Image Processing 1, Exercise 2

We expect students to be able to: 1) compute basic Fourier transforms; 2) characterize specific image processing systems. These exercises will help you develop these skills.

1 Fourier transform

[basic] Computation and manipulation of Fourier transforms. You are encouraged to use the Fourier tables provided on Moodle.

- (a) Compute the Fourier transform $\mathcal{F}\{f\}$ of the following functions:
 - i. $f(x,y) = \operatorname{rect}\left(\frac{x}{5} \frac{1}{2}\right)\operatorname{rect}\left(y \frac{3}{2}\right)$ ii. $f(\boldsymbol{x}) = e^{\mathrm{j}\langle\boldsymbol{\omega_0},\boldsymbol{x}\rangle}\operatorname{sinc}\left(\frac{\boldsymbol{x}}{2\pi}\right),\,\boldsymbol{x} \in \mathbb{R}^2$
- (b) Compute the inverse Fourier transform $\mathcal{F}^{-1}\{\hat{f}\}$ of the following functions:
 - i. $\hat{f}(\omega) = \frac{4}{4+\omega^2}$
 - ii. $\hat{f}(\boldsymbol{\omega}) = e^{j\langle \boldsymbol{\omega}, \boldsymbol{x}_0 \rangle} |\det(\boldsymbol{A})|^{-1} \hat{g}(\boldsymbol{A}^{-T} \boldsymbol{\omega})$, where \boldsymbol{A} is a (2×2) invertible matrix and $\boldsymbol{x}_0 \in \mathbb{R}^2$
- (c) Use the definition of Fourier transform to show that $\int_{\mathbb{R}} \operatorname{sinc}(x) dx = 1$.

2 Characterization of linear shift-invariant systems

[basic] Practical examples of the characterization of linear shift invariant systems.

- (a) A two-dimensional system has the impulse response $h(x,y) = \text{rect}(x)e^{j\omega_0x}(\text{rect}*\text{rect})(y)$. Give the associated transfer function H.
- (b) A linear shift-invariant system \mathcal{T} is such that

$$\mathcal{T}\{\sin(\omega \cdot)\}(x) = \sin\left(\omega\left(x - \frac{\pi}{2}\right)\right), \text{ and } \mathcal{T}\{\cos(\omega \cdot)\}(x) = \cos\left(\omega\left(x - \frac{\pi}{2}\right)\right)$$

for every $\omega \in \mathbb{R}$. Give its transfer function.

(c) The transfer function H of a linear shift-invariant system \mathcal{T} is known to be $H(\omega) = e^{-j\omega x_0}$. What is the impulse response h of the system \mathcal{T} ?