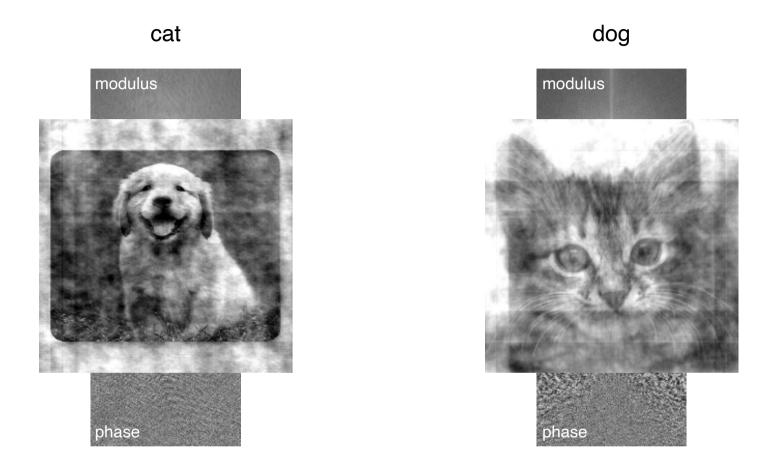
Anti-causal part: $|z_i| > 1$



3.3 Filtering: practical considerations

- About filter design for image processing
- Boundary conditions
- Fourier versus space-domain implementation

About filter design for image processing



- Semantic information (edges, contours) is contained in the phase of the Fourier transform
 - ⇒ Use linear-phase filters; i.e., symmetric or antisymmetric
- Exact shape of the frequency response is not so important
 - \Rightarrow Go for the simplest and fastest...

Unser: Image processing [Example by A. Descloux] 3-35

Boundary conditions

"Thou should not neglect what happens at the boundaries."

60's-80's: lazy handling (IP filters are short anyway...)

90's: consistent handling becomes an important issue (e.g., splines, wavelets)

- Input image: $K \times L$ array $\{f[k,l]\}_{k=0,...,K-1,l=0,...,L-1}$
- Extended image: $\{f_{\mathrm{ext}}[k,l]\}_{(k,l)\in\mathbb{Z}^2}$
- Filtered output: $g[k,l] = \sum_{(m,n)\in\mathbb{Z}^2} h[m,n] f_{\mathrm{ext}}[k-m,l-n]$
- Lazy solution: zero padding

$$f_{\text{ext}}[k, l] = 0$$
 for $[k, l] \notin [0, \dots, K - 1] \times [0, \dots, L - 1]$

digital filter

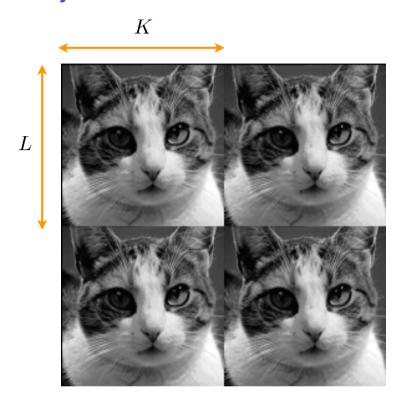


CAUTION: Lack of consistency; i.e., filtered version of a zero-padded signal is no longer zero at the boundaries.

Boundary conditions (Cont'd)

Periodization

```
f_{
m ext}[k,l] = f[k mod K, l mod L] function p=getpixel(f,k,l); { i=k \mod K; j=l \mod L; p=f(i,j); }
```



Advantages

- Simple to implement
- Consistent: the filtering of a periodic signal produces a periodic signal
- Periodization is implicit if filtering is performed in the Fourier domain (FFT algorithm)

Disadvantage

Produces boundary artifacts

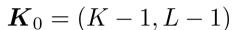
Boundary conditions (Cont'd)

Symmetrization / mirror folding

$$orall m{k} \in \mathbb{Z}^d, \quad f_{ ext{ext}}[m{k}] = f_{ ext{ext}}[-m{k}] \quad ext{and} \quad f_{ ext{ext}}[m{K}_0 + m{k}] = f_{ ext{ext}}[m{K}_0 - m{k}]$$

 \Rightarrow Image extension is $2K_0$ -periodic

```
function p=getpixel(f,k,l); {
   i=k; j=l;
   if (i<0) i=-i;
   if (i>K) i=2K-2-(i mod (2K-2));
   if (j<0) j=-j;
   if (j>L) j=2L-2-(j mod (2L-2));
   p=f(i,j);
}
```



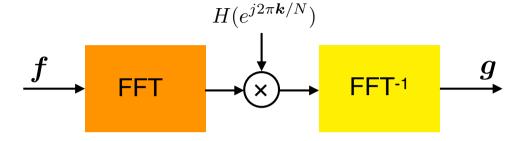
Advantages

- Consistent: the symmetric filtering of a folded signal produces a folded signal;
 antisymmetric filtering yields an antisymmetric signal extension
- No boundary artifacts

Fourier-domain filtering

Periodic convolution corresponds to a product in the Fourier domain

Algorithm



Images of size $N \times N$

- 1. Take discrete 2D Fourier transform of f (FFT algorithm) $\Rightarrow O(2N^2\log_2N)$ operations
- 2. Multiply with the transfer function of the filter $\Rightarrow O(N^2)$ operations
- 3. Take inverse discrete Fourier transform (FFT algorithm) \Rightarrow $O(2N^2\log_2N)$ operations

Interpretation

The discrete Fourier transform ${f F}$ diagonalizes the periodic convolution matrix ${f T}$

$$egin{align*} g = \mathbf{T}f & \mathbf{I} \\ \mathbf{F}g = \mathbf{F}\mathbf{T} & \mathbf{F}^{-1}\mathbf{F} f = \mathbf{F}\mathbf{T}\mathbf{F}^{-1} \cdot \mathbf{F}f = \mathrm{diag}(\lambda_{(\mathbf{0},\mathbf{0})},\dots,\lambda_{(\mathbf{N}-1,\mathbf{N}-1)}) \cdot \mathbf{F}f \ & \mathrm{with} \ \lambda_{m{k}} = H(e^{j2\pim{k}/N}) & \mathrm{(Transfer function)} \end{aligned}$$

Fourier versus space-domain filtering

Long filters should be implemented in the Fourier domain!

Rule of thumb

FFT filtering starts paying off when the number of taps is greater than $8\log_2 N$ in 1D, and $16\log_2 N$ in 2D

However:

- Most usual image-processing filters are short (typ. 3×3): they are implemented most efficiently in the space domain
- Some classes of large filters can also be implemented efficiently in the space domain using recursive and/or multiscale algorithms
- Boundary conditions are handled best in the spatial domain
- Spatial implementation gives much more flexibility: adaptive algorithms, non-linear filtering, etc...

⇒ Image processing is mostly performed in the space domain

3.4 Useful filters for image processing

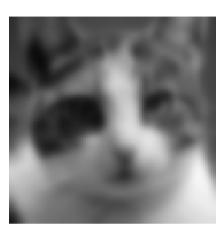
- Smoothing: the universal tool
- Moving average
- Symmetric exponential filter
- Gaussian filter

Smoothing: the universal tool

Spatial smoothing

- Simulates sampling aperture
- Adjustable resolution
- Flexibility

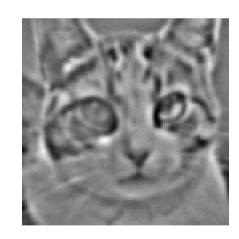
Original = Identity



Smoothing = *Lowpass* filtering

- Primary applications
 - Image simplification
 - Noise reduction
 - Image enhancement

Highpass = Identity - *Lowpass*



Bandpass = $Lowpass_1 - Lowpass_2$

■ Feature extraction (image analysis)

Smoothing (Cont'd)

Desirable features

- Computational efficiency (fast)
- Simplicity
- Adjustable size
- Symmetry (sensitivity of HVS to phase distortion)

On the other hand:

- Shape of frequency response is not important
- Best to avoid sharp frequency cut-offs (Gibbs oscillation)

Efficient + Adjustable size \Rightarrow SEPARABLE + RECURSIVE implementation

Smoothing-filter requirements (1D)

Positivity:
$$h[k] \geqslant 0$$

Unit gain:
$$\sum_{k=1}^\infty h[k] = 1 \qquad \Leftrightarrow \qquad H(z)|_{z=1} = 1$$

Symmetry:
$$\Rightarrow \sum_{k \in \mathbb{Z}} k \cdot h[k] = 0$$
 (centered on the origin)

Equivalent window size:
$$\sigma_{\mathrm{eq}}^2 = \sum_{k \in \mathbb{Z}} k^2 h[k]$$

Moving average filter

 \blacksquare Centered $L_1 \times L_2$ moving average

$$y[k,l] = \frac{1}{L_1 L_2} \sum_{m=-\lfloor L_1/2 \rfloor}^{\lfloor L_1/2 \rfloor} \sum_{n=-\lfloor L_2/2 \rfloor}^{\lfloor L_2/2 \rfloor} x[k-m,l-n]$$

 L_1, L_2 : horizontal and vertical window sizes (must be odd)

Example: 3×3 moving average

$$\boldsymbol{h} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \boxed{1} & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & \boxed{1} & 1 \end{bmatrix} \otimes \frac{1}{3} \begin{bmatrix} 1 \\ \boxed{1} \\ 1 \end{bmatrix}$$

Separable transfer function:

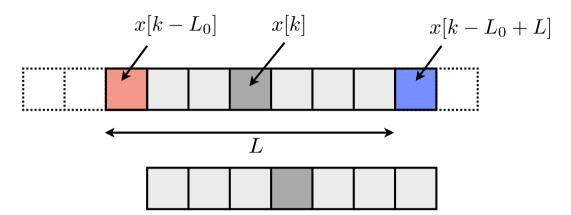
$$H(z_1, z_2) = H_{L_1}(z_1) \cdot H_{L_2}(z_2)$$

where
$$H_L(z) = \frac{1}{L} \sum_{k=-L_0}^{L_0} 1 \cdot z^{-k} = \frac{z^{-L_0}}{L} \sum_{k=0}^{L-1} z^k$$
 with $L_0 = \lfloor L/2 \rfloor$

⇒ successive filtering along the rows and columns!

Moving average: implementation

Recursive implementation in 1D



$$y[k] = \frac{1}{L} \sum_{l=0}^{L-1} x[k - L_0 + l]$$

$$y[k+1] = ?$$

$$y[k+1] = y[k] + rac{1}{L} \left(x[k-L_0+L] - x[k-L_0]
ight)$$
 with $L_0 = \lfloor L/2 \rfloor$

 \Rightarrow 2 adds and 1 mult per sample irrespective of L!

z-transform:
$$zY(z)=Y(z)+rac{1}{L}X(z)\left(z^{L-L_0}-z^{-L_0}
ight)$$
 $\Rightarrow H_L(z)=rac{Y(z)}{X(z)}=rac{z^{-L_0}}{L}\left(rac{z^L-1}{z-1}
ight)$

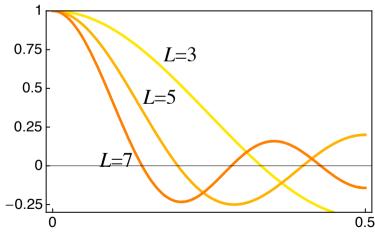
Moving average: transfer function

z-transform

$$H_L(z) = \frac{z^{-L_0}}{L} \sum_{k=0}^{L-1} z^k = \frac{z^{-L_0}}{L} \left(\frac{z^L - 1}{z - 1}\right)$$

■ Fourier transform: $L = 2L_0 + 1$ (odd)

$$H_L(e^{j\omega}) = \frac{1}{L} \left(\frac{e^{j\omega(L_0 + 1)} - e^{-j\omega L_0}}{e^{j\omega} - 1} \right) = \frac{1}{L} \left(\frac{e^{j\omega L/2} - e^{-j\omega L/2}}{e^{j\omega/2} - e^{-j\omega/2}} \right) = \frac{1}{L} \frac{\sin(\omega L/2)}{\sin(\omega/2)}$$



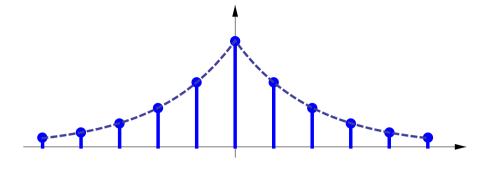
Normalized frequency

Symmetric exponential filter

Impulse response

$$h[k_1, k_2] = C \cdot a_1^{|k_1|} \cdot a_2^{|k_2|}$$

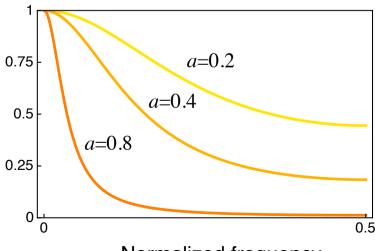
$$C$$
 such that $\sum_{(k,l)\in\mathbb{Z}^2} h[k,l] = 1$



Separable transfer function

$$H(z_1, z_2) = H_{a_1}(z_1) \cdot H_{a_2}(z_2)$$
 where $H_a(z) = \frac{C_a}{(1 - az^{-1})(1 - az)}$

⇒ successive filtering along the rows and columns!



Normalized frequency

Symmetric exponential (1D)

Construction of a symmetric exponential

$$a^{|k|} = h_{+}[k] + h_{+}[-k] - \delta[k]$$
 $0 < a < 1$

$$h_+[k] = \begin{cases} a^k, & k \geqslant 0 \\ 0, & \text{otherwise} \end{cases} \qquad \stackrel{z}{\longleftrightarrow} \qquad H_+(z) = \frac{1}{1 - az^{-1}} \qquad \qquad h_-[k] = h_+[-k]$$

$$H_+(z) = \frac{1}{1 - az^{-1}}$$

$$h_{-}[k] = h_{+}[-k]$$

Transfer function

$$H_{+}(z) + H_{+}(z^{-1}) - 1 = \frac{1}{1 - az^{-1}} + \frac{1}{1 - az} - 1 = \frac{1 - a^{2}}{(1 - az^{-1})(1 - az)}$$

Normalized exponential

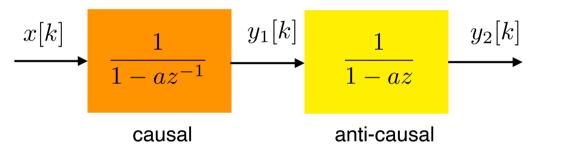
$$H_a(z) = \frac{C_a}{(1 - az^{-1})(1 - az)} \quad \text{ such that } \quad \sum_{k \in \mathbb{Z}} h_a[k] = H_a(1) = 1 \quad \Rightarrow \quad C_a = (1 - a)^2$$

$$h_a[k] = \left(\frac{1-a}{1+a}\right)a^{|k|} \qquad \stackrel{z}{\longleftrightarrow} \qquad H_a(z) = \frac{(1-a)^2}{(1-az^{-1})(1-az)}$$

Exponential filtering: implementation

Exponential filter:
$$H_a(z) = \frac{C_a}{(1 - az^{-1})(1 - az)}$$

Cascade of first-order recursive filters



$$Y_1(z) = \frac{X(z)}{1 - az^{-1}}$$
 \Rightarrow $Y_1(z) = X(z) + az^{-1}Y_1(z)$

Recursive-filtering algorithm

1. Causal filtering: $y_1[k] = x[k] + ay_1[k-1]$, for (k = 0, ..., N-1)

2. Anti-causal filtering: $y_2[k] = y_1[k] + ay_2[k+1]$, for (k = N - 1, ..., 0)

3. Normalization: $y[k] = C_a \cdot y_2[k]$

Gaussian filter

2D Gaussian impulse response

$$h_{\sigma}[k,l] = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(k^2+l^2)}{2\sigma^2}\right) = \text{gauss}(k;\sigma) \times \text{gauss}(l;\sigma)$$

where
$$\operatorname{gauss}(x;\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Motivation

- Only filter that is both circular-symmetric and separable
 - ⇒ successive filtering along the rows and columns!
- Optimal space-frequency localization
- Linear scale space

Linear scale-space & the melting cat

u(x, y; t = 0)

 $\sigma = 1$

$$\sigma = 2$$

$$\sigma = 4$$

$$\sigma = 8$$

Heat-flow interpretation

Diffusion equation (isotropic):
$$\frac{\partial u(x,y;t)}{\partial t} = \Delta u(x,y;t)$$

General solution: $u(x, y; t) = u(x, y; 0) * gauss(x, y; \sigma = \sqrt{2t})$

3-51

Refresher: Central-limit theorem

Probability density function (PDF)

$$p(x) \geqslant 0, \qquad \int_{-\infty}^{+\infty} p(x) \, \mathrm{d}x = 1$$

Moments: mean and variance

$$\mu = E\{x\} = \int_{-\infty}^{+\infty} x \cdot p(x) dx$$
$$\sigma^2 = Var\{x\} = \int_{-\infty}^{+\infty} (x - \mu)^2 p(x) dx$$

Sum of two independent random variables

$$Var\{x_1 + x_2\} = Var\{x_1\} + Var\{x_2\}$$

PDF:
$$p_{1+2}(x) = (p_1 * p_2)(x)$$

lacktriangle Sum of N independent, identically-distributed random variables

$$\operatorname{Var}\left\{\sum_{i=1}^{N} x_i\right\} = \sum_{i=1}^{N} \operatorname{Var}\{x_i\} = N\sigma^2$$

PDF: N-fold convolution of p(x)

Central-limit theorem:
$$p_{\text{sum}}(x) = \underbrace{(p*p*\cdots p)}_{N \text{ times}}(x) \rightarrow \frac{1}{\sqrt{2\pi N\sigma^2}} \exp\left(\frac{-(x-N\mu)^2}{2N\sigma^2}\right)$$

Efficient Gaussian filtering

via a judicious use of elementary operators...

Convolution interpretation of the Central-limit theorem

"The N-fold iteration of any lowpass filter converges to a Gaussian"

 $lue{}$ Gaussian filtering by repeated moving average of size $2L_0+1$ (odd)

$$\sigma_{\text{rect}}^2 = \frac{1}{2L_0 + 1} \sum_{k = -L_0}^{L_0} k^2 = \frac{L_0 + L_0^2}{3} \qquad \left(= \sum_{k \in \mathbb{Z}} k^2 h[k] \approx \int_{-\infty}^{\infty} x^2 p(x) \, \mathrm{d}x \right)$$

 $N ext{ iterations} \qquad \Rightarrow \qquad \sigma_{\mathrm{eq}}^2 = N \sigma_{\mathrm{rect}}^2$

Gaussian filtering by repeated exponential filtering

$$\sigma_{\text{exp}}^2 = \frac{2a}{(1-a)^2} \qquad \left(= \sum_{k \in \mathbb{Z}} k^2 h_a[k] = \left. \frac{\mathrm{d}^2 H_a(z)}{\mathrm{d}z^2} \right|_{z=1} \right)$$

 $N ext{ iterations} \qquad \Rightarrow \qquad \sigma_{\mathrm{eq}}^2 = \frac{2Na}{(1-a)^2}$

Determination of exponential parameter for a desired σ and N

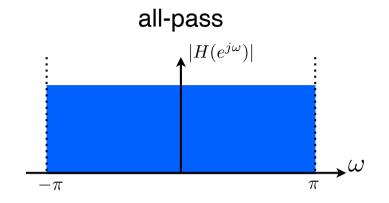
$$\sigma^2 = \frac{2Na}{(1-a)^2} \qquad \Rightarrow \qquad a = 1 + \frac{N}{\sigma^2} - \frac{\sqrt{N^2 + 2N\sigma^2}}{\sigma^2}$$

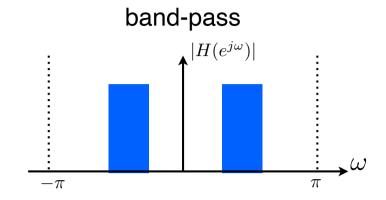
Side note

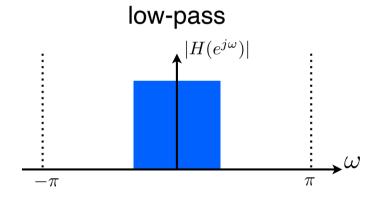
Identity to retrieve equivalent window size using z-transform

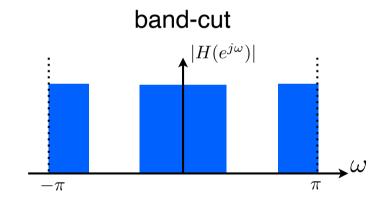
We have
$$H_a(z)=\sum_k h_a[k]z^{-k}$$
 so also $\frac{dH_a(z)}{dz}=\sum_k h_a[k](-k)z^{-k-1}$ and $\frac{d^2H_a(z)}{dz^2}=\sum_k h_a[k](k+1)kz^{-k-2}$ Thus, for $z=1$ we obtain $\sum_k h_a[k]k^2+\sum_k h_a[k]k$

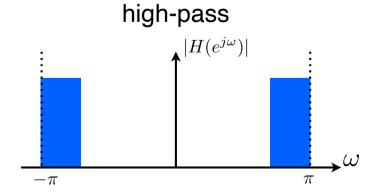
Nomenclature of prototypical filters

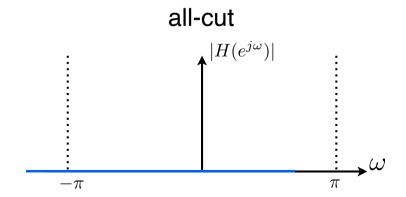












3.5 SUMMARY

- Discrete images are sequences indexed by two (or more) spatial integer variables. When they have finite energy, they can be viewed as points in the Hilbert space $\ell_2(\mathbb{Z}^d)$.
- A discrete image is characterized by its 2D Fourier transform which is 2π -periodic.
- The 2D z-transform provides an often more convenient characterization. It is a direct vector generalization of the 1D transform. Thus, it has essentially the same properties.
- Digital filtering can be described as a local masking operation (running inner-product), or as a discrete convolution. A 2D digital filter is either described by a mask (which displays the reversed version of the impulse response), its transfer function, or its frequency response.
- When processing images, special care has to be taken to handle the boundaries (periodization or mirror folding).
- Many popular image-processing filters are short and separable. The computations are therefore usually performed in the spatial domain by successive filtering along the rows and columns.
- Very useful, low-complexity spatial smoothers are the moving average, the symmetric exponential, and the Gaussian filter. They can all be implemented recursively with a complexity independent of the window size.